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Abstract

The human microbiome is increasingly mined for diagnostic and therapeutic

biomarkers using machine learning (ML). However, metagenomics-specific software is

scarce, and overoptimistic evaluation and limited cross-study generalization are

prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for

ML-based comparative metagenomics. We demonstrate its capabilities in a meta-

analysis of fecal metagenomic studies (10,803 samples). When naively transferred across

studies, ML models lost accuracy and disease specificity, which could however be

resolved by a novel training set augmentation strategy. This reveals some biomarkers to

be disease-specific, with others shared across multiple conditions. SIAMCAT is freely

available from siamcat.embl.de.

Keywords: Microbiome data analysis, Machine learning, Statistical modeling,

Microbiome-wide association studies (MWAS), Meta-analysis

Introduction

The study of microbial communities through metagenomic sequencing has begun to

uncover how communities are shaped by—and interact with—their environment, in-

cluding the host organism in the case of gut microbes [1, 2]. Especially within a disease

context, differences in human gut microbiome compositions have been linked to many

common disorders, for example, colorectal cancer [3], inflammatory bowel disease [4,

5], or arthritis [6, 7]. As the microbiome is increasingly recognized as an important fac-

tor in health and disease, many possibilities for clinical applications are emerging for

diagnosis [8, 9], prognosis, or prevention of disease [10].

The prospect of clinical applications also comes with an urgent need for methodo-

logical rigor in microbiome analyses in order to ensure the robustness of findings. It is

necessary to assess the clinical value of biomarkers identified from the microbiome in

an unbiased manner—not only by their statistical significance, but more importantly

also by their prediction accuracy on independent samples (allowing for external
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validation). Machine learning (ML) models—ideally interpretable and parsimonious

ones—are crucial tools to identify and validate such microbiome signatures. Setting up

ML workflows however poses difficulties for novices. In general, it is challenging to as-

sess their performance in an unbiased way, to apply them in cross-study comparisons,

and to avoid confounding factors, for example, when disease and treatment effects are

intertwined [11]. For microbiome studies, additional issues arise from key characteris-

tics of metagenomic data such as large technical and inter-individual variation [12],

experimental bias [13], compositionality of relative abundances, zero inflation, and

non-Gaussian distribution, all of which necessitate data normalization in order for ML

algorithms to work well.

While several statistical analysis tools have been developed specifically for micro-

biome data, they are generally limited to testing for differential abundance of microbial

taxa between groups of samples and do not allow users to evaluate their predictivity as

they do not comprise full ML workflows for biomarker discovery [14–16]. To overcome

the limitations of testing-based approaches, several researchers have explicitly built ML

classifiers to distinguish case and control samples [17–24]; however, the software

resulting from these studies is generally not easily modified or transferred to other clas-

sification tasks or data types. To our knowledge, a powerful yet user-friendly computa-

tional ML toolkit tailored to the characteristics of microbiome data has not yet been

published.

Here, we present SIAMCAT (Statistical Inference of Associations between Microbial

Communities And host phenoTypes), a comprehensive toolbox for comparative meta-

genome analysis using ML, statistical modeling, and advanced visualization approaches.

It also includes functionality to identify and visually explore confounding factors. To

demonstrate its versatile applications, we conducted a large-scale ML meta-analysis of

130 classification tasks from 50 gut metagenomic studies (see Table 1) that have been

processed with a diverse set of taxonomic and functional profiling tools. Based on this

large-scale application, we arrive at recommendations for sensible parameter choices

for the ML algorithms and preprocessing strategies provided in SIAMCAT. Moreover,

we illustrate how several common pitfalls of ML applications can be avoided using the

statistically rigorous approaches implemented in SIAMCAT. When considering the

cross-study application of ML models, we note prevailing problems with type I error

control (i.e., elevated false-positive rate, abbreviated as FPR) as well as disease specifi-

city for ML models naively transferred across datasets. To alleviate these issues, we

propose a strategy based on sampling additional external controls during cross-

validation (which we call control augmentation). This enables cross-disease comparison

of gut microbial biomarkers. Lastly, we showcase how SIAMCAT facilitates meta-

analyses in an application to fecal shotgun metagenomic data from five independent

studies of Crohn’s disease. SIAMCAT is implemented in the R programming language

and freely available from siamcat.embl.de or Bioconductor.

Results

Machine learning and statistical analysis workflows implemented in SIAMCAT

The SIAMCAT R package is a versatile toolbox for analyzing microbiome data from

case-control studies. The default workflows abstract from and combine many of the
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complex steps that these workflows entail and that can be difficult to implement cor-

rectly for non-experts. To increase ease of use, SIAMCAT interfaces with the popular

phyloseq package [69], and design and parameter choices are carefully adapted to meta-

genomic data analysis. In addition to functions for statistical testing of associations,

SIAMCAT workflows include ML procedures, also encompassing data preprocessing,

model fitting, performance evaluation, and visualization of the results and models

(Fig. 1a). Core ML functionality is based on the mlr package [70]. The input for

SIAMCAT consists of a feature matrix (abundances of microbial taxa, genes, or path-

ways across all samples), a group label (case-control information for all samples), and

optional meta-variables (such as demographics, lifestyle, and clinical records of sample

donors or technical parameters of data acquisition).

To demonstrate the main workflow and primary outputs of the SIAMCAT package

(see the “Methods” section and SIAMCAT vignettes), we analyzed a representative

dataset [27] consisting of 128 fecal metagenomes from patients with ulcerative colitis

(UC) and non-UC controls (Fig. 1). UC is a subtype of inflammatory bowel disease

Table 1 Overview of diseases and datasets included in the ML meta-analysis

Disease Disease abbr. Datasets Data type

Ankylosing spondylitis AS [7] Shotgun

Rheumatoid arthritis ART [25] 16S rRNA

[6] Shotgun

Type 1 diabetes T1D [26] 16S rRNA

Crohn’s disease CD [5, 27–30] Shotgun

Ulcerative colitis UC [5, 27, 30] Shotgun

Inflammatory bowel disease IBD [4, 31–33] 16S rRNA

Colorectal cancer CRC [8, 34–39] Shotgun

[8, 40–42] 16S rRNA

Advanced colorectal adenoma(s) ADA [8, 34, 38, 39] Shotgun

Atherosclerotic cardiovascular disease ACVD [43] Shotgun

Hypertension
Pre-hypertension

HT
pHT

[44] Shotgun

Clostridioides difficile infection CDI [45, 46] 16S rRNA

Enteric diarrheal disease EDD [47] 16S rRNA

HIV infection HIV [48–50] 16S rRNA

Liver cirrhosis LIV [51] Shotgun

[52] 16S rRNA

Non-alcoholic fatty liver disease NAFLD [53, 54] Shotgun

[55, 56] 16S rRNA

Parkinson’s disease PAR [57] Shotgun

[58] 16S rRNA

Autism spectrum disorder ASD [59, 60] 16S rRNA

Obesity OB [61] Shotgun

[62–65] 16S rRNA

Metabolic syndrome MS [66] Shotgun

Type 2 diabetes T2D [67, 68] Shotgun

Impaired glucose tolerance IGT [67] Shotgun
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Fig. 1 SIAMCAT statistical and machine learning approach model differences between the groups of

microbiome samples. a Each step in the SIAMCAT workflow (green boxes) is implemented by a function in

the R/Bioconductor package (see SIAMCAT vignettes). Functions producing graphical output (red boxes) are

illustrated in b–e for an exemplary analysis using a dataset from Nielsen et al. [27] which contains ulcerative

colitis (UC) patients and non-UC controls. b Visualization of the univariate association testing results. The left

panel visualizes the distributions of microbial abundance data differing significantly between the groups.

Significance (after multiple testing correction) is displayed in the middle panel as horizontal bars. The right

panel shows the generalized fold change as a non-parametric measure of effect size [37]. c SIAMCAT offers

statistical tests and diagnostic visualizations to identify potential confounders by testing for associations

between such meta-variables as covariates and the disease label. The example shows a comparison of body

mass index (BMI) between the study groups. The similar distributions between cases and controls suggest

that BMI is unlikely to confound UC associations in this dataset. Boxes denote the IQR across all values with

the median as a thick black line and the whiskers extending up to the most extreme points within 1.5-fold

IQR. d The model evaluation function displays the cross-validation error as a receiver operating

characteristic (ROC) curve, with a 95% confidence interval shaded in gray and the area under the receiver

operating characteristic curve (AUROC) given below the curve. e SIAMCAT finally generates visualizations

aiming to facilitate the interpretation of the machine learning models and their classification performance.

This includes a barplot of feature importance (in the case of penalized logistic regression models, bar width

corresponds to coefficient values) for the features that are included in the majority of models fitted during

cross-validation (percentages indicate the respective fraction of models containing a feature). A heatmap

displays their normalized values across all samples (as used for model fitting) along with the classification

result (test predictions) and user-defined meta-variables (bottom)
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(IBD), a chronic inflammatory condition of the gastrointestinal tract that has been asso-

ciated with dramatic changes in the gut microbiome [5, 71]. As input, we used species-

level taxonomic profiles available through the curatedMetagenomicsData R package [72].

After data preprocessing (unsupervised abundance and prevalence filtering, Fig. 1a

and the “Methods” section), univariate associations of single species with the disease

are computed using the non-parametric Wilcoxon test (which has been shown for

metagenomic data to reliably control the false discovery rate in contrast to many other

tests proposed [73]), and the results are visualized (using the check.associations func-

tion). The association plot displays the distribution of microbial relative abundance, the

significance of the association, and a generalized fold change as a non-parametric meas-

ure of effect size [37] (Fig. 1b).

The central component of SIAMCAT consists of ML procedures, which include a se-

lection of normalization methods (normalize.features), functionality to set up a cross-

validation scheme (create.data.split), and interfaces to different ML algorithms, such as

LASSO, Elastic Net, and random forest (offered by the mlr package [70]) [74–76]. As

part of the cross-validation procedure, models can be trained (train.model) and applied

to make predictions (make.predictions) on samples not used for training. Based on

these predictions, the performance of the model is assessed (evaluate.predictions) using

the area under the receiver operating characteristic (ROC) curve (AUROC) (Fig. 1d).

SIAMCAT also provides diagnostic plots for the interpretation of ML models

(model.interpretation.plot) which display the importance of individual features in the

classification model, normalized feature distributions as heatmaps, next to sample

meta-variables (optionally, see Fig. 1c, e).

Expert users can readily customize and flexibly recombine the individual steps in the de-

scribed workflow above. For example, filtering and normalization functions can be com-

bined or omitted before ML models are trained or association statistics calculated. To

demonstrate its versatility beyond the workflow presented in Fig. 1a, we used SIAMCAT

to reproduce two recent ML meta-analyses of metagenomic datasets [19, 20]. By imple-

menting the same workflows as described in the respective papers, we could generate

models with very similar accuracy (within the 95% confidence interval) for all datasets an-

alyzed (Additional file 1: Figure S1).

Confounder analysis using SIAMCAT

As many biological and technical factors beyond the primary phenotype of interest

can influence microbiome composition [1], microbiome association studies are

often at a high risk of confounding, which can lead to spurious results [11, 77–79].

To minimize this risk, SIAMCAT provides a function to optionally examine poten-

tial confounders among the provided meta-variables. In the example dataset from [27],

control samples were obtained from both Spanish and Danish subjects, while UC samples

were only taken from Spanish individuals (Fig. 2a). Here, the meta-variable “country” could

be viewed as a surrogate variable for other (often difficult-to-measure) factors, which can in-

fluence microbiome composition, such as diet, lifestyle, or technical differences between

studies. The strong association of the “country” meta-variable with the disease status (SIAM

CAT computes such associations using Fisher’s exact test or the Wilcoxon test for discrete

and continuous meta-variables, respectively; see Fig. 2a) hints at the possibility that
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associations computed with the full dataset could be confounded by the country of the

sample donor.

To quantify this confounding effect on individual microbial features, SIAMCAT add-

itionally provides a plot for each meta-variable that shows the variance explained by

the label in comparison with the variance explained by the meta-variable for each indi-

vidual feature (Fig. 2b, implemented in the check.confounder function). In our example

case, several microbial species are strongly associated with both the disease phenotype

(UC vs control) and the country, indicating that their association with the label might

simply be an effect of technical and/or biological differences between samples taken

and data processed in the different countries.

Fig. 2 Analysis of covariates that potentially confound microbiome-disease associations and classification

models. The UC dataset from Nielsen et al. [27] contains fecal metagenomes from subjects enrolled in two

different countries and generated using different experimental protocols (data shown is from

curatedMetagenomicData with CD cases and additional samples per subject removed). a Visualizations from

the SIAMCAT confounder checks reveals that only control samples were taken from Denmark suggesting

that any (biological or technical) differences between Danish and Spanish samples might confound a naive

analysis for UC-associated differences in microbial abundances. b Analysis of variance (using ranked

abundance data) shows many species differ more by country than by disease, with several extreme cases

highlighted. c When comparing (FDR-corrected) P values obtained from SIAMCAT’s association testing

function applied to the whole dataset (y-axis) to those obtained for just the Danish samples (x-axis), only a

very weak correlation is seen and strong confounding becomes apparent for several species including

Dorea formicigenerans (highlighted). d Relative abundance differences for Dorea formicigenerans are

significantly larger between countries than between Spanish UC cases and controls (P values from Wilcoxon

test) (see Fig. 1c for the definition of boxplots). e Distinguishing UC patients from controls with the same

workflow is possible with lower accuracy when only samples from Spain are used compared to the full

dataset containing Danish and Spanish controls. This implies that in the latter case, the machine learning

model is confounded as it exploits the (stronger) country differences (see c and f), not only UC-associated

microbiome changes. f This is confirmed by the result that control samples from Denmark and Spain can

be very accurately distinguished with an AUROC of 0.96 (using SIAMCAT classification workflows)
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To further investigate this confounder, we used SIAMCAT to compute statistical as-

sociation for the full dataset (including the Danish control samples) and the reduced

dataset containing only samples from Spanish individuals (using the check.association

function). The finding that P values were uncorrelated between the two datasets (Fig.

2c) directly quantified the effect of confounding by country on the disease-association

statistic. The potential severity of this problem is highlighted by a comparison of the

relative abundance of Dorea formicigenerans across subjects: the differences between

UC cases and controls are only significant when Danish control samples are included,

but not when restricted to Spanish samples only (Fig. 2d), exemplifying how

confounders can lead to spurious associations.

Finally, confounding factors can not only bias statistical association tests, but can also

impact the performance of ML models. A model trained to distinguish UC patients

from controls seemingly performs better if the Danish samples are included (AUROC

of 0.84 compared to 0.76 if only using Spanish samples), because the differences be-

tween controls and UC samples are artificially inflated by the differences between

Danish and Spanish samples (Fig. 2e). How these overall differences between samples

taken in different countries can be exploited by ML models can also be directly quanti-

fied using SIAMCAT workflows. The resulting model trained to distinguish between

control samples from the two countries can do so with almost perfect accuracy

(AUROC of 0.96) (Fig. 2f). This analysis demonstrates how confounding factors can

lead to exaggerated performance estimates for ML models.

In summary, SIAMCAT can help to detect influential confounding factors that have

the potential to bias statistical associations and ML model evaluations (see Additional

file 1: Figure S2 for additional examples).

Advanced machine learning workflows

When designing more complex ML workflows involving feature selection steps or ap-

plications to time series data, it becomes more challenging to set up cross-validation

procedures correctly. Specifically, it is important to estimate how well a trained model

would generalize to an independent test set, which is typically the main objective of mi-

crobial biomarker discovery. An incorrect ML procedure, in which information leaks

from the test to the training set, can result in overly optimistic (i.e., overfitted) perform-

ance estimates. Two pitfalls that can lead to overfitting and poor generalization to other

datasets (Fig. 3a) are frequently encountered in ML analyses of microbiome and other

biological data, even though the issues are well described in the statistics literature

[80–82]. These issues, namely supervised feature filtering and naive splitting of

dependent samples, can be exposed by testing model performance in an external valid-

ation set, which has not been used during cross-validation at all (Fig. 3b).

The first issue arises when feature selection taking label information into account (su-

pervised feature selection) is naively combined with subsequent cross-validation on the

same data [81]. This incorrect procedure selects features that are associated with the

label (e.g., by testing for differential abundance) on the complete dataset leaving no data

aside for an unbiased test error estimation of the whole ML procedure. To avoid over-

fitting, correct supervised feature selection should always be nested into cross-

validation (that is, the supervised feature selection has to be applied to each training
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fold of the cross-validation separately). To illustrate the extent of overfitting resulting

from the incorrect approach, we used two datasets of colorectal cancer (CRC) patients

and controls and performed both the incorrect and correct ways of supervised feature

selection. As expected, the incorrect feature selection led to inflated performance esti-

mates in cross-validation but lower generalization to an external dataset, whereas the

correct procedure gave a better estimate of the performance in the external test set; the

fewer features were selected, the more the performance in the external datasets

dropped (see Fig. 3c). SIAMCAT readily provides implementations of the correct pro-

cedure and additionally takes care that the feature filtering and normalization of the

whole dataset are blind to the label (therefore called unsupervised), thereby preventing

accidental implementation of the incorrect procedure.

The second issue tends to occur when samples are not independent [82]. For ex-

ample, microbiome samples taken from the same individual at different time points are

usually a lot more similar to each other than those from different individuals (see [12]

and Additional file 1: Figure S3). If these dependent samples are randomly split in a

standard cross-validation procedure, so that some could end up in the training set and

others in the test set, it is effectively estimated how well the model generalizes across

time points (from the same individual) rather than across individuals. To avoid this,

dependent measurements need to be blocked during cross-validation, ensuring that

Fig. 3 SIAMCAT aids in avoiding common pitfalls leading to a poor generalization of machine learning

models. a Incorrectly setup machine learning workflows can lead to overoptimistic accuracy estimates

(overfitting): the first issue arises from a naive combination of feature selection on the whole dataset and

subsequent cross-validation on the very same data [80]. The second one arises when samples that were not

taken independently (as is the case for replicates or samples taken at multiple time points from the same

subject) are randomly partitioned in cross-validation with the aim to assess the cross-subject generalization

error (see the main text). b External validation, for which SIAMCAT offers analysis workflows, can expose

these issues. The individual steps in the workflow diagram correspond to SIAMCAT functions for fitting a

machine learning model and applying it to an external dataset to assess its external validation accuracy (see

SIAMCAT vignette: holdout testing with SIAMCAT). c External validation shows overfitting to occur when

feature selection and cross-validation are combined incorrectly in a sequential manner, rather than correctly

in a nested approach. The correct approach is characterized by a lower (but unbiased) cross-validation

accuracy, but better generalization accuracy to external datasets (see header for datasets used). The fewer

features are selected, the more pronounced the issue becomes, and in the other extreme case (“all”),

feature selection is effectively switched off. d When dependent observations (here by sampling the same

individuals at multiple time points) are randomly assigned to cross-validation partitions, effectively the

ability of the model to generalize across time points, but not across subjects, is assessed. To correctly

estimate the generalization accuracy across subjects, repeated measurements need to be blocked, all of

them either into the training or test set. Again, the correct procedure shows lower cross-validation

accuracy, but higher external validation accuracy
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measurements of the same individual are assigned to the same test set. How much the

naive procedure can overestimate the performance in cross-validation and underper-

form in external validation compared to the correctly blocked procedure is demon-

strated here using the iHMP dataset, which contains several samples per subject [30].

Although the cross-validation accuracy appears dramatically lower in the correct com-

pared to the naive procedure, generalization to other datasets of the same disease is

higher with the correctly blocked model (Fig. 3d). SIAMCAT offers the possibility to

block the cross-validation according to meta-variables by simply providing an add-

itional argument to the respective function call (see also SIAMCAT vignettes).

Large-scale machine learning meta-analysis

Previous studies that applied ML to microbiome data [17–20] have compared and dis-

cussed the performance of several learning algorithms. However, their recommenda-

tions were based on the analysis of a small number of datasets which were technically

relatively homogeneous. To overcome this limitation and to demonstrate that

SIAMCAT can readily be applied to various types of input data, we performed a large-

scale ML meta-analysis of case-control gut metagenomic datasets. We included taxo-

nomic profiles obtained with the RDP taxonomic classifier [83] for 26 datasets based

on 16S rRNA gene sequencing [20]; additionally, taxonomic profiles generated from 12

and 24 shotgun metagenomic datasets using either MetaPhlAn2 [84] or mOTUs2 [85],

respectively, as well as functional profiles obtained with HUMAnN2 [86] or with

eggNOG 4.5 [87] for the same set of shotgun metagenomic data were included (in total

130 classification tasks, see Table 1 and Additional file 2: Table S1 for information

about included datasets).

Focusing first on intra-study results, we found that given a sufficiently large input

dataset (with at least 100 samples), SIAMCAT models are generally able to distinguish

reasonably well between cases and controls: the majority (58%) of these datasets in our

analysis could be classified with an AUROC of 0.75 or higher—compared to only 36%

of datasets with fewer than 100 samples (Fig. 4a–c, Additional file 1: Figures S4 and S5

and the “Methods” section). Of note, accurate ML-based classification was possible

even for datasets in which cases and controls could not easily be separated using beta-

diversity analyses (Additional file 1: Figure S6), indicating that a lack of separation in

ordination analysis does not preclude ML-based workflows to extract accurate micro-

biome signatures. In the datasets for which a direct comparison of mOTUs2 and

MetaPhlAn2 profiles was possible, we did not find any consistent trend towards either

profiling method (paired Wilcoxon P = 0.41, see Additional file 1: Figure S7). When

comparing taxonomic and functional profiles derived from the same dataset, we found

a high correlation between AUROC values (Pearson’s r = 0.92, P < 2 × 10−16), although

on average taxonomic profiles performed slightly better than functional profiles

(Additional file 1: Figure S7). Taken together, this indicates that SIAMCAT can extract

accurate microbiome signatures (model cross-validation AUROC > 0.75 in 64 of 130

classification tasks) from a range of different input profiles commonly used in micro-

biome research.

SIAMCAT provides various methods for data filtering and normalization and inter-

faces to several ML algorithms through mlr [70]. This made it easy to explore the space
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Fig. 4 Large-scale application of the SIAMCAT machine learning workflow to human gut metagenomic

disease association studies. a Application of SIAMCAT machine learning workflows to taxonomic profiles

generated from fecal shotgun metagenomes using the mOTUs2 profiler. Cross-validation performance for

discriminating between diseased patients and controls quantified by the area under the ROC curve

(AUROC) is indicated by diamonds (95% confidence intervals denoted by horizontal lines) with sample size

per dataset given as additional panel (cut at N = 250 and given by numbers instead) (see Table 1 and

Additional file 2: Table S1 for information about the included datasets and key for disease abbreviations).

b Application of SIAMCAT machine learning workflows to functional profiles generated with eggNOG 4.5

for the same datasets as in a (see Additional file 1: Figure S4, S7 for additional types of and comparison

between taxonomic and functional input data). c Cross-validation accuracy of SIAMCAT machine learning

workflows as applied to 16S rRNA gene amplicon data for human gut microbiome case-control studies [20]

(see a for definitions). d Influence of different parameter choices on the resulting classification accuracy.

After training a linear model to predict the AUROC values for each classification task, the variance explained

by each parameter was assessed using an ANOVA (see the “Methods” section) (see Fig. 1 for the definition

of boxplots). e Performance comparison of machine learning algorithms on gut microbial disease

association studies. For each machine learning algorithm, the best AUROC values for each task are shown

as boxplots (defined as in d). Generally, the choice of algorithm only has a small effect on classification

accuracy, but both the Elastic Net and LASSO performance gains are statistically significant (paired Wilcoxon

test: LASSO vs Elastic Net, P = 0.001; LASSO vs random forest, P = 1e−08; Elastic Net vs random

forest, P = 4e−14)
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of possible workflow configurations in order to arrive at recommendations about sens-

ible default parameters. To test the influence of different parameter choices within the

complete data analysis pipeline, we performed an ANOVA analysis to quantify their

relative importance on the resulting classification accuracy (Fig. 4d and the “Methods”

section). Whereas the choice of filtering method and feature selection regime has little

influence on the results, the normalization method and ML algorithm explained more

of the observed variance in classification accuracy. Analysis of the different

normalization methods shows that most of the differences can be explained by a drop

in performance for naively normalized data (only total sum scaling and no further

normalization) in combination with LASSO or Elastic Net logistic regression (Add-

itional file 1: Figure S8). In contrast, the random forest classifier depended much less

on optimal data normalization. Lastly, we compared the best classification accuracy for

each classification task across the different ML algorithms. Interestingly, in contrast to

a previous report [19], this analysis indicates that on average Elastic Net logistic regres-

sion outperforms LASSO and random forest classifiers when considering the optimal

choice of ML algorithm (P = 0.001 comparing Elastic Net to LASSO and P = 4 × 10−14

comparing it to random forest, Fig. 4e). In summary, this large-scale analysis demon-

strates the versatility of the ML workflows provided by SIAMCAT and validates its

default parameters as well as the robustness of classification accuracy to deviations

from these.

Cross-study evaluation of microbiome signatures is crucial to establish their validity

across patient populations. However, such comparisons are potentially hindered by

inter-study differences in sample handling and data generation, with technical variation

observed to often dominate over biological factors of interest [88–90]. Additionally,

biological and clinical factors can contribute to inter-study differences. These not only

include influences of geography, ethnicity, demographics, and lifestyle, but also how

clinical phenotypes are defined and controls selected for each study [91].

Up to now, it has not been systematically explored how well microbiome-based ML

models transfer across a range of diseases. To close this gap, we used our large-scale

ML meta-analysis and trained ML models for each task using mOTUs2 taxonomic pro-

files as input (based on the previously established best-performing parameter set). We

subsequently focused on models with reasonable cross-validation accuracy (AUROC > 0.75)

and applied these to all remaining datasets to make predictions.

Cross-study application of ML models is straightforward within the same disease,

since the model predictions on external datasets can easily be evaluated by an AUROC

(Additional file 1: Figure S9, [37, 38]) under the assumption that case and control defi-

nitions are comparable between studies. However, when applying an ML model to a

dataset from another disease, ROC analysis cannot be directly applied, since the cases

the model was originally trained to detect are from another disease than those of the

evaluation dataset. For this cross-disease application of ML models, we conducted ex-

tended evaluations, which specifically addressed the following two questions (see Add-

itional file 1: Figure S10 and the “Methods” section). First, we asked to which extent

the separation between cases and controls (in terms of prediction scores) would be

maintained when control samples of a different study are used. We therefore employed

a modified ROC analysis (comparing true-positive rates from cross-validation to exter-

nal FPRs via AUROC) as a newly defined measure of cross-study portability of an ML

Wirbel et al. Genome Biology           (2021) 22:93 Page 11 of 27



model. For convenience, we rescaled it to range between 0 (indicating a complete loss

of discriminatory power on external data) and 1 (meaning that the ML model could be

transferred to another dataset without loss of discrimination accuracy). Second, we

asked how specific an ML model would be to the disease it was trained to recognize, or

whether its FPR would be elevated when presented with cases from a distinct condition.

This is of interest in the context of an ongoing debate on whether there is a general

gut microbial dysbiosis or distinct compositional changes associated with each disease

[19, 20, 92]. Disease-specific classifiers would also be of clinical relevance when applied

to a general population: due to large differences in disease prevalence, a model for CRC

(a condition with low prevalence) misclassifying many type 2 diabetes (T2D) patients

(high prevalence) would in the general population detect many more (false) T2D cases

than true CRC cases, and thus have very low precision. To quantify the prediction rate

for other diseases of an ML model, i.e., its disease specificity, we assessed how many

samples from a distinct disease would be mispredicted as positive for the disease the

ML model was trained on at a cutoff adjusted to maintain a FPR of 10% on the cross-

validation set.

These extended evaluations showed low cross-study portability on the majority of

external datasets (apparent also from a more than twofold increase in false posi-

tives on average) for most models (Additional file 1: Figure S11). Similarly, (false-

positive) predictions for other diseases were elevated for most models (by a factor

of 2.8 on average), with the extreme case of the ankylosing spondylitis (AS) model

predicting more than 90% of cases from other diseases to be AS positive (median

across studies, Additional file 1: Figure S12). These evaluations indicate that naive

ML model transfer is substantially impacted—if not rendered impossible—by bio-

logical and technical study heterogeneity, apparent from loss of general accuracy

and disease specificity.

In order to improve the cross-study portability of ML models, we devised a strategy

we call control augmentation, in which randomly selected control samples from inde-

pendent microbiome population cohort studies [93–95] are added to the training set

during model fitting (Fig. 5a, see the “Methods” section). This was motivated by the hy-

pothesis that additional variability from a greater control pool comprising hetero-

geneous samples from multiple studies would enable classifiers to more specifically

recognize disease signals while at the same time minimizing overfitting on peculiarities

of a single dataset. However, a theoretical limitation of this approach is that the defin-

ition of controls can vary greatly across studies. In spite of this, in practice, we found

control augmentation to greatly enhance cross-study portability uniformly across all

ML models, both in cross-study analysis within the same condition and across different

diseases (Fig. 5b, c, Additional file 1: Figure S9, S11). At the same time, cross-disease

predictions decreased (Fig. 5c, d, Additional file 1: Figure S12) implying that it is an

effective strategy to increase disease specificity of ML models.

The control augmentation strategy did not strongly depend on the set of controls

used. We found large (> 250 samples) cohort studies to work well as a pool for control

augmentation (allowing us to add five times the amount of control samples to each

dataset). However, augmentation with fewer controls or with other datasets improved

cross-study portability and disease specificity to almost the same effect (Additional file

1: Figure S13).
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With cross-study portability greatly improved, we expect the remaining cross-disease

predictions to be largely due to biological similarities between diseases rather than due

to technical influences. In support of this, we show that CRC signatures have a ten-

dency to cross-predict samples from patients with intestinal adenomas (ADA) or in-

flammatory bowel disease (CD), both of which are risk factors for CRC development

[96]. Similarly, UC models cross-predict CD cases and vice versa, reflecting more gen-

eral gut microbial changes, i.e., loss of beneficial commensal bacteria, that are shared

across both types of inflammatory bowel disease [97]. In summary, we demonstrate that

control augmentation is an effective strategy to broadly enable the validation of micro-

biome disease signatures across different studies, since it can overcome study-specific

biases, which preclude the naive transfer of ML models.

When comparing microbiome signatures across diseases in more detail, we also revis-

ited the question of whether microbiome alterations are specific to a disease, or signs

of a general dysbiotic state [20]. As many ML algorithms, in particular (general-

ized) linear models, such as LASSO or Elastic Net logistic regression models,

allow for model introspection, microbiome biomarkers can easily be extracted

and their weight in the model directly quantified by (normalized) coefficient

values. The model weights of the control-augmented models showed a clear clus-

tering by disease in principal coordinate space revealing broad disease similarity

patterns in terms of microbiome predictors that may reflect etiological similarities

(Fig. 5e, not apparent from naively transferred ML models, Additional file 1: Fig-

ure S14). To obtain a more nuanced view of the gut bacterial taxa underlying

these disease similarities, we analyzed individual mOTUs (grouped by genus

membership) that were selected as predictors in disease models (Fig. 5f, to

minimize bias from multiple studies of the same disease, we used the mean

model for each disease and extracted those features whose weights accounted for

more than 50% of the model, see the “Methods” section for details). We found

some disease-enriched predictors to be very specific for a single disease, such as

Veillonella spp. for LIV, Bifidobacteria and Neisseria mOTUs for AS, or Gemella

and Parvimonas mOTUs for CRC. In contrast, species from other genera, for ex-

ample, Lactobacillus, Bacteroides, or Fusobacteria, appear predictive of several

diseases, although species and subspecies belonging to these vary in terms of

their disease specificity (Additional file 1: Figure S15). Regarding control-enriched

predictors, species from some genera are frequently depleted across multiple dis-

eases (Anaerostipes and Romboutisa) while some diseases are marked by broad

depletion of beneficial microbes, e.g., CD (consistent with [97]).

Overall, enabled by control augmentation as an effective strategy to improve

cross-study portability of ML models, our cross-disease meta-analysis reveals both

shared and disease-specific predictors as a basis for further development of

microbiome-based diagnostic biomarkers.

Meta-analysis of Crohn’s disease gut microbiome studies

Microbiome disease associations being reported at an ever-increasing pace have also

provided opportunities for comparisons across multiple studies of the same disease to

assess the robustness of associations and the generalizability of ML models [19, 20, 37,
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Fig. 5 Control augmentation improves ML model disease specificity and reveals shared and distinct

predictors. a Schematic of the control augmentation procedure: control samples from external cohort

studies are added to the individual cross-validation folds during model training. Trained models are applied

to external studies (either of a different or the same disease) to determine cross-study portability (defined

as maintenance of type I error control on external control samples) and cross-disease predictions (i.e., false

detection of samples from a different disease). b Cross-study portability was compared between naive and

control-augmented models showing consistent improvements due to control augmentation. c Boxplots

depicting cross-study portability (left) and prediction rate for other diseases (right) of naive and control-

augmented models (see Fig. 1 for the definition of boxplots). d Heatmap showing prediction rates for other

diseases (red color scheme) and for the same disease (green color scheme) for control-augmented models

on all external datasets. True-positive rates of the models from cross-validation on the original study are

indicated by boxes around the tile. Prediction rates over 10% are labeled. e Principal coordinate (PCo)

analysis between models based on Canberra distance on model weights. Diamonds represent the mean

per dataset in PCo space across cross-validation splits, and lines show the standard deviation. f Visualization

of the main selected model weights (predictors corresponding to mOTUs, see the “Methods” section for the

definition of cutoffs) by genus and disease. Absolute model weights are shown as a dot plot on top,

grouped by genus (including only genera with unambiguous NCBI taxonomy annotation). Below, the

number of selected weights per genus is shown as a bar graph, colored by disease (see e for color key).

Genus labels at the bottom include the number of mOTUs with at least one selected weight followed by

the number of mOTUs in the complete model weight matrix belonging to the respective genus
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38]. To demonstrate SIAMCAT’s utility in single-disease meta-analyses, we analyzed

five metagenomic datasets [5, 27–30], all of which included samples from patients with

Crohn’s disease (CD) as well as controls not suffering from inflammatory bowel dis-

eases (IBD). Raw sequencing data were consistently processed to obtain genus abun-

dance profiles with mOTUs2 [85].

Based on SIAMCAT’s check.associations function, we identified microbial genera that

are significantly associated with CD in each study and visualized their agreement across

studies (Fig. 6a, left panel). In line with previous findings [4], the gut microbiome of

CD patients is characterized by a loss of diversity and many beneficial taxa. Though

our re-analysis of the data from [30] could not identify any statistically significant

genus-level associations, possibly due to the relatively small number of individuals or

the choice of control samples obtained from patients with non-IBD gastrointestinal

symptoms, the other four studies showed remarkable consistency among the taxa lost

in CD patients, in particular, for members of the Clostridiales order.

We further investigated variation due to technical and biological differences between

studies as a potential confounder using SIAMCAT’s check.confounder function follow-

ing a previously validated approach [37]. For many genera, variation can largely be at-

tributed to heterogeneity among studies; the top five associated genera (cf. Figure 6a),

however, vary much more with disease status, suggesting that their association with CD

is only minimally confounded by differences between studies (Fig. 6b).

Next, we systematically assessed cross-study generalization of ML models trained to

distinguish CD patients from controls using SIAMCAT workflows. To this end, we

trained an Elastic Net model for each study independently and evaluated the perform-

ance of the trained models on the other datasets (Fig. 6c and the “Methods” section).

Most models maintained very high classification accuracy when applied to the other

datasets for external validation (AUROC > 0.9 in most cases); again with the exception

of the model cross-validated on the data from [30], which exhibited substantially lower

accuracy in both cross-validation and external validation.

We lastly assessed the importance of individual microbial predictors in the CD

models. The LASSO, and to some extent also the Elastic Net, are sparse models, in

which the number of influential predictors (with non-zero coefficients) is kept small.

As a consequence, these ML methods tend to omit statistically significant features

when they are correlated to each other in favor of a smaller subset of features with op-

timal predictive power. Nonetheless, in our meta-analysis of CD, the feature weights

derived from multivariable modeling corresponded well to the univariate associations,

and also showed some consistency across the four studies in which clear CD associa-

tions could be detected and an accurate ML model trained (Fig. 6a, right panel). Taken

together, these results demonstrate that SIAMCAT could be a tool of broad utility for

consolidating microbiome-disease associations and biomarker discovery by leveraging a

large amount of metagenomic data becoming available for ML-based analyses.

Discussion

The rising interest in clinical microbiome studies and microbiome-derived diagnostic,

prognostic, and therapeutic biomarkers also calls for more robust analysis procedures.

An important step in that direction is the development of freely available, comprehen-

sive, and extensively validated analysis workflows that make complex ML procedures
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available to non-experts, ideally while safeguarding against statistical analysis pitfalls.

Designed with these objectives in mind, SIAMCAT provides a modular analysis frame-

work that builds on the existing R-based microbiome analysis environment: data inte-

gration from DADA2 [98] or phyloseq [69] is straightforward since SIAMCAT

internally uses the phyloseq object. ML algorithms and procedures in SIAMCAT inter-

face to the mlr package [70], a general-purpose ML library. Since the multitude of ML

algorithms, workflow options, and design choices within such a general package can

make ML workflow design challenging for non-experts, SIAMCAT mainly aims to en-

able users to apply robust and validated ML workflows to their data with preprocessing

and normalization options tailored to the characteristics of microbiome data. At the

same time, SIAMCAT allows advanced users to flexibly set up and customize more

complex ML procedures, including non-standard cross-validation splits for dependent

measurements and supervised feature selection methods that are properly nested into

cross-validation (Fig. 3). Further developments of the package are planned to

Fig. 6 Meta-analysis of CD studies based on fecal shotgun metagenomic data. a Genus-level univariate and

multivariable associations with CD across the five included metagenomic studies. The heatmap on the left

side shows the generalized fold change for genera with a single-feature AUROC higher than 0.75 or smaller

than 0.25 in at least one of the studies. Associations with a false discovery rate (FDR) below 0.1 are

highlighted by a star. Statistical significance was tested using a Wilcoxon test and corrected for multiple

testing using the Benjamini-Hochberg procedure. Genera are ordered according to the mean fold change

across studies, and genera belonging to the Clostridiales order are highlighted by gray boxes. The right side

displays the median model weights for the same genera derived from Elastic Net models trained on the

five different studies. For each dataset, the top 20 features (regarding their absolute weight) are indicated

by their rank. b Variance explained by disease status (CD vs controls) is plotted against the variance

explained by differences between studies for individual genera. The dot size is proportional to the mean

abundance, and genera included in a are highlighted in red or blue. c Classification accuracy as measured

by AUROC is shown as a heatmap for Elastic Net models trained on genus-level abundances to distinguish

controls from CD cases. The diagonal displays values resulting from cross-validation (when the test and

training set are the same), and off-diagonal boxes show the results from the study-to-study transfer

of models
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accommodate the rapidly changing needs of the microbiome research community, and

updates will be published in accordance with the established Bioconductor release

schedule.

To showcase the power of ML workflows implemented in SIAMCAT, we performed

a meta-analysis of human gut metagenomic studies at a considerably larger scale than

previous efforts [17–22] (see Fig. 4). It importantly encompassed a large number of dis-

eases as well as different taxonomic and functional profiles as input that were derived

from different metagenomic sequencing techniques (16S rRNA gene and shotgun meta-

genomics sequencing) and profiling tools. Consequently, these benchmarks are ex-

pected to yield much more robust and general results than those from previous studies

[17–22]. In our exploration of more than 7000 different parameter combinations per

classification task (see the “Methods” section), we found the Elastic Net logistic regres-

sion algorithm to yield the highest cross-validation accuracies on average, albeit requir-

ing the input data to be appropriately normalized (see Fig. 4 and Additional file 1:

Figure S8). Compared with the choice of normalization method and classification algo-

rithm, other parameters had a considerably lower influence on the resulting classifica-

tion accuracy. SIAMCAT’s functionality to robustly fit statistical microbiome models

and evaluate their performance will enable comparison to established diagnostic bio-

markers [8] as an important prerequisite for further translation of microbiome research

into the clinic.

To help resolve the debate about spurious associations and reproducibility issues in

microbiome research [99], meta-analyses are crucial for the validation of microbiome

biomarkers [37, 38]. However, we found that ML models have substantial problems

with type I error control (> 2-fold increase in FPR) and disease specificity (> 2.5-fold el-

evated FPR) when naively transferred across studies. We propose measures to detect

these issues, which, if more widely adopted, could help to more precisely characterize

them and their underlying causes. To address them, we introduce the control augmen-

tation strategy, which greatly improved the cross-study portability of ML models. Being

the first attempt to overcome study heterogeneity for improved cross-study model ap-

plication, our work will hopefully stimulate further developments, which could easily be

evaluated on the provided datasets. However, all such ML meta-analyses are limited by

biological and clinical differences between studies [91], which will have to be addressed

by better reporting standards [100]. Within these limitations, our ML meta-

analysis datasets could become a valuable community resource for method devel-

opment, systematic assessment of disease similarities, and further exploration of

globally applicable microbiome biomarkers including validation of their disease

specificity.

Using model introspection after control augmentation, we could revisit the question

if microbiome alterations are specific to a given disease or more general hallmarks of

dysbiosis [20]. In general, we found depletion of beneficial bacteria to be more often

shared across several diseases (e.g., Anaerostipes or Romboutisa), in particular, in the

subtypes of IBD. Conversely, disease-enriched bacteria were more often specific to a

given disease. This could mean that some disease-specific microbiome alterations may

reflect pathogens or pathobionts acting either as etiological agents or exploiting specific

disease-related changes in the intestinal milieu. As examples of disease-specific

markers, Parvimonas spp. are predictive for colorectal cancer, which is consistent with
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mechanistic work demonstrating this species to accelerate proliferation and cancer de-

velopment both in vitro and in vivo [101]. Similarly, a putative link between oral

Veillonella spp. and liver cirrhosis severity has been reported in the context of proton-

pump inhibitor therapy [102], potentially enabled by increased transmission from the

oral to the gut microbiome [78]. Other taxa showing a broader disease spectrum, such

as Fusobacterium spp., have been extensively studied both in the context of CRC [103]

and in IBD [104] using cellular and animal models. However, firmly establishing

disease specificity or disease spectra for microbial biomarkers will be difficult to

achieve in preclinical studies but require large patient cohorts. Nonetheless, our

analyses generated candidates of both shared and disease-specific gut microbial bio-

markers to guide further investigations of specific hypotheses on their ecological

roles.

Although the analyses presented here are focused on human gut metage-

nomic datasets with disease prediction tasks, SIAMCAT is not restricted to

these. It can also be applied to other tasks of interest in microbiome research,

e.g., for investigating the effects of medication (see Additional file 1: Figure

S2). Metagenomic or metatranscriptomic data from environmental samples can

also be analyzed using SIAMCAT, e.g., to understand the associations between

community composition and transcriptional activity of the ocean microbiome

with physicochemical environmental properties (see Additional file 1: Figure S16 for

an example [105]) highlighting that SIAMCAT could be of broad utility in microbiome

research.

Methods

Implementation

SIAMCAT is implemented as an R package with a modular architecture, allow-

ing for a flexible combination of different functions to build ML and statistical

analysis workflows (see the “Code box” section). The output of the functions

(for example, the feature matrix after normalization) is stored in the SIAMCAT

object, which is an extension of the phyloseq object that contains the raw fea-

ture abundances, meta-variables about the samples, and other optional informa-

tion (for example, a taxonomy table or a phylogenetic tree) [69]. The label

defining the sample groups for comparison is then derived from a user-specified

meta-variable or an additional vector. ML models are trained using the mlr

infrastructure as an interface to the implementations of different ML algorithms

in other R packages [70]. SIAMCAT is available under the GNU General Public

License, version 3.

Code box

Given two R objects called feat (relative abundance matrix) and meta (meta-

variables about samples as a dataframe, containing a column called disease

which encodes the label), the entire analysis can be conducted with a few com-

mands (more extensive documentation can be found online in the SIAMCAT vi-

gnettes).
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Included datasets and microbiome profiling

In this study, we analyzed taxonomic and functional profiles derived with different pro-

filing tools from several metagenomic datasets (see Additional file 2: Table S1). Taxo-

nomic profiles generated using the RDP classifier [83] on the basis of 16S rRNA gene

sequencing data were downloaded from a recent meta-analysis by Duvallet et al. [20]

and summarized at the genus level. MetaPhlAn2 [84] and HUMAnN2 [86] taxonomic

and functional profiles were obtained from the curatedMetagenomicsData R package

[72] for all human gut datasets within the package that contained at least 20 cases and

20 controls. MetaPhlAn2 profiles were filtered to contain only species-level microbial

taxa.

Additional datasets were profiled in-house with the following pipeline implemented

in NGless [106]: after preprocessing with MOCAT2 [107] and filtering for human reads,

taxonomic profiles were generated using the mOTUsv2 profiler [85], and functional

profiles were calculated by first mapping reads against the integrated gene catalog [108]

and then aggregating the results by eggNOG orthologous groups [87].

Additionally, genus-level taxonomic profiles from the TARA Oceans microbiome

project [105] were used for two different classification tasks: to classify samples from

polar and non-polar ocean regions and to classify samples based on their iron concen-

tration at a depth of 5 m (high vs low iron content).

Primary package outputs and confounder analysis

To illustrate the main outputs of SIAMCAT, we analyzed the taxonomic profiles from

a metagenomic study of IBD [27] included in the curatedMetagenomicsData R package
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[72]. For the analyses presented in Fig. 1, we restricted the dataset to control samples

from Spain and cases with UC, since the two IBD subtypes included in the dataset

(ulcerative colitis and Crohn’s disease) are very different from one another in terms of

the associated changes in the gut microbiome composition (see the SIAMCAT

vignettes for more information or the “Code box” section for an outline of the basic

SIAMCAT workflow.

To demonstrate how SIAMCAT can aid in confounder detection, we used the same

dataset but this time included the Danish control samples in order to explore potential

confounding by differences between samples collected and processed in these two

countries. The analyses presented in Fig. 2 have all been conducted with the respective

functions of SIAMCAT (see SIAMCAT vignettes).

Machine learning hyperparameter exploration

To explore suitable hyperparameter combinations for ML workflows, we trained an ML

model for each classification task and each hyperparameter combination. By hyperpara-

meter, we mean configuration parameters of the workflow, such as normalization parame-

ters, tuning parameters controlling regularization strength, or properties of the external

feature selection procedure in contrast to model parameters fitted during the actual training

of the ML algorithms. Specifically, we varied the filtering method (no data filtering; preva-

lence filtering with 1%, 5%, 10% cutoffs; abundance filtering with 0.001, 0.0001, and 0.0001

as cutoffs; and a combination of abundance and prevalence filtering), the normalization

method (no normalization beyond the total sum scaling, log-transformation with

standardization, rank-transformation with standardization, and centered log-ratio trans-

formation), the ML algorithm (LASSO, Elastic Net, and random forest classifiers), and fea-

ture selection regimes (no feature selection and feature selection based on generalized fold

change or based on single-feature AUROC; cutoffs were 25, 50, 100, 200, and 400 features

for taxonomic profiles and 100, 500, 1000, and 2000 features for functional profiles). To

cover the full hyperparameter space, we therefore trained 7488 models for taxonomic and

3168 models for functional datasets for each classification task.

To determine the optimal AUROC across input types (shown in Fig. 4), we calculated

for each individual parameter combination the mean AUROC across all classification

tasks with a specific type of input. Different feature filtering procedures could lead to

cases in which the feature selection cutoffs were larger than the number of available

features after filtering, therefore terminating the ML procedure. For that reason, we

only considered those parameter combinations that did produce a result for all classifi-

cation tasks with the specific type of input data.

To compare the importance of feature filtering, feature selection, normalization

method, and ML algorithm on classification accuracy, we trained one linear model per

classification task predicting the AUROC values from those variables. We then parti-

tioned the variance attributable to each of these variables by calculating type III sums

of squares using the Anova function from the car package in R [109].

In order to contrast the class separation of samples in distance space with the classifi-

cation performance achieved by ML algorithms (see Additional file 1: Figure S6), we

designed a distance-based measure of separation. For each dataset, we determined the

distances between all pairs of samples within a class as well as all pairs of samples
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between classes and then calculated an AUROC value based on these two distributions.

This distance-based measure effectively quantifies to what extent samples are closest to

other samples from the same class (i.e., cluster together) and hence corresponds well to

the visual separation of classes in ordination space (see Additional file 1: Figure S6).

Model transfer, cross-study portability, and prediction rate for other diseases

To assess cross-study portability and prediction rate for other diseases, ML models

were applied to external datasets using the make.predictions function in SIAMCAT. In

short, the function uses the normalization parameters of the discovery dataset to

normalize the external data in a comparable way and then makes predictions by

averaging the results of the application of all models of the repeated cross-validation

folds to the normalized external data.

Cross-study portability is then calculated by comparing the predictions for cases in

the discovery datasets and controls in the external dataset. First, the AUROC between

these two prediction vectors is calculated, and values below 0.5 (when the predictions

on controls in the external dataset are higher than predictions on cases in the discovery

dataset) are set to 0.5. Cross-study portability is then defined as (|0.5 - AUROC|)*2 so

that it afterwards ranges from 0 (no separation between cases and external controls or

higher predictions on external controls) to 1 (perfect separation between cases and

external controls).

To calculate the prediction rate for other diseases (or the same disease) on external

datasets, a cutoff on the (real-valued) predictions is chosen so that the FPR in the dis-

covery dataset is 0.1. Based on this cutoff, the external predictions are evaluated as

positive (diseased) or negative predictions, and a detection rate corresponding to the

fraction of positive predictions is determined.

Training Elastic Net models with control augmentation

To train models with the control augmentation strategy, we used the data from cohort

microbiome studies as additional control samples [93–95]. Repeated measurements for

the same individual were removed in the case of Zeevi et al. [93]. For each training set

in the repeated cross-validation, we increased the number of control samples 5-fold by

randomly sampling the appropriate number of controls (in a balanced manner between

datasets to avoid overrepresentation of the larger external cohorts). Before addition, the

additional control samples were normalized using the normalization parameters of the

discovery set. Due to the introduction of additional variability, the control-augmented

Elastic Net models were trained with a pre-set alpha value of 0.5 to ensure the stability

of the model size.

To compare the predictors across different diseases, model weights of the control-

augmented models were transformed into relative weights by dividing by the sum of

absolute coefficient values. Then, models from the same disease were averaged. Predic-

tors (that is, mOTUs) were selected for display in Fig. 5f, if they (i) cumulatively con-

tributed more than 50% of the mean relative disease model, (ii) their individual weights

were bigger than 1%, and (iii) the genus annotation had an unambiguous NCBI

taxonomy.
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Illustration of common pitfalls in machine learning procedures

To demonstrate how naive sequential application of supervised feature selection and

cross-validation might bias performance estimations, we trained LASSO ML models to

distinguish colorectal cancer cases from controls based on MetaPhlAn2-derived species

abundance profiles using the dataset with the handle ThomasAM_2018a [38] obtained

through the curatedMetagenomicsData R package [72]. For the incorrect procedure of

feature selection, single-feature AUROC values were calculated using the complete

dataset (inverted for negatively associated features). Then, the features with the highest

AUROC values were selected for model training (number depending on the cutoff). In

contrast, the correct procedure implemented in SIAMCAT excludes the data in the test

fold when calculating single-feature AUROC values; instead, AUROC values are calcu-

lated on the training fold only. To test generalization to external data, the models were

then applied to another colorectal cancer metagenomic study [8] available through the

curatedMetagenomicsData R package (also see the SIAMCAT vignette: holdout testing).

To illustrate the problem arising when combining naive cross-validation with

dependent data, we used the Crohn’s disease (CD) datasets used in the meta-analysis

described below. We first subsampled the iHMP dataset [30] to five repeated measure-

ments per subject, as some subjects had been sampled only five times and others more

than 20 times. Then, we trained LASSO models using both a naive cross-validation and

a cross-validation procedure in which samples from the same individual were always

kept together in the same fold. External generalization was tested on the other four CD

datasets described below.

Meta-analysis of Crohn’s disease metagenomic studies

For the meta-analysis of Crohn’s disease gut microbiome studies, we included five

metagenomic datasets [5, 27–30] that had been profiled with the mOTUs2 profiler [85]

on the genus level. While some datasets contained both UC and CD patients [5, 27,

30], other datasets contained only CD cases [28, 29]. Therefore, we restricted all

datasets to a comparison between only CD cases and control samples, since the two

subtypes of IBD are very different from each other.

For training of ML models, we blocked repeated measurements for the same individ-

ual when applicable [27, 28, 30]; specifically for the iHMP dataset [30], we also sub-

sampled the dataset to five repeated measurements per individual to avoid biases

associated with differences in the number of samples per individual. For external

validation testing, we completely removed repeated measurements in order not to bias

the estimation of classification accuracy.

To compute association metrics and to train and evaluate ML models, each dataset

was encapsulated in an individual SIAMCAT object. To produce the plot showing the

variance explained by label vs the variance explained by study, all data were combined

into a single SIAMCAT object. The code to reproduce the analysis can be found in the

SIAMCAT vignettes.
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learning workflow to human gut metagenomic disease association studies in the curatedMetagenomicData pack-

age. Figure S5. Dataset size relates to classification accuracy and the AUROC confidence interval. Figure S6. Ma-

chine learning can distinguish group differences even when samples can not be separated based on common

ecological distances. Figure S7. Classification accuracy is not impacted by choice of profiler. Figure S8. Influence

of feature selection cutoff and normalization method on classification accuracy. Figure S9. Baseline evaluation of

cross-study transfer of machine learning models via AUROC and false-positive rate. Figure S10. Measures for ex-

tended evaluation of cross-study application of machine learning models. Figure S11. Naive machine learning
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models. Figure S12. Naive machine learning models make a high level of false predictions on external datasets.
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learning model weights or associations. Figure S15. Machine learning model weights reveal shared and disease-
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from environmental samples.

Additional file 2: Supplementary Tables. Table S1. Information about included datasets.

Additional file 3. Review history.

Acknowledgements

We are grateful to Mike Smith, Paul I. Costea, and Kersten Breuer for the helpful discussions and advice on the

implementation of SIAMCAT. We thank members of the Zeller, Sunagawa, and Bork group for the fruitful discussions

and the EMBL Information Technology Core Facility for the support with high-performance computing.

Peer review information

Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration

with the rest of the editorial team.

Review history

The review history is available as Additional file 3.

Authors’ contributions

G.Z. conceived the study and prototyped the software. GZ., SS., and P.B. supervised the work. K.Z., J.W., and G.Z.

implemented the software package with contributions from M.E., N. K, and E.K. J.W. and G.S. acquired the

metagenomic data and/or performed the taxonomic and functional profiling. J.W., G.Z., and N.K. designed and

performed the statistical analyses. J.W. and G.Z. designed the figures with help from N.K., M.E., and E.K. J.W., G.Z., and

S.S. wrote the manuscript with contributions from P.B., M.E., N.K., G.S., E.K., and K.Z. All authors discussed and approved

the final manuscript.

Funding

We acknowledge funding from EMBL, ETH (PHRT no. 521 to S.S.), the Federal Ministry of Education and Research

(BMBF; the de. NBI network no. 031A537B to P.B. and grant no. 031L0181A to G.Z. and P.B.), the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation no. 395357507 – SFB 1371 to G.Z.), and the Helmut

Horten Foundation (to S.S.). Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials

Raw metagenomics data are available from ENA (see Additional file 2: Table S1 for the identifiers of included datasets).

All taxonomic and functional profiles used as input for the presented analyses are available in a Zenodo repository

(see either https://doi.org/10.5281/zenodo.4454489 [110]), and the code to reproduce the analysis can be found in the

dedicated GitHub repository (https://github.com/zellerlab/siamcat_paper [111]).

The code for SIAMCAT can be found on GitHub (https://github.com/zellerlab/siamcat [112]) and on Bioconductor

under https://doi.org/10.18129/B9.bioc.SIAMCAT.

The source code for SIAMCAT and the code to reproduce the analysis presented in this paper are both available from

Zenodo (see https://doi.org/10.5281/zenodo.4457522 [113]) under the GPL-3 license.

Declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declared that they have no competing interests.

Author details
1Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg,

Germany. 2Present Address: Clinical Microbiomics A/S, Ole Maaløes Vej 3, 2200 København, Denmark. 3Present Address:

Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center for Molecular Medicine and Charité

University Hospital, 13125 Berlin, Germany. 4Department CIBIO, University of Trento, 38123 Trento, Italy. 5Department of

Wirbel et al. Genome Biology           (2021) 22:93 Page 23 of 27

https://doi.org/10.5281/zenodo.4454489
https://github.com/zellerlab/siamcat_paper
https://github.com/zellerlab/siamcat
https://doi.org/10.18129/B9.bioc.SIAMCAT
https://doi.org/10.5281/zenodo.4457522


Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland. 6Molecular

Medicine Partnership Unit, Heidelberg, Germany. 7Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany

. 8Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany.

Received: 28 July 2020 Accepted: 24 February 2021

References

1. Schmidt TSB, Raes J, Bork P. The human gut microbiome: from association to modulation. Cell. 2018;172:1198–215

Elsevier.

2. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. Mass Medical Soc; 2016;

375:2369–2379.

3. Garrett WS. The gut microbiota and colon cancer. Science. 2019;364:1133–5 science.sciencemag.org.

4. Gevers D, Kugathasan S, Denson LA. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe.

2014;15:382–92 Elsevier.

5. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and

metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4:293–305 nature.com.

6. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid

arthritis and partly normalized after treatment. Nat Med. 2015;21:895–905 nature.com.

7. Wen C, Zheng Z, Shao T, Liu L, Xie Z, Le Chatelier E, et al. Quantitative metagenomics reveals unique gut microbiome

biomarkers in ankylosing spondylitis. Genome Biol. 2017;18:142 genomebiology.biomedcentral.com.

8. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al. Potential of fecal microbiota for early-stage detection

of colorectal cancer. Mol Syst Biol. 2014;10:766. https://pubmed.ncbi.nlm.nih.gov/25432777/ John Wiley & Sons, Ltd.

9. Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut. 2016;65:2035–44 gut.bmj.com.

10. Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: diagnostic tools and

therapeutic strategies. Science. 2018;359:1366–70 science.sciencemag.org.

11. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and

metformin treatment signatures in the human gut microbiota. Nature. 2015;528:262–6.

12. Voigt AY, Costea PI, Kultima JR, Li SS, Zeller G, Sunagawa S, et al. Temporal and technical variability of human gut

metagenomes. Genome Biol. 2015;16:73.

13. McLaren MR, Willis AD, Callahan BJ. Consistent and correctable bias in metagenomic sequencing experiments. Elife.

2019;8:e46923.

14. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and

explanation. Genome Biol. 2011;12:R60 genomebiology.biomedcentral.com.

15. Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods.

2013;10:1200–2 nature.com.

16. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a

novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:27663 Taylor & Francis.

17. Knights D, Parfrey LW, Zaneveld J, Lozupone C, Knight R. Human-associated microbial signatures: examining their

predictive value. Cell Host Microbe. 2011;10:292–6 Elsevier.

18. Knights D, Costello EK, Knight R. Supervised classification of human microbiota. FEMS Microbiol Rev. 2011;35:343–59 aca

demic.oup.com.

19. Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets: tools

and biological insights. PLoS Comput Biol. 2016;12:e1004977.

20. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific

and shared responses. Nat Commun. 2017;8:1784.

21. Wang J, Kurilshikov A, Radjabzadeh D, Turpin W, Croitoru K, Bonder MJ, et al. Meta-analysis of human genome-

microbiome association studies: the MiBioGen consortium initiative. Microbiome. 2018;6:101 microbiomejournal.

biomedcentral.

22. Bang S, Yoo D, Kim S-J, Jhang S, Cho S, Kim H. Establishment and evaluation of prediction model for multiple disease

classification based on gut microbial data. Sci Rep. 2019;9:10189 nature.com.

23. Zhou Y-H, Gallins P. A review and tutorial of machine learning methods for microbiome host trait prediction. Front

Genet. 2019;10:579 frontiersin.org.

24. Le Goallec A, Tierney BT, Luber JM, Cofer EM, Kostic AD, Patel CJ. A systematic machine learning and data type

comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and

delivery type. PLoS Comput Biol. 2020;16:e1007895 Public Library of Science San Francisco, CA USA.

25. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates

with enhanced susceptibility to arthritis. Elife. 2013;2:e01202.

26. Alkanani AK, Hara N, Gottlieb PA, Ir D, Robertson CE, Wagner BD, et al. Alterations in intestinal microbiota correlate with

susceptibility to type 1 diabetes. Diabetes. 2015;64:3510–20 Am Diabetes Assoc.

27. Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, et al. Identification and assembly of genomes and

genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol. 2014;32:822–8.

28. Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D, et al. Inflammation, antibiotics, and diet as

environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe. 2015;18:489–500 Elsevier.

29. He Q, Gao Y, Jie Z, Yu X, Laursen JM, Xiao L, et al. Two distinct metacommunities characterize the gut microbiota in

Crohn’s disease patients. Gigascience. 2017;6:1–11 academic.oup.com.

30. Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial

ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–62.

31. Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, et al. A pyrosequencing study in twins shows that

gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139:1844–54.e1.

Wirbel et al. Genome Biology           (2021) 22:93 Page 24 of 27

http://science.sciencemag.org
http://nature.com
http://nature.com
http://genomebiology.biomedcentral.com
https://pubmed.ncbi.nlm.nih.gov/25432777/
http://gut.bmj.com
http://science.sciencemag.org
http://genomebiology.biomedcentral.com
http://nature.com
http://academic.oup.com
http://academic.oup.com
http://nature.com
http://frontiersin.org
http://academic.oup.com


32. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in

inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79 genomebiology.biomedcentral.com.

33. Papa E, Docktor M, Smillie C, Weber S, Preheim SP, Gevers D, et al. Non-invasive mapping of the gastrointestinal

microbiota identifies children with inflammatory bowel disease. PLoS One. 2012;7:e39242.

34. Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome development along the colorectal adenoma–

carcinoma sequence. Nat Commun. 2015;6:6528 nature.com.

35. Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, et al. Metagenomic analysis of faecal microbiome as a tool towards

targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66:70–8 gut.bmj.com.

36. Vogtmann E, Hua X, Zeller G, Sunagawa S, Voigt AY, Hercog R, et al. Colorectal cancer and the human gut microbiome:

reproducibility with whole-genome sequencing. PLoS One. 2016;11:e0155362–journals.plos.org.

37. Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, et al. Meta-analysis of fecal metagenomes reveals global

microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25:679–89.

38. Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, et al. Metagenomic analysis of colorectal cancer datasets

identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med. 2019;25:667–78.

39. Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, et al. Metagenomic and metabolomic analyses

reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med. 2019;25:968–76.

40. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer

patients and healthy volunteers. ISME J. 2012;6:320–9.

41. Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with

colorectal cancer. PLoS One. 2012;7:e39743 journals.plos.org.

42. Baxter NT, Ruffin MT 4th, Rogers MAM, Schloss PD. Microbiota-based model improves the sensitivity of fecal

immunochemical test for detecting colonic lesions. Genome Med. 2016;8:37 genomemedicine.biomedcentral.

43. Jie Z, Xia H, Zhong S-L, Feng Q, Li S, Liang S, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat

Commun. 2017;8:845 nature.com.

44. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of

hypertension. Microbiome. 2017;5:14.

45. Schubert AM, Rogers MAM, Ring C, Mogle J, Petrosino JP, Young VB, et al. Microbiome data distinguish patients

with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. MBio. 2014;5:

e01021–14.

46. Vincent C, Stephens DA, Loo VG, Edens TJ, Behr MA, Dewar K, et al. Reductions in intestinal Clostridiales precede the

development of nosocomial Clostridium difficile infection. Microbiome. 2013;1:18.

47. Singh P, Teal TK, Marsh TL, Tiedje JM, Mosci R, Jernigan K, et al. Intestinal microbial communities associated with acute

enteric infections and disease recovery. Microbiome. 2015;3:45.

48. Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, et al. Alterations in the gut microbiota associated

with HIV-1 infection. Cell Host Microbe. 2013;14:329–39.

49. Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, et al. Intestinal microbiota, microbial translocation, and

systemic inflammation in chronic HIV infection. J Infect Dis. 2015;211:19–27 academic.oup.com.

50. Noguera-Julian M, Rocafort M, Guillén Y, Rivera J, Casadellà M, Nowak P, et al. Gut microbiota linked to sexual

preference and HIV infection. EBioMedicine. 2016;5:135–46.

51. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature.

2014;513:59–64.

52. Zhang Z, Zhai H, Geng J, Yu R, Ren H, Fan H, et al. Large-scale survey of gut microbiota associated with MHE via 16S

rRNA-based pyrosequencing. Am J Gastroenterol. 2013;108:1601–11.

53. Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, et al. Gut microbiome-based metagenomic signature for non-

invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017;25:1054–62.e5.

54. Hoyles L, Fernández-Real J-M, Federici M, Serino M, Abbott J, Charpentier J, et al. Molecular phenomics and

metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 2018;24:1070–80.

55. Wong VW-S, Tse C-H, Lam TT-Y, Wong GL-H, Chim AM-L, Chu WC-W, et al. Molecular characterization of the fecal

microbiota in patients with nonalcoholic steatohepatitis--a longitudinal study. PLoS One. 2013;8:e62885.

56. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, et al. Characterization of gut microbiomes in nonalcoholic

steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57:601–9.

57. Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F, et al. Functional implications of microbial and

viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med. 2017;9:39.

58. Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E, et al. Gut microbiota are related to Parkinson’s

disease and clinical phenotype. Mov Disord. 2015;30:350–8.

59. Kang D-W, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, et al. Reduced incidence of Prevotella and other

fermenters in intestinal microflora of autistic children. PLoS One. 2013;8:e68322.

60. Son JS, Zheng LJ, Rowehl LM, Tian X, Zhang Y, Zhu W, et al. Comparison of fecal microbiota in children with autism

spectrum disorders and neurotypical siblings in the Simons Simplex Collection. PLoS One. 2015;10:e0137725.

61. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with

metabolic markers. Nature. 2013;500:541–6 nature.com.

62. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome.

Cell. 2014;159:789–99 Elsevier.

63. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean

twins. Nature. 2009;457:480–4.

64. Zupancic ML, Cantarel BL, Liu Z, Drabek EF, Ryan KA, Cirimotich S, et al. Analysis of the gut microbiota in the old order

Amish and its relation to the metabolic syndrome. PLoS One. 2012;7:e43052.

65. Ross MC, Muzny DM, McCormick JB, Gibbs RA, Fisher-Hoch SP, Petrosino JF. 16S gut community of the Cameron

County Hispanic Cohort. Microbiome. 2015;3:7.

66. Kushugulova A, Forslund SK, Costea PI, Kozhakhmetov S, Khassenbekova Z, Urazova M, et al. Metagenomic analysis of

gut microbial communities from a Central Asian population. BMJ Open. 2018;8:e021682.

Wirbel et al. Genome Biology           (2021) 22:93 Page 25 of 27

http://genomebiology.biomedcentral.com
http://nature.com
http://gut.bmj.com
http://journals.plos.org
http://nature.com
http://academic.oup.com
http://nature.com


67. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women

with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103 nature.com.

68. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes.

Nature. 2012;490:55–60 nature.com.

69. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome

census data. PLoS One. 2013;8:e61217 Public Library of Science.

70. Bischl B, Lang M, Kotthoff L, Schiffner J. mlr: machine learning in R. J Mach. 2016;17:1–5 jmlr.org.

71. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of

microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104:13780–5

National Acad Sciences.

72. Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V, Truong DT, et al. Accessible, curated metagenomic data through

ExperimentHub. Nat Methods. 2017;14:1023–4.

73. Hawinkel S, Mattiello F, Bijnens L, Thas O. A broken promise: microbiome differential abundance methods do not

control the false discovery rate. Brief Bioinform. 2019;20:210–21.

74. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Stat Methodol. 1996;58:267–88 Wiley

Online Library.

75. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodol. 2005;67(2):

301–20 Wiley Online Library.

76. Ho TK. Random decision forests. Proceedings of 3rd International Conference on Document Analysis and Recognition,

vol. 1; 1995. p. 278–82. ieeexplore.ieee.org

77. Deloris Alexander A, Orcutt RP, Henry JC, Baker J, Bissahoyo AC, Threadgill DW. Quantitative PCR assays for mouse

enteric flora reveal strain-dependent differences in composition that are influenced by the microenvironment. Mamm

Genome. 2006;17:1093–104 Springer.

78. Imhann F, Bonder MJ, Vich Vila A, Fu J, Mujagic Z, Vork L, et al. Proton pump inhibitors affect the gut microbiome. Gut.

2016;65:740–8 gut.bmj.com.

79. Jackson MA, Goodrich JK, Maxan M-E, Freedberg DE, Abrams JA, Poole AC, et al. Proton pump inhibitors alter the

composition of the gut microbiota. Gut. 2016;65:749–56 gut.bmj.com.

80. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. New York:

Springer; 2009

81. Smialowski P, Frishman D, Kramer S. Pitfalls of supervised feature selection. Bioinformatics. 2010;26:440–3.

82. Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, et al. Cross-validation strategies for data with temporal,

spatial, hierarchical, or phylogenetic structure. Ecography. 2017;40:913–29 Wiley Online Library.

83. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new

bacterial taxonomy. Appl Environ Microbiol Am Soc Microbiol. 2007;73:5261–7.

84. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al. MetaPhlAn2 for enhanced metagenomic

taxonomic profiling. Nat Methods. 2015;12:902–3 nature.com.

85. Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh H-J, Cuenca M, et al. Microbial abundance, activity and

population genomic profiling with mOTUs2. Nat Commun. 2019;10:1014 nature.com.

86. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, et al. Species-level functional profiling of

metagenomes and metatranscriptomes. Nat Methods. 2018;15:962–8 nature.com.

87. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology

framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res.

2016;44:D286–93 academic.oup.com.

88. Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D, Vázquez-Baeza Y, et al. Meta-analyses of studies of

the human microbiota. Genome Res. 2013;23:1704–14.

89. Sinha R, The Microbiome Quality Control Project Consortium, Abu-Ali G, Vogtmann E, Fodor AA, Ren B, et al.

Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC)

project consortium. Nat Biotechnol. 2017;35:1077–86.

90. Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F, et al. Towards standards for human fecal sample

processing in metagenomic studies. Nat Biotechnol. 2017;35:1069–76.

91. Thompson SG. Why sources of heterogeneity in meta-analysis should be investigated. BMJ. 1994;309:1351–5 bmj.com.

92. Olesen SW, Alm EJ. Dysbiosis is not an answer. Nat Microbiol. 2016;1:16228 nature.com.

93. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized nutrition by prediction of glycemic

responses. Cell. 2015;163:1079–94.

94. Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, et al. Linking the human gut microbiome to

inflammatory cytokine production capacity. Cell. 2016;167:1897 Elsevier.

95. Xie H, Guo R, Zhong H, Feng Q, Lan Z, Qin B, et al. Shotgun metagenomics of 250 adult twins reveals genetic and

environmental impacts on the gut microbiome. Cell Syst. 2016;3:572–84.e3 Elsevier.

96. Bernstein CN, Blanchard JF, Kliewer E, Wajda A. Cancer risk in patients with inflammatory bowel disease: a population-

based study. Cancer. 2001;91:854–62 Wiley Online Library.

97. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, et al. Reduced diversity of faecal microbiota in

Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–11 gut.bmj.com.

98. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from

Illumina amplicon data. Nat Methods. 2016;13:581–3 nature.com.

99. Cani PD. Gut microbiota - at the intersection of everything? Nat Rev Gastroenterol Hepatol. 2017;14:321–2 Springer

Science and Business Media LLC.

100. Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, et al. Minimum information about a marker gene

sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol. 2011;29:

415–20 nature.com.

101. Yu J, Zhao L, Zhao R, Long X, Coker OO, Sung JJY. The role of Parvimonas micra in intestinal tumorigenesis in germ-free

and conventional APCmin/+ mice. J Clin Orthod. 2019;37:531 American Society of Clinical Oncology.

Wirbel et al. Genome Biology           (2021) 22:93 Page 26 of 27

http://nature.com
http://nature.com
http://jmlr.org
http://ieeexplore.ieee.org
http://gut.bmj.com
http://gut.bmj.com
http://nature.com
http://nature.com
http://nature.com
http://academic.oup.com
http://bmj.com
http://nature.com
http://gut.bmj.com
http://nature.com
http://nature.com


102. Horvath A, Rainer F, Bashir M, Leber B, Schmerboeck B, Klymiuk I, et al. Biomarkers for oralization during long-term

proton pump inhibitor therapy predict survival in cirrhosis. Sci Rep. 2019;9:12000 nature.com.

103. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by

modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206 Elsevier.

104. Ohkusa T, Okayasu I, Ogihara T, Morita K, Ogawa M, Sato N. Induction of experimental ulcerative colitis by

Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut. 2003;52:79–83 gut.

bmj.com.

105. Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, et al. Gene expression changes and community

turnover differentially shape the global ocean metatranscriptome. Cell. 2019;179:1068–83.e21 Elsevier.

106. Coelho LP, Alves R, Monteiro P, Huerta-Cepas J, Freitas AT, Bork P. NG-meta-profiler: fast processing of metagenomes

using NGLess, a domain-specific language. Microbiome. 2019;7:84 microbiomejournal.biomedcentral.

107. Kultima JR, Coelho LP, Forslund K, Huerta-Cepas J, Li SS, Driessen M, et al. MOCAT2: a metagenomic assembly,

annotation and profiling framework. Bioinformatics. 2016;32:2520–3 academic.oup.com.

108. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, et al. An integrated catalog of reference genes in the human gut

microbiome. Nat Biotechnol. 2014;32:834–41 nature.com.

109. Fox J, Weisberg S. An R companion to applied regression. Thousand Oaks: SAGE Publications; 2018.

110. Wirbel J, Zych K, Essex M, Karcher N, Kartal E, Salazar G, et al. Data for “Microbiome meta-analysis and cross-disease

comparison enabled by the SIAMCAT machine learning toolbox”. Zenodo. Available from: https://doi.org/10.5281/

zenodo.4454489 (2021).

111. Wirbel J, Zych K, Essex M, Karcher N, Kartal E, Salazar G, et al. Analysis code for the SIAMCAT manuscript. GitHub.

Available from: https://github.com/zellerlab/siamcat_paper (2021).

112. Wirbel J, Zych K, Essex M, Karcher N, Zeller G. SIAMCAT source code. GitHub. Available from: https://github.com/zellerla

b/siamcat (2021).

113. Wirbel J, Zych K, Essex M, Karcher N, Kartal E, Salazar G, et al. Code for “Microbiome meta-analysis and cross-disease

comparison enabled by the SIAMCAT machine learning toolbox”. Zenodo. Available from: https://doi.org/10.5281/

zenodo.4457522 (2021).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wirbel et al. Genome Biology           (2021) 22:93 Page 27 of 27

http://nature.com
http://gut.bmj.com
http://gut.bmj.com
http://academic.oup.com
http://nature.com
https://doi.org/10.5281/zenodo.4454489
https://doi.org/10.5281/zenodo.4454489
https://github.com/zellerlab/siamcat_paper
https://github.com/zellerlab/siamcat
https://github.com/zellerlab/siamcat
https://doi.org/10.5281/zenodo.4457522
https://doi.org/10.5281/zenodo.4457522

	Abstract
	Introduction
	Results
	Machine learning and statistical analysis workflows implemented in SIAMCAT
	Confounder analysis using SIAMCAT
	Advanced machine learning workflows
	Large-scale machine learning meta-analysis
	Meta-analysis of Crohn’s disease gut microbiome studies

	Discussion
	Methods
	Implementation
	Code box
	Included datasets and microbiome profiling
	Primary package outputs and confounder analysis
	Machine learning hyperparameter exploration
	Model transfer, cross-study portability, and prediction rate for other diseases
	Training Elastic Net models with control augmentation
	Illustration of common pitfalls in machine learning procedures
	Meta-analysis of Crohn’s disease metagenomic studies

	Supplementary Information
	Acknowledgements
	Peer review information
	Review history
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher’s Note

