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Abstract

We have established a microbiome signature for prostate cancer using an array-based metagenomic and capture-
sequencing approach. A diverse microbiome signature (viral, bacterial, fungal and parasitic) was observed in the prostate 
cancer samples compared with benign prostate hyperplasia controls. Hierarchical clustering analysis identified three 
distinct prostate cancer-specific microbiome signatures. The three signatures correlated with different grades, stages and 
scores of the cancer. Thus, microbiome signature analysis potentially provides clinical diagnosis and outcome predictions. 
The array data were validated by PCR and targeted next-generation sequencing (NGS). Specific NGS data suggested that 
certain viral genomic sequences were inserted into the host somatic chromosomes of the prostate cancer samples. 
A randomly selected group of these was validated by direct PCR and sequencing. In addition, PCR validation of Helicobacter 
showed that Helicobacter cagA sequences integrated within specific chromosomes of prostate tumor cells. The viral and 
Helicobacter integrations are predicted to affect the expression of several cellular genes associated with oncogenic processes.

Introduction
Prostate cancer is the most common cancer in males, account-
ing for 10% of the predicted new US cancer cases in 2019 (1). 
Apart from other risk factors, chronic inflammation has been 
correlated with the onset of prostate cancers (2,3). The possible 
sources of such infection include microorganisms (4–6). For 
example, gram-positive bacteria such as Propionibacterium acnes 
have been found to be associated with prostate cancer tissues in 
several studies (4,5). In addition, specific viruses such as human 
papillomaviruses (HPV), polyomaviruses (BK, JC and SV40) 
and herpes viruses [human cytomegalovirus (HCMV), Epstein 
Barr virus (EBV)] are reported to be associated with prostate 
tumors (7–11). Given the evidence for the presence of associ-
ated viral and other microbial agents, we used an array-based 
metagenomic analysis to define the microbiome of prostate 
tumors compared with non-cancerous prostate tissue. Using the 
same metagenomic approach, we have previously reported the 
microbiome signatures of different breast cancers (12,13), oral 
cancer and ovarian cancers (14,15).

Previous studies reporting viral and bacterial agents asso-
ciated with prostate tumors have predominately used PCR-
based targeted detection (7,10,11,16) and pyrosequencing 
(17). One study used RNA-seq to identify pathogens and their 
integrations within the host genome of prostate cancer (18). This 
study detected few microorganisms and no viral or bacterial 
integration in host somatic chromosomes (18). However, 
conventional RNA-seq methods produced enormous amounts of 
sequencing data that can be difficult to analyze and even harder 
to locate microbial sequences within the overwhelming amount 
of human sequences. Our pan-pathogen array (PathoChip) was 
designed from NCBI GenBank sequences and presently contains 
over 6000 accessions and provides the ability to rapidly detect 
all known viruses, as well as all human pathogenic bacteria, 
fungi and parasites within the RNA and DNA extracted from any 
biological material (19).

In the present study, we defined the microbiome (viral, 
bacterial, fungal and parasitic) signatures associated with 
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prostate cancer, which may provide diagnostic and prognostic 
information that may guide treatment strategies. Three distinct 
microbiome signatures were defined that show correlations with 
clinical diagnostic data. We further determined that viral and 
bacterial sequences were integrated into the tumor cell somatic 
chromosomes, suggesting increased recombinatorial activity 
in the tumor cells. Many of these integrations are predicted to 
affect host genes associated with oncogenic activities in tumor 
cells.

Materials and methods
All the experiments were performed according to relevant guidelines and 
regulations as needed and according to all the licensing and approvals 
by institutional committees at Perelman School of Medicine, University 
of Pennsylvania.

PathoChip design
The details of the PathoChip array have been described previously 
(12,19). It comprises 60  000 probes representing sequenced viruses and 
microorganisms in GenBank. The proprietary arrays were manufactured 
as SurePrint glass slide microarrays (Agilent Technologies Inc.), containing 
eight replicate arrays per slide. Each probe is a 60 nucleotide DNA oligomer 
that targets genomic regions of viruses, prokaryotic and eukaryotic 
microorganisms. The PathoChip technology, combined with PCR and 
next-generation sequencing (NGS), is a valuable strategy for detecting and 
identifying pathogens in human cancers and infection-related pathologies 
(12,14,15,19). Accession annotations are available in the Gene Expression 
Omnibus (http://www.ncbi.nlm.nih.gov/geo/) (12).

Sample preparation and microarray processing
Fifty formalin-fixed paraffin-embedded (FFPE) prostate adenocarcinoma 
samples were received as 10  µm sections on non-charged glass slides. 
All samples were taken from patients who underwent prostatectomy 
(Supplementary Table S1, available at Carcinogenesis Online). As 
controls, 15 FFPE samples were obtained from patients with benign 
prostatic hyperplasia (BPH) who underwent transurethral resection 
of the prostate (Supplementary Table S1, available at Carcinogenesis 
Online). These samples were provided as paraffin rolls. All the samples 
were obtained from the Abramson Cancer Center’s Tumor Tissue and 
Biosample Core. All FFPE blocks had been stored at room temperature. 
Nucleic acids retrieved from such blocks, even those aged >40 years, have 
been shown to be used for molecular analysis (20–22). All samples were 
de-identified, and thus there was no requirement for informed consent 
in accordance with Federal and University guidelines. Consequently, we 
obtained minimal clinical information for these samples, including age 
of the patients, grade and stage of the tumor (Supplementary Table S1, 
available at Carcinogenesis Online). Both the tumor and control tissues 
were prepared, examined and verified, by Drs Natalie Shih and Michael 
Feldman, pathologists at the Hospital of the University of Pennsylvania. 
Utmost care was taken during the procurement and handling of the 

samples, and during the process of PathoChip screening to minimize the 
possibility of contamination.

As described previously, our screening utilized both DNA and RNA 
extracted from the FFPE samples (12,14,15,19). DNA and RNA were 
extracted in parallel from rolls or mounted sections of each FFPE sample. 
The quality of extracted nucleic acids was determined by agarose gel 
electrophoresis and the A260/280 ratio. The extracted RNA and DNA 
samples were subjected to whole-genome and transcriptome ampli-
fication (referred here as WTA) using the TransPlex Complete Whole 
Transcriptome Amplification Kit (Sigma-Aldrich, St. Louis, MO) using 
50 ng each of RNA and DNA as input. A  total of 50 arrays were used to 
screen the 50 prostate cancer samples, and the control samples were 
pooled in groups of five samples for screening each array. The WTA 
products were analyzed by agarose gel electrophoresis and showed an 
amplicon size range of 200–400  bp, with no contamination in the non-
template control used during WTA. Human reference RNA and DNA were 
also extracted from the human B cell line, BJAB (obtained from ATCC 
and cultured in the laboratory for <6  months); 15  ng of each was used 
for WTA. The cellular DNA/RNA provides a reference to compensate for 
dye bias. The WTA products were purified (PCR purification kit; Qiagen, 
Germantown, MD), and 1 µg of the amplified products from the cancer and 
control tissues was labeled with Cy3 and that from the human reference 
was labeled with Cy5 (SureTag labeling kit, Agilent Technologies, Santa 
Clara, CA). The labeled cDNA/DNAs were purified, and the efficiencies of 
labeling were determined by measuring absorbance at 550 nm (for Cy3) 
and 650 nm (for Cy5). The labeled samples (Cy3 plus Cy5) were hybridized 
to the PathoChip as described previously (12,14,15,19). The hybridization 
cocktail [Comparative Genomic Hybridization (CGH) blocking agent and 
hybridization buffer] was added to each of the labeled test samples (Cy3) 
mixed with reference (Cy5), denatured and hybridized to the arrays 
in eight-chamber gasket slides. The slides were incubated at 65°C with 
rotation, washed and then scanned for visualization using an Agilent 
SureScan G4900DA array scanner (19).

Microarray data extraction and statistical analysis
The microarray data extraction and analyses have been described 
previously (12,14,15,19). The raw data from the microarray images were 
extracted using Agilent Feature Extraction software. We used the R 
program for normalization and data analyses (23). The microarray screen 
data are available in Gene Expression Omnibus (Accession No. GSE111648). 
We calculated scale factor using the signals of green and red channels 
for human probes. Scale factors are the sum of green and sum of red 
signal ratios [∑(g)/∑(r)] of human probes. Then, we used scale factors 
to obtain normalized signals for all other probes. For all probes except 
human probes, normalized signal is log2 transformed of green signals/
scale factors modified red signals (log2 g − scale factor * log2 r). On the 
normalized signals, t-test is applied to select probes significantly present 
in cancer samples by comparing cancer samples versus controls and to 
select probes significantly present in the prostate cancer samples versus 
the controls. The cutoff for significant detections in cancers versus the 
controls was log2 fold change > 1 and adjusted P value (with multiple 
testing corrections) < 0.05. We assumed a two-sample one-sided t-test and 
set true difference to be 1.27 and SD to be 0.63, based on our PathoChip 
array data. Then, under the nominal significant level of 0.03 (corresponding 
to adjusted P < 0.05 for the prostate cancer data set), we calculated the 
power to be 0.92. Prevalence was calculated by counting the number of 
cancer cases with hybridization signal greater than the average signal of 
dark corner or negative control probes, and represented as a percentage.

Analyses at the individual probe level (for both specific and conserved 
probes) and at the family (for viruses) or genera (for bacteria, fungi and 
parasite) level, taking into account all the probes per family or genera, 
were performed. We ranked the microbial detections based on their total 
hybridization signal (sum of significant hybridization signal per family or 
genera) and prevalence.

The cancer samples were also subjected to unsupervised hierarchical 
clustering, based on the detection of microbial signatures in the samples 
(average hybridization signal per viral family or microbial genus), using 
the R program (Euclidean distance, complete linkage, non-adjusted 
values) (23,24), and the clusters were validated by Calinski and Harabasz 
index, which is implemented in R package as NbClust (25). Calinski and 

Abbreviations 	

BPH	 benign prostatic hyperplasia
FFPE	 formalin-fixed paraffin embedded
HHV	 human herpesvirus
HPV	 human papillomaviruses
IPA	 Ingenuity Pathway Analysis
KSHV	 Kaposi sarcoma associated 

herpesvirus
MMTV	 mouse mammary tumor virus
NCAM1	 neural cell adhesion molecule 1
NGS	 next-generation sequencing
PPP1R9A	 protein phosphatase 1 regulatory 

subunit 9A
WTA	 whole-genome and transcriptome 

amplification
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Harabasz index is a cluster index that maximizes intercluster distances 
and minimizes intracluster distances. We calculated the possible cluster 
solution that would maximize the index values to achieve the best 
clustering of the data. The significant differences between the clusters 
observed by these methods were determined using two-sided t-test. The 
ANOVA test was carried out to find the common signatures significantly 
present in all the clusters.

Using the limited clinical data provided under HIPAA regulations 
for de-identified patient samples, we determined the trends in different 
grades or stages of the cancer that might correlate with specific prostate 
cancer microbiome signatures. The Gleason system is used to grade 
prostate cancers based on the number of cells in the cancer tissue that 
resemble normal prostate tissue under the microscope; if the cancerous 
tissue looks much like normal prostate tissue, a grade of 1 is assigned; if 
the cancer cells and their growth patterns look very abnormal, a grade of 5 
is assigned; Grades 2 through 4 have features in between these extremes. 
Because prostate cancers often have areas with different grades, a grade 
is assigned to the two areas that make up most of the cancer. These two 
grades are added to yield the Gleason score (also called the Gleason sum). 
The first number assigned is the grade that is the most common in the 
tumor. For example, if the Gleason score is written as 3 + 4 = 7, it means 
most of the tumor is grade 3 and less is grade 4, and they are added for 
a Gleason score of 7.  The lowest Gleason score of a cancer found on a 
prostate biopsy is Gleason 6, and the highest score can be 10. Gleason 
score 6 and 7 cancers may be called well-differentiated/low grade and 
intermediate grade, respectively, and are likely to be less aggressive; that 
is, they tend to grow and spread slowly. Cancers with Gleason scores of 
8–10 may be called poorly differentiated or high grade. These cancers are 
likely to grow and spread more quickly.

Chi-square test was applied to test whether there were any significant 
differences of proportions of stage 2 versus stage 3 (T2 versus T3) cancers 
in different hierarchical clusters of prostate samples (Figure 3A). Two-
sided t-test was applied to test whether average hybridization signals 
of microorganisms detected were significantly different in patients with 
different grades or stages of cancer (Figure 3B).

Probe-capture and next-generation sequencing
The probe-capture method we used has been described previously 
(12,14,15,19). Briefly, the WTA products of the prostate cancer samples 
were pooled together into six pools for hybridization with selected 
biotinylated probes that had identified microbial nucleic acids in the 
prostate cancer samples by the PathoChip screen. The targeted sequences 
were then captured by Streptavidin-coated magnetic beads, and libraries 
were generated for NGS. Specifically, the selected probes were synthesized 
as 5′-biotinylated DNA oligomers (Integrated DNA Technologies, Coralville, 
IA), pooled together and hybridized to WTA pools of prostate cancer 
samples. The capture probe pool was added separately to each of the pooled 
WTAs of the prostate cancer samples (150  ng) in six separate reaction 
mixtures (Pr1–6) containing 3 M tetra-methyl ammonium chloride, 0.1% 
Sarkosyl, 50 mM Tris–HCl, 4 mM ethylenediaminetetraacetic acid (EDTA), 
pH 8.0 (1× TMAC buffer). The reaction mixtures were denatured (100°C 
for 10 min), followed by a hybridization step (60°C for 3 h). Streptavidin 
Dynabeads (Life Technologies, Carlsbad, CA) were added with continuous 
mixing at room temperature for 2  h, followed by three washes of the 
captured bead-probe-target complexes in 0.30 M NaCl plus 0.030 M 
sodium citrate buffer (2× SSC) and three washes with 0.1× SSC. Captured 
single-stranded target DNA was eluted in Tris–EDTA and used for library 
preparation using Nextera XT sample preparation kit (Illumina, San Diego, 
CA) (12,14,15,19). The five libraries were examined for quality control and 
submitted for NGS (Washington University Genome Technology Access 
Center, St. Louis) using an Illumina MiSeq instrument with paired-end 250 
nucleotide reads. Adapters and low-quality fragments of raw reads were 
first removed using the Trim Galore software (http://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/). The processed reads were then 
aligned to the PathoChip metagenome, from which probes were designed, 
and the human genome using Genomic Short-read Nucleotide Alignment 
Program (GSNAP) (26) with default parameters. After alignment, we 
employed feature counts (27) to count how many reads aligned to each 
of the capture probe regions. The detailed results for these capture probes 

are summarized in Supplementary Table S6, available at Carcinogenesis 
Online, and visualized in Integrative Genomics Viewer (IGV) (28).

Microbial fusion detection
Microbial genomic insertion in somatic host chromosomes was 
determined as described previously (14,15). Prior to fusion detection, 
quality control of sequenced reads was performed. The Trim Galore 
software (http://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/) was employed for quality trimming of raw reads to remove adapt-
ers and low-quality fragments. We then used Virus-Clip (29) to identify the 
virus fusion sites in the human genome. Specifically, we made use of the 
virus genome as the primary read alignment target, and first aligned reads 
to the PathoChip metagenome. Some of the mapped reads may contain 
unaligned query sequence (soft-clipped segments). Soft-clipped reads 
(containing sequences of potential pathogen-integrated human loci) were 
then extracted from the alignment and mapped to the human genome. 
Utilizing this mapping information, the exact human and pathogen 
integration breakpoints at single-base resolution can be identified. All 
the integration sites were then automatically annotated with the affected 
human genes and their corresponding gene regions.

The host genes that supported viral genomic insertions by high 
sequence reads were subjected to Ingenuity Pathway Analysis (IPA) (30) 
that helped to combine the host genes with information obtained from 
the published literature to predict likely outcomes. IPA software provided 
a statistical significance of the association of those genes with disease 
outcome.

PCR validations of PathoChip detections and 
microbial genomic insertions
PCR primers from the conserved and/or specific regions of the 
microorganisms detected by the PathoChip screen were used for 
detection validations. The primers listed in Supplementary Table S7, 
available at Carcinogenesis Online, were self-designed from the detected 
probe sequences in the microbial genome. For the validation of microbial 
insertions, PCR primers were designed, so that the fusion junction could 
be amplified, one primer being designed from the microbial sequence and 
the other from the adjoining human gene sequence. The PCR amplifica-
tion reaction mixtures for each reaction contained 200–400  ng of WTA 
product (pooled 50 cancer samples and pooled 15 BPH samples) and 20 pM 
each of forward and reverse primers (Supplementary Table S7, available 
at Carcinogenesis Online), 300 µM dNTPs and 2.5 U of LongAmp Taq DNA 
polymerase (NEB). DNA was denatured at 94°C for 3 min, followed by 30 
cycles of 94°C for 30 s, specific annealing temperature for different set of 
primers (generally 3–5°C below melting temperature of the primers) for 
30 s, and 65°C for 30 s. The amplicon size for each of the primer sets is 
shown in Supplementary Table S7, available at Carcinogenesis Online. The 
amplicons were gel extracted and sent to the Penn Genomics Analysis 
Core for Sanger sequencing. The electropherograms were visualized using 
the BioEdit program (31), and the sequences were subjected to NCBI BLAST 
(32) for identification.

Results

Experimental workflow for defining the microbiome 
signatures associated with prostate cancer

Our screening utilized both DNA and RNA extracted from 50 
de-identified FFPE prostate adenocarcinoma samples and 
15 de-identified FFPE prostatic tissue samples from patients 
with BPH, used as controls. DNA and RNA were extracted in 
parallel from rolls or mounted sections of each FFPE sample. 
The FFPE sample blocks had been stored at room temperature 
for 6–26  years. Nucleic acids retrieved from such blocks, even 
those aged >40 years, have been shown to be used for molecular 
analysis (20–22). The extracted RNA and DNA samples were 
subjected to whole-genome and transcriptome amplification 
and prepared for standard microarray analysis.
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Using the PathoChip array, we defined the predominance 
of different viruses and other microbial agents associated 
with prostate cancer compared with controls. We generate 
normalized hybridization signals to all the probes for microbial 
agents on the chip. A t-test was applied to define the probes that 
were significantly present in cancer samples versus controls. 
The significance cutoff was log2 fold change > 1 and adjusted 
P value (with multiple testing corrections) < 0.05. We rank the 
microorganisms and viruses based on their decreasing total 
hybridization signal. This was determined by adding the aver-
age hybridization signal per viral family/microbial genus for 
each of the significantly detected probes in the prostate cancer 
samples. Thus, a high hybridization signal in the present study 
could signify a higher number of probes significantly detected 
for those particular family/genera and also specificity in the 
detection, as a strain difference would yield lower hybridization 
signal intensity (19).

We also determined the percent prevalence of a specific 
microorganism, virus and signatures of viral families among 
all the tumor samples (shown as dots in Figure 2). This was 
calculated by counting the number of cancer cases with 
hybridization signals greater than the average signal plus three 
times SD of dark corner or negative control probes, presented as 
a percentage.

It is important to note that PathoChip contains probes that 
are conserved across a family of viruses and probes that are 
specific to each virus in the family. The conserved probes can 
detect all members of a viral family; thus, they have the abil-
ity to detect heretofore uncharacterized members of the family. 
In contrast, the specific probes identify specific members of the 
family (19).

Finally, we validated the presence of several of the viruses 
and microorganisms detected by PathoChip by PCR and 
targeted NGS. For the targeted NGS, we used the probes that 
had positive results in the PathoChip screen to capture their 
complimentary targets from the DNA generated by whole-
genome and transcriptome amplification from the cancer 
tissue. The captured DNA was subjected to NGS. This approach 
not only provided validation of identified microbial agents 
detected by the PathoChip screen, but also allowed detection of 
integrations of genomic sequences of microbial agents in the 
host chromosomes of prostate tumor tissue.

Microbial signatures detected in prostate cancer

The distribution of viruses and organisms by families and 
phyla was based on total hybridization signal and prevalence 
data (Figure 1). Figure 1Aa shows the distribution of general 
viral types that included tumorigenic, respiratory and enteric 
pathogens detected in the prostate tumor samples. The 
majority consisted of known tumorigenic viruses (41%) and 
viruses traditionally associated with respiratory infections 
(41%), whereas enteric viruses and viruses associated broadly 
with other diseases represented only 12 and 6%, respectively. 
Thirty-five percent of the viruses detected were Group I dsDNA 
viruses, which include the bulk of the tumor viruses (Poxviridae, 
Herpesviridae, Papillomaviridae and Polyomaviridae). The 
Group IV positive-strand ssRNA viruses made up the second 
largest group (23%) and included the families Picornaviridae, 
Coronaviridae, Flaviviridae and Astroviridae, many of which are 
respiratory tract viruses.

Among the bacteria genera significantly detected in the 
prostate tumor samples, 70% were gram negatives (Figure 1Ba), 
of which Proteobacteria were the most predominant phylum 
detected, comprising 55% of the total bacterial genera detections 

in the prostate tumors. The next most abundant phyla detected 
in the prostate tumor samples were Firmicutes (19%), followed 
by Actinobacteria (11%) and Bacteroides (7%).

The most prevalent fungal families detected in the prostate 
tumor samples were dermatophytes (31%), yeasts (15%), 
zygomycetes (15%) and microsporidia (12%) (Figure 1Ca). 
Considering the phyla (Figure 1Cb), the majority of the fungal 
signatures arose from the division Ascomycota (61%), 50% of 
which belong to the class Eurotiomycetes (Figure 1Cc).

The parasitic signatures detected in the prostate cancer 
samples are shown in Figure 1Da. The phylum Nematoda (36%) 
was most prevalent, followed by Sarcomastigophora (28%), 
Platyhelminthes (23%), Apicomplexa (10%) and Acanthocephala 
(3%). Signatures of intestinal roundworms, such as Ancylostoma, 
Ascaris, Capillaria, Enterobius, Necator, Strongyloides and Trichuris, 
accounted for the majority (18%) of the parasitic signatures 
detected, followed by signatures of other tissue roundworms, 
such as Angiostrongylus, Contracaecum, Gnathostoma, Toxocara 
and Trichinella, that accounted for 13% of the parasitic signature 
detections (Figure 1Db).

Analysis of total hybridization signal and prevalence

As described previously, we determined the total hybridization 
signal (cancer versus control, in blue bars) and prevalence in the 
sample set (in red dots) for the viral and microbial probes most 
abundantly detected in the cancers compared with the controls 
(Figure 2). These included probes of viral families, as well as 
specific viruses, along with specific probes for bacteria, fungi 
and parasites. Each was represented by the blue bar graphs in 
descending order of total hybridization signal per accession (for 
specific viruses, bacteria, fungi and parasites) or per viral family 
(Figure 2).

The viral families partitioned into groups representing 
high, medium and low total hybridization (Figure 2A, top row). 
The high hybridization group included (in descending order) 
Poxviridae, Reoviridae, Papillomaviridae and Herpesviridae. 
A variety of viruses were detected in the medium and low total 
hybridization groups; signatures of the tumorigenic Retroviridae 
and Polyomaviridae were detected in the medium and low total 
hybridization groups, respectively.

Detection of virus family was achieved by hybridization 
to conserved probes that detected all members of the family, 
for example this was the case with poxviruses. However, in 
the cases of papillomaviruses, retroviruses and herpesviruses, 
we could identify specific family members by hybridization to 
family member specific probes. Figure 2A, bottom row, shows 
the specific viruses within a family that could be detected in 
prostate cancer versus the non-cancerous controls.

The total hybridization signal for the papilloma viruses 
was only 20% compared with that for the poxviruses; however, 
papillomaviruses are well known to be associated with cancer. 
Interestingly, the high-risk HPV18 and 16 showed the highest 
and the third highest signals, respectively, and were detected in 
>80% of the samples. Numerous low-risk HPVs were detected in 
60–80% of the samples.

Although total hybridization signals for the retroviruses 
family were only in the medium hybridization range, we examine 
individual retroviral signatures due to the significance of 
retroviruses in cancer (Figure 2A, bottom row). Lentivirus showed 
the highest signal among the retrovirus signatures followed 
by foamy virus. Detected at much lower signals were mouse 
mammary tumor virus (MMTV), Moloney murine leukemia 
virus (MMLV) and human T-lymphotropic virus (HTLV). Among 
the human herpesvirus (HHV), HCMV was the most represented 
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by total hybridization signal followed by Kaposi sarcoma associ-
ated herpesvirus (KSHV). Other specific herpesvirus signatures 
detected were that of HHV6B, HHV3 and HHV7.

We similarly analyzed the bacteria, fungi and parasites 
detected specifically in prostate tumors (Figure 2B–D). In each 
case, they are partitioned into high, medium and low total 
hybridization groups, where the specific microbial genera were 
seen in at least 30% of the samples (prevalence in red dots).

Of the 13 bacterial genera detected with high hybridization 
signals, 9 genera are Proteobacteria, including Rickettsia (detected 
in 80% of the samples), Bordetella, Sphingomonas, Bartonella, 
Helicobacter, Salmonella, Aeromonas, Brevundimonas and Shigella. 
The next predominant phyla detected were gram-positive 
Firmicutes (18%; Figure 1Bb) including Bacillus, Lactobacillus, 
Enterococcus, Clostridium, Pediococcus, Streptococcus, Peptoniphilus, 
Listeria, Aerococcus, Lactococcus, Staphylococcus, Abiotrophia and 
Geobacillus. In most cases, the Firmicutes were detected at 

medium to low hybridization signal intensity, the exception 
being Bacillus, which was detected in the high hybridization 
signal intensity group (Figure 2B). Mycobacterium, a gram-
positive Actinobacteria, was detected with high hybridization 
signal intensity in 72% of the prostate cancer samples.

The fungi that had high, medium and low hybridization 
signals in the tumor samples are represented in Figure 2C. The 
high hybridization signal group contained Alternaria, followed 
by Malassezia, Candida and Cladosporium in >82% of the cancer 
samples (Figure 2C). Among the other signatures that were 
detected in the high hybridization group were Trichosporon, 
Cladophialophora, Rhodotorula, Geotrichum, Fusarium, Mucor, 
microsporidia like Nosema and Pleistophora (Figure 2C). Figure 
2C also shows that a number of other fungi signatures were 
detected in the medium and low hybridization signal groups in 
varying percentages of the samples. Signatures of other genera 
of yeasts, like Cryptococcus, Buckleyzyma and Issatchenkia, were 

Figure 1.  Distribution of microbial signatures significantly associated with prostate cancer samples compared with controls. (A) Proportion of different viral signatures 

detected significantly in the prostate cancer samples are represented as pie charts, showing categories of different viral types (a) and groups (b) of different viruses 

detected. (B) Proportion of different bacterial signatures detected significantly in the prostate cancer samples are represented as pie charts, showing the percentage 

of different groups and phyla of bacteria detected significantly in prostate cancer samples. (C) Proportion of different fungal signatures detected significantly in the 

prostate cancer samples, showing the percentage of different types (a), phyla (b) represented as pie charts, as well as class (c) of fungi detected significantly in prostate 

cancer samples. (D) Proportion of different parasitic signatures detected significantly in the prostate cancer samples, showing the percentage of different phyla (a) as 

pie chart, and types (b) of parasites detected significantly in prostate cancer samples.

D
ow

nloaded from
 https://academ

ic.oup.com
/carcin/article/40/6/749/5362026 by guest on 20 August 2022



754  |  Carcinogenesis, 2019, Vol. 40, No. 6

Figure 2.  Microbial signatures detected significantly in the prostate cancer samples versus the controls by PathoChip screen. (A) Signatures of viral families and 

predominant specific viral signatures detected in prostate cancer are shown, with the total hybridization signal (sum of hybridization signals for all the detected 

viruses in the family, or all the significantly detected probes for a specific virus) for each viral families or for each specific virus represented according to descending 

order as a bar graph and the prevalence of the same as dots. The known tumorigenic viral families detected are indicated. HPV, human papilloma virus, MMTV, mouse 

mammary tumor virus; MMLV, Moloney murine leukemia virus; RSV, Rous sarcoma virus, ACV, avian carcinoma virus; HTLV, human T-lymphotropic virus; KSHV, Kaposi 

sarcoma-associated herpesvirus or human herpes virus 8, HHV, human herpes virus. Representation of detected bacterial (B), fungal (C) and parasitic (D) signatures 

in prostate cancer as bar graphs, with the total hybridization signal for all the significantly detected probes per genera shown in descending order and prevalence of 

the same as dots.
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also detected, but with medium and low hybridization signals 
in 62% of cancer cases (Figure 2C). Similarly, another signature 
of microsporidia, Fonsecaea, was detected in >80% of the cancer 
samples, but with medium hybridization signal (Figure 2C).

The total hybridization signals of signatures for each of the 
genera of parasites significantly detected in the prostate cancers 
are represented in Figure 2D. Signatures of blood/tissue Sporozoa, 
Plasmodium, was detected with the highest hybridization signal 
intensity in 88% of the cancer samples screened (Figure 2D). This 
was followed by Trichinella, Sarcocystis, Babesia and Entamoeba, all 
of which were detected in >70% of the samples screened (Figure 
2D). Signatures of a number of parasites were also detected in 
the medium and low hybridization signal groups in varying 
percentages of the samples (20–85%) (Figure 2D). In particular, 
signatures of Trichuris, Naegleria, Echinococcus, Schistosoma, 
Strongyloides, Hymenolepis, Contracaecum and Toxocara in the 
medium hybridization signal group, and Enterobius in the low 
hybridization signal group, are notable.

For the abovementioned significant detections in the prostate 
cancers, the median hybridization signal that represents the 
mid-value for hybridization signals of all the detected probes 
per accession/viral families is shown in Supplementary Figure 
S1A and Table S2A, available at Carcinogenesis Online, and the 
percentage of significant probes per accession that were more 
highly detected in the cancers compared with the controls are 
shown in Supplementary Table S2C, available at Carcinogenesis 
Online. Among the different microbial signatures detected, 
viral signatures showed the highest prevalence (Supplementary 
Figure S1B, available at Carcinogenesis Online).

Although we detected many microbial signatures in the 
prostate controls (Supplementary Figure S2 and Table S3, avail-
able at Carcinogenesis Online), only a few microbial signatures 
were detected significantly higher in the controls compared 
with the cancers (Supplementary Figure S1C, available at 
Carcinogenesis Online). They included a few conserved signatures 
of Retroviridae, Poxviridae, Reoviridae and Herpesviridae, 
along with specific probes of bacteria Chlamydia, Pseudomonas, 
Burkholderia, Campylobacter and parasite Babesia (Supplementary 
Figure S1C, available at Carcinogenesis Online). However, a few 
probes of Helicobacter were detected (hybridization signal > 
1) sporadically in the controls (Supplementary Table S3, available 
at Carcinogenesis Online), but the average hybridization signal of 
detection of the Helicobacter probes was significantly lower in the 
controls compared with the cancers (Supplementary Table S3, 
available at Carcinogenesis Online); thus, it was not reported as a 
part of the prostate control/BPH-associated microbiome.

However, screening tissue-free paraffin-detected bacterial 
(Propionibacterium, Sphingobacterium, Chryseobacterium and 
Capnocytophaga) and fungal (Alternaria and Malassezia) signals 
(Supplementary Table S2C, available at Carcinogenesis Online), 
which suggest that they were included in the sample processing. 
There was no significant detection of microorganism probes 
detected in a non-template negative control screen (water instead 
of DNA/RNA; data not shown). These results indicate that probes 
detected in the tissue-free paraffin sample may be a consequence 
of the embedding process. Thus, these signatures were not 
included as a part of the prostate cancer-specific microbiome.

Clustering of prostate cancer samples based on the 
detection of microbiome signature patterns

Hierarchical clustering based on microbial signature detection 
patterns were represented in two different ways (Figure 3, left 
and right panels). Figure 3 (left panel) shows the heat map of 

the hierarchical clustering where prostate cancer samples with 
similar hybridization signal for microbiome signatures cluster 
together. In contrast, Figure 3 (right panel) shows the best 
numbers of such clusters that can be formed from the data set 
using the same algorithm. Hierarchical analysis concluded that 
the 50 prostate cancer samples grouped into two main clusters 
(cluster 1 and 2), and samples in cluster 2 were again broadly 
subdivided into two distinct subgroups (subcluster 2a and 2b). 
There was no significant change in clustering analysis after 
we eliminated the signals detected from the empty paraffin 
screen from the analysis (Supplementary Figure S3, available at 
Carcinogenesis Online).

The microbial signatures that were common to all the 
clusters/subcluster (ANOVA test, P  <  0.05) were bacterial 
signatures of Capnocytophaga, fungal signatures of Bipolaris 
and parasitic signatures of Dipylidium and Angiostrongylus 
(Supplementary Table S4, available at Carcinogenesis Online, 
ANOVA test).

Prostate cancer cases in each cluster/subcluster differed 
based on the detection of certain significant microbial 
signatures (two-tail t-test between individual clusters versus 
the rest, adjusted P  <  0.05) (Supplementary Table S4, avail-
able at Carcinogenesis Online, cluster 1 versus rest, subcluster 
2a versus rest, subcluster 2b versus rest). Prostate cancer 
samples in cluster 1 had significant higher detection for 
most of the microbial signatures detected when compared 
with cluster 2 samples (Supplementary Table S4, available 
at Carcinogenesis Online, cluster 1 versus rest), and in fact, 
cancer samples in cluster 1 showed >2-fold (log2 fold change 
> 1)  higher detections for certain bacterial (Actinomyces, 
Aerococcus, Alcaligenes, Arcanobacterium, Geobacillus, Klebsiella, 
Plesiomonas, Propionibacterium, Rothia, Serratia, Sphingobacterium, 
Staphylococcus and Enterobius) and parasitic (Dicrocoelium and 
Dientamoeba) signatures. Among the cluster 2 cancer samples, 
subcluster 2a had higher detections of all the microbial 
signatures compared with cluster 2b samples (Supplementary 
Table S4, available at Carcinogenesis Online, subcluster 2b 
versus 2a). In fact, fungal signatures of Cladophialophora, 
Fonsecaea, Phialophora, Piedraia and parasitic signatures of 
Prosthodendrium, Centrocestus and Trichuris were significantly 
detected higher in subcluster 2a than the rest (cluster 1  + 
subcluster 2b) of the cancer samples (Supplementary Table 
S4, available at Carcinogenesis Online, subcluster 2a versus 
rest). Although prostate cancer samples that grouped in 
subcluster 2b showed significant lower detection for most of 
the microbial signatures (Supplementary Table S4, available 
at Carcinogenesis Online, subcluster 2b versus rest), the aver-
age hybridization signal intensity for certain bacterial (Rothia, 
Geobacillus, Actinomyces, Arcanobacterium, Brevundimonas, 
Peptoniphilus, Klebsiella, Frateuria, Mobiluncus, Serratia, Francisella, 
Burkholderia, Vibrio, Aerococcus), fungal (Piedraia) and parasitic 
(Macracanthorhynchus) signatures in subcluster 2b was found to 
be >2-fold lower (log2 fold change < −1) compared with the rest 
of the cancer samples. Those signatures were detected with low 
hybridization signal intensity in only a few of the subcluster 
2b samples. A small number of samples in subcluster 2b had 
very high detection of the parasitic signatures of Dipylidium 
(Supplementary Table S4, available at Carcinogenesis Online, 
subcluster 2b versus 2a, log fold change for Dipylidium = 0.01). 
Heatmap for these differentially detected signatures between 
clusters is shown in Supplementary Figure S4, available at 
Carcinogenesis Online.
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Figure 3.  Hierarchical clustering of prostate cancer samples along with clinical correlations. (A) Hierarchical clustering based on microbial signature detection pattern 

in 50 prostate cancer samples, represented as a heat map (left). Clustering was performed by R program using Euclidean distance, complete linkage and non-adjusted 

values. Clustering of the prostate cancer samples using NBClust software [Calinski and Harabasz index, Euclidean distance, complete linkage] (right). (B) Proportions of 

prostate cancer patients in each of the hierarchical clusters having different grades, scores and stages of prostate cancers. (C) Specific microbial signature detections 

in different grades, scores and stages of prostate cancer patients. Only the significant (P < 0.05) differences between different grades, scores and stages are shown with 

an ‘asterisk’ (*). The P values are as follows: Helicobacter detection in cancer stages 6 versus 7 (P = 0.031), between 6 versus 8,9 (P = 0.032) and between primary Gleason 

score 3 versus 4 (P = 0.084); HPV18 detection in cancer stages 6 versus 7 (P = 0.00023) and between primary Gleason grade 3 versus 4 (P = 0.0017); KSHV detection in 

cancer stages 6 versus 7 (P = 0.0018), between 6 versus 8,9 (P = 0.0139) and between primary Gleason score 3 versus 4 (P = 0.00006); Trichinella detection in cancer stages 

7 versus 8,9 (P = 0.02) and between treatable versus advance (P = 0.032); Dicrocoelium detection in cancer stages T3a versus T2c (P = 0.006), T3b versus T2c (P = 0.017) and 

between treatable versus advance (P = 0.009).
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Correlation of clustered microbiome signatures and 
cancer grade and stage

Using the limited clinical data provided (Supplementary Table 
S1, available at Carcinogenesis Online), we were able to document 
trends comparing prostate cancers in specific hierarchical 
clusters with the reported Gleason grades, Gleason scores and 
the reported stages of the cancer.

The number of prostate cancer cases in each of the 
hierarchical clusters with different scores and stages is shown 
in Supplementary Table S5, available at Carcinogenesis Online. 
Figure 3B (left panel) compares primary Gleason grades 3 and 4 
where these is no significant difference in the distribution of the 
primary Gleason grade type between the clusters.

Figure 3B (middle panel) shows the distribution of Gleason 
scores of the samples in each cluster. Although a majority 
of the samples in each cluster were scored 7, cluster 1 
samples had the lowest percentage scoring 7 (moderately 
differentiated or intermediate grade), with all the remaining 
scored 6 (well-differentiated or low grade). Hence, cluster 1 
tends toward lower Gleason scores. In contrast, clusters 2a 
and 2b tended toward greater numbers of grade 7 and higher 
scores of 8–9 (poorly differentiated tumor tissues with high 
risk of advanced cancer). Thus, higher hybridization signals 
for the microbiome signatures, as in cluster 1, correlated with 
better Gleason scores. Correspondingly, cluster 2 samples 
with moderate (cluster 2a) to low (cluster 2b) hybridization 
signal for the microbiome signatures had higher Gleason 
scores.

Figure 3B (right panel) shows the distribution of the diagnosis 
of stage 2 (T2a, T2b and T2c) or 3 (T3a and T3b) prostate cancers 
in the different hierarchical clusters. Here we noted that cluster 
1 and subcluster 2b had almost similar distribution for stage 2 
and 3 cancers.

However, the distribution between T2a, T2b and T2c for stage 
2 was quite different with the majority being T2a in cluster 1 
patient groups and T2c in subcluster 2a and 2b groups. Samples 
in subcluster 2a had a slightly higher number of stage 2 but 
fewer stage 3, although this cluster did have the most cases in 
the advanced stage T3b.

Further analysis shows that certain microbial signatures 
are significantly higher in different grades and stages of cancer 
(Figure 3C; Supplementary Table S5, available at Carcinogenesis 
Online). Average hybridization signal of signatures of 
Astroviridae, Borrelia, Candida, Capillaria, Entamoeba, Enterobius, 
Histoplasma, Legionella, Mansonella, Porphyromonas, Shigella and 
Streptobacillus were significantly higher in prostate cancer with 
lower Gleason scores (scores 6 and 7) (Supplementary Table S5, 
available at Carcinogenesis Online). Conversely, the signature 
of Trichinella was significantly higher in prostate tumors with 
higher Gleason score (scores 8 and 9) (Figure 3C; Supplementary 
Table S5, available at Carcinogenesis Online). In addition, we found 
the signatures of Helicobacter, HPV18, KSHV and polyomaviridae 
family members to be higher in prostate cancer with lower 
Gleason score (score 6) than the ones higher than 6 (Figure 3C). 
Examining stages, we found that the signature of Dicrocoelium 
were significantly higher in stage 3 (T3) prostate cases than 
stage 2 (T2) (Figure 3C; Supplementary Table S5, available at 
Carcinogenesis Online).

These comparisons suggest that there is a possibility that 
certain microbial signatures in prostate cancers can predict 
clinical diagnosis and potential outcomes of disease. Thus, a 
specific microbial signature in prostate has potential prognostic/
diagnostic value.

Validation of PathoChip screen results

Array probes representing Adenoviridae, Papillomaviridae 
and Herpesviridae that were positive in the PathoChip screen 
were used to capture complimentary sequences from the 
whole-genome and transcriptome-amplified pooled prostate 
cancer samples. The captured DNA was then subjected to NGS. 
The resulting sequences were aligned with the PathoChip 
metagenome. This metagenome comprises the concatenated 
genomic sequences of all the viruses and microorganisms from 
which the probes on the PathoChip were generated. This ana-
lysis showed alignment with the capture probe locations on the 
metagenome, which validates the accuracy of the probes for the 
specific virus. Figure 4A, Supplementary Figure S5 and Table S6, 
available at Carcinogenesis Online, show the sequence alignments 
in six separate capture reactions (Pr1–6) to the HPV18 and HHV8 
region of the PathoChip metagenome. The sequences marked 
with a circle (o) in Figure 4A are the sequence reads that aligned 
to the capture probe locations. There were also sequences that 
aligned with other probes in the same accession that were not 
used as the capture probes (marked with an asterisk ‘*’). This 
may result from pull-down of larger fragments of microbial 
genomic sequences by the capture probes. Supplementary 
Table S6, available at Carcinogenesis Online, shows the number of 
reads that aligned to the capture probe locations (inProbe) and 
also outside (outProbe) of it for the accessions in each capture 
reactions.

Validation of other microbial signatures was carried out 
by PCR and Sanger sequencing (Figure 4B; Supplementary 
Figure S6, available at Carcinogenesis Online). The primers used 
for validation of the PathoChip screen results by PCR are in 
Supplementary Table S7, available at Carcinogenesis Online, and 
are designed from the region of the microbial genome that 
tested positive by PathoChip screen. These primers were used 
to directly amplify the microbial signatures from the pooled 
whole-genome and transcriptome-amplified product (WTA) of 
the 50 prostate cancer samples, which were being used for the 
hybridization step in the PathoChip screen.

Detection of viral genomic insertions in host 
chromosomes of prostate cancer samples

Some of the sequences obtained from probe-capture NGS 
only partially aligned with the PathoChip metagenome. The 
flanking non-aligning regions were found to align with human 
sequences instead, thus suggesting sites of viral and microbial 
DNA integration in human chromosomes. Using Virus-Clip (29) 
(see Materials and methods) to detect such integrations, we 
detected multiple integration sites in the host chromosomes 
for a number of herpesviruses and papillomaviruses (Figure 5, 
Supplementary Table S8, available at Carcinogenesis Online). The 
prevalence of particular viral genomic integrations in the host 
chromosomes is shown in Figure 5A, right panel. The highest 
number of genomic integration sites was detected for HPV18 
(33), followed by KSHV (34), HPV2, HPV108, a herpesvirus with 
a signature similar to Equid herpesvirus 9 and herpesvirus 2 
(Figure 5A). Figure 5B shows the sites of integration within the 
viral genomes. These data suggest that some of the viruses have 
preferential regions for integration, for example E1 in HPV18 
(61%), L2 in HPV108 (53%) and UL42 of herpesvirus 2 (60%), and are 
discussed below. The integration sites in the host chromosomes 
for these viruses are represented in a circos plot (Figure 5D, left 
panel) and karyotype plot (Figure 5D, right panel), and are also 
mentioned in Supplementary Table S8, available at Carcinogenesis 
Online. Furthermore, we were analyzing results from a pool of 
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Figure 4.  Validations of PathoChip screen results. (A) Probe-capture sequencing validation of PathoChip detection of HPV18. Targeted MiSeq reads aligned to capture 

probe locations of HPV18 genome, represented as a circos plot. Probe-capture sequencing alignment is shown for individual capture pools (Capture 1–6 or Pr1–6). The 

whole-genome amplified DNA plus cDNA of the prostate cancer samples were hybridized to a set of biotinylated probes, then captured by streptavidin beads, and 

used for tagmentation, library preparation and deep sequencing with paired-end 250 nucleotide reads. The miseq reads from individual capture when aligned with 

the metagenome of PathoChip (PathoChip probes) was found to cluster mostly at the capture probe regions. The genomic co-ordinates with viral genes are mentioned 

in the figure for HPV18. (B) PCR validations of PathoChip screen results. Using the detection primers mentioned in Supplementary Table S6, available at Carcinogenesis 

Online, PCR was carried out to validate the PathoChip screen detection of the microbial signatures in the prostate cancer samples. Figure 4B shows the gel pictures of 

EtBr-stained amplicons run on 2% agarose gel, where M is DNA ladder of RsaI digested φX/174, NTC is non-template control, P is pooled WTA product of prostate cancer 

samples and C is pooled WTA product of prostate control samples.
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Figure 5.  Microbial genomic integrations in the host chromosome. (A) Bar graph showing the number of host genomic integration sites detected in the study for HHV 

and HPV genomic insertions. (B) Bar graph showing the percentage of different viral genomic regions of HHV and HPV, which were found to be integrated in the host 

somatic chromosomes. (C) PCR validation of KSHV and HPV18 genomic fragment insertions in the host chromosomes, using primers for insertion validations listed in 

Supplementary Table S6, available at Carcinogenesis Online. Primers were designed such to amplify the host-viral genomic junction. KSHV ORF75 sequence insertions 

at an intergenic (INTG) and intronic region of POU2F1 gene, KSHV K4.2 sequence insertion at the exonic region of RNF213 gene, HPV18 E1 insertion at an intergenic 

region (INTG), at the intronic region of CCDC7 gene, downstream of PPP6R3 gene, at the intronic region of PREX1 and MUC16 genes are validated by PCR. (D) Circos plot 

highlighting fusion events with ≥20 reads support for the detected viral insertions into individual human chromosomes are shown. Different HHV and HPV insertions 

sites on individual human chromosomes are represented by differentially colored lines on each of the concentric circles on the plot. (E) Karyogram plot of the HHV 

and HPV viral insertion sites in human chromosomes, cutoff reads ≥ 20, represented by differentially colored lines for each type of viral insertions. (F) Significant 

(P < 005) association of most of the host genes affected by HPV18 and KSHV/HHV8 genomic integrations to cancer as analyzed by IPA program.

prostate 
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cancer patient samples. Thus, integrations detected are the 
total from a heterogeneous population of cells. The integrations 
were seen at the exonic, intronic, intergenic, UTR, upstream and 
downstream of many genes (Supplementary Table S8, avail-
able at Carcinogenesis Online). It is possible that viral genomic 
insertion into these genes could affect their expression. Using 
IPA (QIAGEN Redwood City, www.qiagen.com/ingenuity), we 
found that many of the genes are associated with tumorigenesis 
(Figure 5E). To validate the insertions we randomly selected 
several of the detected KSHV (HHV8) and HPV18 genomic 
insertions and used PCR with primers designed to amplify the 
host-viral junction region (Supplementary Table S7, available 
at Carcinogenesis Online), followed by Sanger sequencing of the 
amplicons (Figure 5C; Supplementary Figure S7, available at 
Carcinogenesis Online).

HPV18 genomic integrations detected in the host 
chromosomes of prostate cancer

Of the different HPV18 genomic regions found integrated in 
the prostate cancer chromosomes, there were two prevalent 
hotspots for insertion. Sixty-one percent of the insertions 
occurred within the E1 coding sequence region at genomic 
location 2238 in the accession NC_001357.1. The second hotspot, 
representing 23% of the insertions, was within the L2 coding 
region at genomic location 4946 (Figure 5B; Supplementary Table 
S8, available at Carcinogenesis Online).

The majority of the HPV18 genomic integrations were 
detected in intergenic regions (46%), followed by intronic regions 
(38%) (Supplementary Table S8, available at Carcinogenesis Online). 
Integrations were detected upstream and downstream of genes, 
and one insertion was detected within the 3′UTR of ELAVL1 
gene. HPV18 L2 coding sequences were found inserted upstream 
of the FAM111B and KCNC4 genes (Supplementary Table S8, 
available at Carcinogenesis Online) both of which were found to 
be associated with malignant solid tumor formation (Figure 5E, 
left panel). These insertions may affect gene expressions. HPV18 
insertions were detected within intronic regions of 20 genes 
(Supplementary Table S8, available at Carcinogenesis Online). 
Eighteen of these were found to be associated with malignant 
solid tumor formation (Figure 5E, left panel). These included 
CCDC7, PREX1, EXPH5, MUC16, HSPG2, NEK11, HNRNPM, CWC27, 
CDC42BPA, PREX2, AUTS2, VTCN1, ZSCAN31, PTPRT, CLCN3, 
DLGAP1, CCDC171 and FBN1. It is possible that these intronic 
integrations may affect gene expression due to alterations in 
splicing during transcription (35).

Other HPV genomic integrations detected in the host 
chromosomes of prostate cancer

Coding sequences for both HPV2 (NC_001352.1) E1 (genomic 
co-ordinate 2132 and 2696)  and E2 (genomic co-ordinate 
2696 and 3550)  appear to be highly susceptible to genomic 
integrations (Figure 5B; Supplementary Table S8, available at 
Carcinogenesis Online). Of the 31 HPV2 integration sites detected 
in prostate cancer chromosomes, 12 are at intronic regions, 16 
are within intergenic regions, 2 are downstream of genes and 
1 is within the 3′UTR of the IL18BP gene (Supplementary Table 
S8, available at Carcinogenesis Online). Ten of the 12 genes with 
intronic HPV2 insertions were significantly (P = 3.12E-04) asso-
ciated with adenocarcinoma by IPA (Supplementary Figure S8A, 
available at Carcinogenesis Online). Viral genomic integrations 
in intergenic regions can affect neighboring gene expression if 
within 100  kb of the genes (36,37). Seven of nine such genes, 
with HPV2 insertions, are within 100 kb and are also found to be 

significantly (1.72E-02) associated with adenocarcinoma by IPA 
(Supplementary Figure S8B, available at Carcinogenesis Online).

In case of HPV108 genomic integrations in the host 
chromosomes of prostate cancer cells, the majority were in the 
region within the L2 coding sequence (genomic co-ordinate 4771 
of NC_012213.1) (53%), followed by E7 coding sequence (genomic 
co-ordinate 944 of NC_012213.1) (41%) (Figure 5B, available at 
Carcinogenesis Online). Integrations were seen in both intronic and 
intergenic regions. The majority of affected genes were found to 
be significantly (P = 5.25E-03) associated with epithelial cancers 
(Supplementary Figure S8C, available at Carcinogenesis Online).

KSHV genomic integrations detected in host 
chromosomes of prostate cancer

Among the KSHV genomic regions found to be integrated, the 
highest (23%) integrations involved the ORF75 coding region 
at the co-ordinate 130802 of accession NC_009333.1. This was 
followed by the region between miR-K2 and miR-K1 at the 
co-ordinate 122116 (Figure 5B; Supplementary Table S8, available 
at Carcinogenesis Online).

The majority of the KSHV insertions were found within 
intergenic (50%) and intronic regions (42%) (Supplementary 
Table S8, available at Carcinogenesis Online). Among the 
intergenic integrations, 54% were seen within 100 kb upstream 
or downstream of genes (see below). The rest were in regions 
upstream of the GDF10 gene, downstream of the CYLD gene and 
within an exonic region of the RNF213 gene, all of which are 
correlated with epithelial tumorigenesis (Supplementary Table 
S8, available at Carcinogenesis Online).

KSHV intergenic insertions within 100  kb of coding 
regions included 40  kb upstream of HNF4G, 12  kb upstream 
of CABLES1 gene, 49  kb upstream of LINC01512 gene, 47  kb 
upstream of LOC728084, 55  kb upstream of FLJ36777 gene, 
34 kb upstream of SORCS2 gene, 80 kb upstream of MIR3910-1 
gene, 29 kb downstream of AIPL1, 76 kb downstream of ncRNA 
LOC101927964, 42  kb downstream of ncRNA LINC00702, 28  kb 
downstream of ADCYAP1, 23 kb downstream of TMEM241, 55 kb 
downstream of VEGFA, 32  kb downstream of FAM153C, 32  kb 
downstream of N4BP3, 89 kb downstream of ncRNA LINC01247, 
39 kb downstream of SNAI2, 23 kb downstream of LOC100506499, 
20  kb downstream of ncRNA C14orf183/LINC01599 and 60  kb 
downstream of SOX6. The majority of these genes were found to 
be significantly correlated (P = 2.65E-05) with the development of 
epithelial cancers as determined by IPA (Figure 5E, right panel).

Other herpesvirus genomic integrations detected in 
the host chromosomes of prostate cancer

Integration sites within the genomes of other herpes viruses 
included conserved sequences of the cercopithecine herpesvirus 
2 (NC_006560.1) UL42 gene (genomic co-ordinate 92081), which 
encodes a DNA polymerase processivity subunit, and the 
coding sequence of the UL30 gene (genomic co-ordinate 65234), 
which encodes DNA polymerase catalytic subunit. In addition, 
coding sequences of ORF9 (genomic co-ordinate 110214), ORF13 
(genomic co-ordinate 15424)  and ORF20 (genomic co-ordinate 
110214)  of Equid herpesvirus 9 (NC_011644.1) (Supplementary 
Table S8, available at Carcinogenesis Online) were also found to 
be integrated in the host chromosome of prostate cancer.

Helicobacter pylori cagA gene integrations were 
detected in host chromosomes of prostate cancer

Helicobacter pylori is a known human pathogen associated with 
gastric carcinoma and was previously detected in prostate 
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cancer (38,39). Therefore, we further examined detection of this 
bacterial agent in prostate tumors. To validate H.pylori detection 
in the prostate cancer samples, we used primers specific for 
the cagA gene of H.pylori (Supplementary Table S7, available 
at Carcinogenesis Online). We observed multiple bands in the 
prostate cancer samples, even under stringent PCR conditions 
(Figure 6). We thus sequenced the three distinct bands and 
subjected them to BLAST against the H.pylori genome. The 
sequence included not only cagA sequences, but also sequence 
matching the human genome. This suggested that H.pylori 
sequences were inserted in the prostate tumor cell genome. The 
BLAST results for the upper most band (1 in Figure 6) revealed 
that cagA sequences were inserted at the lncRNA LOC105376839 
gene on chr17 (17q21.31). The BLAST for the middle band (2 
in Figure 6) showed partial cagA gene sequences fused with 
protein phosphatase 1 regulatory subunit 9A (PPP1R9A) gene, 
also called neurabin I, on chr7 (7q21.3). Finally, the sequence 
of the lower band (3 in Figure 6) showed integration of cagA 
sequences in neural cell adhesion molecule 1 (NCAM1) gene on 
chr11 (11q23.2).

Discussions
In previous studies, we defined the microbial signatures associ-
ated with different breast cancer types (12,13), oral cancer and 
ovarian cancer (14,15). These studies showed that the tumor 
microbiome is quite diverse compared with normal tissue and 
that different tumor types have distinguishing microbiome 
signatures. The microbiome in prostate tumors was detected 
at significantly higher levels than in control tissue; however, 
the levels of viruses and microorganisms in the prostate 
tumor microbiome were still relatively low. Thus, it is unlikely 
that we are detecting a meaningful replicative infection. We 
suggest that although the presence of the tumor microbiome 
may affect the course of the cancer, it is likely that the tumor 
microenvironment provides a specialized niche in which viruses 
and microorganisms can persist more readily than in normal 
tissue. In the present study, we examined the microbiome 
of prostate cancer compared with prostate tissue from BPH 
patients and reported a diverse and distinct prostate tumor 
microbiome compared with that of the controls.

Our study is not the first to suggest the presence of viruses 
and bacteria in the prostate. Several studies have documented 

that viral and bacterial infection of the prostate are risk factors 
associated with prostate cancer development (1,7,9,18,40–43).

In this regard, our data suggest a prominent representation 
of tumor viruses in the prostate cancer samples compared with 
the BPH controls. It is noteworthy that many of the viral families 
were detected by PathoChip probes that represent conserved 
regions found in all members of the virus family. Probes for 
specific family members were the least represented, possibly 
suggesting significant strain variation among individual family 
members. Alternatively, the higher detection by conserved 
probes may suggest heretofore uncharacterized members of 
the virus family. Our data neither support nor deny that these 
viruses have any direct consequence in prostate oncogenesis 
(44). Previous studies (7,9,18,40,42,45–47) support our findings of 
viral signatures in prostate cancers, these include the detection 
of HPV [including HPV18 (11)], HCMV, EBV, JCV and BKV. Also, our 
detection of the oncogenic papillomavirus HPV18 in prostate 
cancer has been reported (11). However, reports of the associ-
ation of viruses with prostate cancer have been controversial, 
for example, the association of the endogenous retrovirus, 
xenotropic murine leukemia-related virus in familial prostate 
cancer patients (43,48). In this regard, we did not detect xenotropic 
murine leukemia-related virus, but did detect signatures of 
other endogenous retroviruses, such as the alpharetrovirus RSV, 
betaretrovirus MMTV and gammaretrovirus MMLV. In agree-
ment, a previous study reported that MMTV-like virus DNA was 
found in 36% of prostate cancers tested (45). Overall, past studies 
support our finding of a diverse virome in prostate cancer.

Considering the bacterial microbiome, several previous 
studies have reported an abundance of Proteobacteria associ-
ated with dysbiosis-related diseases including cancer (49–51). 
A  recent study using ultra-deep pyrosequencing showed the 
dominance of Actinobacteria in cancerous, pre-cancerous and 
non-cancerous prostate tissues, Propionibacterium being the 
most abundant, followed by Corynebacterium (17). Most of the 
bacterial genera detected in that study were also detected in 
the present study. An association of Chlamydia trachomatis and 
P.acnes has correlated with increased risk for prostate cancer 
development due to their pro-inflammatory host responses 
(52,53). We detected signatures of both, with medium and low 
hybridization signal in at least 85% of the prostate cancer cases 
studied. Another study has suggested that chronic mycoplasma 
infection may contribute to prostate cancer development in BPH 

Figure 6.  Helicobacter cagA genomic integrations detected during PCR validation of Helicobacter signature in the prostate cancer. The gel picture of EtBr-stained amplicons 

run on 2% agarose gel shows the three bands of interest (numbered). The electropherograms for the individual bands that were sequenced and the results of the NCBI 

BLAST program of the sequences are shown. The BLAST alignment shows that a part of the sequence of the three amplicons is bacterial and the rest is of human. On 

the gel picture, M is DNA ladder of RsaI digested φX/174, N is non-template control, P is pooled WTA product of prostate cancer samples.
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cells (34). In this regard, we detected mycoplasma signatures 
with high hybridization signal intensity in at least 90% of the 
prostate cancer samples examined. Thus, there is good agree-
ment between previous studies and our study as to the presence 
of bacterial signatures in prostate cancer.

We also detected signatures of Helicobacter in >90% of 
prostate cancer cases. In this regard, previous studies have 
suggested that H.pylori infection may contribute to prostate 
diseases (38,39). One of these studies demonstrated H.pylori 
DNA in the prostatic tissue of both BPH and a prostate cancer 
patient (39). Our study detected signals from few Helicobacter 
probes in the BPH controls, none of which were significantly 
higher than in the cancers (Supplementary Table S3, avail-
able at Carcinogenesis Online). Thus, Helicobacter is likely to be 
a low-level component of the BPH microbiome as suggested 
by the PCR validation (Figure 4). In the present study, we 
found sequences of H.pylori to be integrated at certain 
locations in the human somatic chromosomes 17, 7 and 11 
(17q21.31, 7q21.3, 11q23.2). The integration of the cagA gene 
sequence in PPP1R9A and NCAM1 gene locations may result 
in deregulation of their gene expression. Although PPP1R9A 
gene overexpression seen in prostate cancer (54) provides 
growth advantage to malignant cells, downregulation of 
NCAM1 gene has been identified in several human cancers 
suggesting that it might function as a tumor repressor (55). 
It was thus interesting to find H.pylori cagA gene integrations 
in PPP1R9A and NCAM1 genes, which may be a contributing 
factor to prostate tumorigenesis. Notably, one previous report 
has suggested Helicobacter DNA integration in a stomach 
adenocarcinoma (56). Although few studies have been done to 
examine the integration of bacterial sequences in human cell 
DNA, such integrations have been reported more frequently 
in tumors than in controls (56). Our study suggests that there 
is a marked increase in integration of viral and microbial 
sequences in prostate tumor DNA; we have reported similar 
findings for other tumors (14,15).

The integrated H.pylori DNA that we detected in prostate 
tumor cells include the sequences of the cagA gene, which 
encodes the immune-dominant cagA virulence factor (57). 
CagA is also associated with more severe gastric cancer (57–61). 
Gastric cancer patients are at least twice as likely to be infected 
with an H.pylori strain that is cagA positive than one that is 
cagA negative (59,61). This is significant because cagA is known 
to activate proto-oncogenes and inactivate tumor suppressor 
genes (33,62); thus, cagA plays an important role in disease 
progression in cases of gastric cancer (57,63). Thus, the finding of 
cagA sequences integrated in prostate cancer cell DNA poses the 
intriguing possibility that it may function in the establishment 
or progression of the cancer.

Among fungi, dermatophytes comprised the largest number 
of the fungal signatures detected in the prostate cancer 
samples. This may be because they are commonly detected in 
cancer patients (64). Similarly, the abundant detection of yeasts 
in the cancer cases is consistent with studies showing that 
opportunistic yeast infections are common in cancer cases (65–
67). Also, consistent with the present study are previous reports 
of high incidence of microsporidia, such as Encephalitozoon 
and Fonsecaea, in cancer (68,69). In particular, chronic 
chromoblastomycosis, caused by Fonsecaea, has been suggested 
to promote squamous cell carcinoma (69). As was the case with 
viral and bacterial signatures, there is substantial agreement 
between previous studies and our study as to the presence of 
fungal signatures in prostate cancer.

A surprising result from our study is the presence of parasite 
signatures in prostate tumor samples. However, parasites have 
been directly or indirectly associated with several different 
cancers (70–77). For example, Anisakis has been suggested to be 
a risk factor in colon and stomach cancers (76); Toxoplasma has 
been shown to induce prostatic inflammation and hyperplasia 
(75); Blastocystis is found predominantly in colorectal cancer (77); 
Schistosoma in bladder cancer (72); and Strongyloides has been 
associated with gastric and other cancers (71,74). In addition, 
the intestinal nematode Anisakis has been reported previously 
in the male urinary tract (78). We report finding signatures for 
these parasites in the prostate tumor samples. We also detected 
Plasmodium in the prostate tumor samples, which is interesting 
because it has been reported to activate EBV from latency 
(73). In addition, Plasmodium has been reported to be a potent 
mutagen that can indirectly induce chromosomal damage (79), 
produce reactive oxygen species (80) and inhibit apoptosis (81), 
potentially facilitating oncogenesis.

Hierarchical cluster analysis showed that the microbiome 
signatures of the prostate tumors could be grouped into distinct 
clusters (1, 2a and 2b), suggesting that within prostate tumors 
different microbiomes are present. Thus, the microbiome may 
correlate with diagnostic aspects of the disease. Using the 
limited clinical data that were available for de-identified samples 
(Gleason grades, Gleason scores and the reported stages of the 
cancer), we looked for correlative trends between the clinical 
data and the specific clusters. The sample size is small, and our 
findings are largely correlative; however, we did find correlations 
that suggest that specific microbiome signatures may have 
prognostic and/or diagnostic value. In this regard, we examined 
the correlations between specific viral and microbial signatures 
and Gleason score and stages of cancer. We found that certain 
signatures were significantly higher in prostate cancer with 
lower Gleason scores (Supplementary Table S5, available at 
Carcinogenesis Online), where other signatures were higher in 
prostate cancer with higher Gleason score (see Results; Figure 
3C; Supplementary Table S5, available at Carcinogenesis Online). 
These finding suggest that hybridization intensity of a group 
of specific viruses and microorganisms can provide significant 
prognostic and diagnostic value. It is likely that a study of a 
larger number of samples will clarify and expand the number of 
distinct clusters and more closely align clinical data to specific 
clusters and specific signatures.

As in our previous PathoChip studies of tumor microbiota 
(14,15), we validated the specific Papillomaviridae and 
Herpesviridae signatures by sequencing the prostate tumor 
samples captured by hybridization to selected positive probes 
of PathoChip screen. Since the tumors are heterogeneous, we 
pooled samples for the probe-capture sequencing as we only 
wanted to validate the presence of those signatures in prostate 
cancer samples. The results validated the PathoChip results. 
Probably, the most intriguing result from the verification 
studies was the finding that some captured viral and microbial 
sequences contained flanking sequences that aligned to human 
sequences, thus suggesting sites of viral and microbial DNA 
integration in human chromosomes. We found many examples 
of viral and microbial integration in the tumor DNA suggesting 
that tumor cells exhibit greatly increased recombinatorial activ-
ity during the development and expansion of the tumor. We 
show specific hotspots for integration, which may perturb gene 
expression or miRNA/lncRNA function in ways that potentially 
modulate or potentiate oncogenesis.

The controls for the study were derived from patients with 
BPH since normal prostate samples are very rare. BPH is an 
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inflammatory pathologic condition of the prostate which in 
some cases could be caused by microbial infections, and may 
be a precursor to prostate cancer development (3,82). Thus, it is 
quite possible that the microbiome between BPH and cancerous 
tissue may be shared and that viral and bacterial integrations 
may occur during a pre-cancerous BPH condition. Using the 
same primers used to validate several microbial insertions in 
the prostate cancer (Figure 5, Supplementary Figure S7, avail-
able at Carcinogenesis Online), we also analyzed integration in 
BPH. These analyses showed similar amplicon from the prostate 
controls (Supplementary Figure S9, available at Carcinogenesis 
Online), which, when sequenced, confirmed these integrations 
in BPH and the cancer. Overall, the BPH and prostate tumor 
microbiomes may overlap; however, our data show that there is 
clearly more diverse microbiome in tumor.

Observing similar HPV18 and KSHV insertions in the BPH 
samples as in the cancers were not surprising, as inflammatory 
prostate of BPH patients were not devoid of those viral 
detections, although significantly lower than in the cancers 
(Supplementary Table S3, available at Carcinogenesis Online). 
However, we did perform quantitative RT-PCR on the affected 
genes to see whether the gene expression were different in the 
cancers compared with the controls (Supplementary Figure 
S10, available at Carcinogenesis Online). The host genes, in 
which microbial insertions were detected, are already known 
to be associated with oncogenesis (83–86), and the differential 
expression of those genes that we detected in the prostate 
cancer samples and in the controls (Supplementary Figure S10, 
available at Carcinogenesis Online) were also previously reported 
(83–86). This may or may not be directly related to microbial 
genomic insertions within those genes.

In conclusion, we have identified diverse microbiome 
signatures associated with prostate cancer samples. Many of 
the viruses and microorganisms we detected have previously 
been associated with prostate cancer or other cancers. Our 
observation of integrations of viruses and bacteria into both 
BPH and prostate cancer cells is the first demonstration 
of the diversity of viruses and microorganism that can 
integrate. The prevalence of integrations, especially in the 
cancer cells, suggests that these cells may have heightened 
recombinatorial activity. In several cases, the integrations 
of viral (HPV18, KSHV) and bacterial (Helicobacter) sequences 
potentially result in gene expression perturbations, which 
could influence the initiation or progression of the cancer. 
Finally, the hierarchical clustering analysis of the prostate 
tumor microbiome suggests that microbiome signatures may 
correlate with clinical data, suggesting that the signatures 
may provide biomarkers for diagnostic and prognostic 
purposes.
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