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Key Messages

•  The microbial trajectory across pregnancy and early 

life coincides with key neurodevelopmental periods.

•  Diet, drugs and stress modulate early-life microbial 

colonization.

•  Early-life interventions with prebiotics and probiotics 

could modulate the microbiota and 

neurodevelopment.
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Abstract

Pregnancy and early life are characterized by marked chang-

es in body microbial composition. Intriguingly, these chang-

es take place simultaneously with neurodevelopmental 

plasticity, suggesting a complex dialogue between the mi-

crobes that inhabit the gastrointestinal tract and the brain. 

The purpose of this chapter is to describe the natural trajec-

tory of microbiota during pregnancy and early life, as well as 

review the literature available on its interaction with neuro-

development. Several lines of evidence show that the gut 

microbiota interacts with diet, drugs and stress both prena-

tally and postnatally. Clinical and preclinical studies are illu-

minating how these disruptions result in different develop-

mental outcomes. Understanding the role of the microbiota 

in neurodevelopment may lead to novel approaches to the 

study of the pathophysiology and treatment of neuropsychi-

atric disorders. © 2019 S. Karger AG, Basel

Introduction

The connection between the brain and the gastroin-
testinal tract has been extensively studied, but the exis-
tence of a bidirectional microbiota-gut-brain axis has 
only received attention in the last decade [1, 2]. The in-
dividual microorganisms that live in our body, the mi-
crobiota, and their collective genomes, the microbiome, 
exert considerable influence over host brain and behav-
iour [3, 4] (Table 1). Variations in microbiota composi-
tion have been linked to neuropsychiatric disorders, in-
cluding autism, stress, anxiety and major depressive dis-
order [3, 5]. 
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Almost 30 years ago, it was proposed that prenatal and 
postnatal environmental factors interact with genetics to 
program health and disease in adulthood [6, 7]. Building 
on Barker’s hypothesis, it was recently proposed that the 
microbiota could play an important role in programming 
adult brain health and disease [8]. Whether diet or other 
factors, such as stress and drugs, interact with the micro-
biota in early life to program brain health is currently be-
ing addressed by clinical and preclinical studies. This 
chapter reviews the natural trajectory of the composition 
of the microbiota during pregnancy and early life and 
outlines the current knowledge on the interaction be-
tween the microbiota and neurodevelopment. 

Early-Life Neurodevelopmental Plasticity and the 

Microbiota

Dramatic structural and functional changes in the 
brain are characteristic of the first years of life. This neu-
rodevelopmental plasticity requires timely and adequate 
migration, division and differentiation of neuronal and 
glial precursors [9]. Neuronal migration and axonal 
guidance establish short- and long-range connections 
that enable the recruitment of multiple brain areas for 
the execution of complex behaviours [10, 11]. Differen-
tiated oligodendrocytes insulate neuronal axons with a 
myelin sheath to guarantee proper conductance of neu-
ronal signals [12]. A growing emphasis is now placed on 

the role of astrocytes and microglia in facilitating synap-
tic pruning during early life through adolescence, allow-
ing later in life the fine tuning of complex circuits [13]. 
Plasticity is a key feature of the standard neurodevelop-
mental trajectory and modulates the dynamics of synap-
tic connections and neural circuitry formation. Devia-
tions from the neurodevelopmental trajectory can ac-
count for increased susceptibility to brain diseases later 
in life.

There is a growing appreciation of the link between 
neurodevelopment and intestinal microbiota. Studies in 
germ-free mice have shown abnormal brain develop-
ment, especially in male mice [14–16]. More recent stud-
ies in these microbiota-deficient mice have shown al-
tered expression of genes implicated in neurophysiology 
processes, such as neurotransmission, neuronal plastic-
ity, metabolism and morphology in the amygdala [17] 
and hippocampus [18]. Hypermyelination in the pre-
frontal cortex and abnormal microglia maturation char-
acterize the glia profile of these animals [19–23]. Further-
more, they showed increased blood-brain barrier perme-
ability [24]. Functionally, such changes translate to 
increased stress response [14, 16], changes in anxiety [25] 
and fear recall [26], cognitive deficits [27], social changes 
[21, 28] and visceral pain responses [29]. Thus, the com-
plete absence of microbial colonization in early life has 
dramatic effects on offspring’s brain development and 
function. 

Table 1. Glossary of terms related to the gut-brain axis

Term Definition

Gut-brain axis The multidirectional biological system comprising the central nervous 
system, the neuroendocrine and neuroimmune systems, the gastrointestinal 
tract and components of the enteric and autonomous nervous system

Microbiota The collection of microbes (including bacteria, viruses and fungi) that 
inhabit a particular site

Microbiome The totality of the microbial genes at a particular site

Host The organism that houses a given microbial population

Commensal microorganisms The intrinsic microbes that reside in the host

Prebiotic Non-digestible foods that have a beneficial effect on the microbiome for the 
host

Probiotic Live microbes that have a positive effect on host health when ingested in 
adequate quantities

Germ free A host without a microbiome; generally refers to mice and rats that were 
born and reared in a sterile environment to keep them from developing a 
microbiome
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Dynamics of the Maternal Microbiota during 

Pregnancy

Pregnancy is a unique period in human life, and both 
the gut and vaginal microbiome have evolved to follow an 
optimum trajectory to support the mother and the devel-
oping fetus and allow for the ideal handover of microbi-
ome at birth, informing maternal and child health out-
comes. 

The human female gut microbiota undergoes dynam-
ic compositional changes across gestation [30–32]. As 
pregnancy progresses, a reduction in the diversity of the 
intestinal microbiota takes place, characterized by an en-
richment in Proteobacteria [30]. This natural shift in the 
bacterial populations is functional to the increased meta-
bolic demands by the developing fetus. The Proteobacte-
ria expansion can help the body with the increased ener-
getic requirement that is characteristic of the third tri-
mester [33]. Interestingly, when gut microbiota from this 
time period was transferred to microbiota-depleted rats, 
they showed increased adiposity, reduced glucose toler-
ance and inflammation, signs of metabolic syndrome 
[30]. This suggests that the changes in gut microbiota 
composition during pregnancy have an adaptive role for 
maternal and newborn health. 

The vaginal microbiota composition also changes dur-
ing pregnancy towards a less diverse configuration [34, 35]. 
As with gastrointestinal microbiota, the change in vaginal 
microbiota has a specific role during pregnancy. An in-
crease in the presence of Lactobacilli helps maintain a low 
pH, limiting bacterial growth opportunity for other bacte-
ria [35]. Furthermore, vaginal microbiota composition is 
critical in the context of vertical transmission of microbial 
populations [36]. Whether interventions in the physiologi-
cal trajectory of maternal microbiota could alter the prena-
tal environment and, in turn, deviate normal brain devel-
opment is a key question in neuroscience that is starting to 
be addressed both in preclinical and clinical areas.

Preclinical Models of Early-Life Microbiota Trajectory

Similar to humans, mice and rat intestinal and vaginal 
microbiota go through compositional changes during 
pregnancy, providing a robust preclinical model for 
studying the link between maternal gut environment and 
offspring brain development [37–40]. Early gestation is 
characterized by a transitional increase in the relative 
abundance of Akkermansia and Bifidobacterium, which 
in late pregnancy decrease to levels seen in non-pregnant 
mice. In contrast, Bacteroides remain relatively elevated 
throughout pregnancy [37]. Interestingly, microbiota 

compositional changes also occur post-partum. The rela-
tive abundance of Actinobacteria increases early post-
partum, while the one of Bacteroidetes decreases [38]. 

The vaginal microbiota has its own trajectory in preg-
nant mice. After the first week of pregnancy, there is an 
increase in bacterial diversity characterized by a growth 
of the Firmicutes and Bacteroidetes phyla [40, 41]. The 
changes seen in mice gut microbiota during pregnancy 
and post-partum make it a solid approach to the study of 
interventions in the maternal microbiota and the impact 
on offspring’s neurodevelopment. 

External Challenges to Maternal Microbiota 

Dynamics

Given the importance of early-life microbiota in neu-
rodevelopment, any factor that affects its composition 
has the potential to influence brain health. Indeed, a va-
riety of exogenous factors affect the trajectory of micro-
biota composition during pregnancy. Diet, drugs, infec-
tion, hospitalization, prematurity and stress are among 
the influences that divert maternal microbiota from its 
natural course and impact on offspring’s brain, immune 
system and the hypothalamic-pituitary-adrenal axis 
(HPA) development. 

Diet and Maternal Microbiota
Diet is one of the major sculptors of the diversity and 

abundance of the intestinal microbiota [42]. Inadequate 
intake of macronutrients or micronutrients during preg-
nancy has been related to altered maternal microbiota 
[43] and offspring’s poor neurocognitive outcome (Table 
2) [44]. This association suggests a role for the maternal 
microbiota in brain prenatal programming. 

One of the most common macronutrient consumption 
imbalances during pregnancy is the consumption of high-
fat diets. Maternal overweight has been associated in hu-
mans with increased risk of poor neurodevelopmental out-
comes [45]. In rodents, consumption of a high-fat or West-
ern diet prior and during pregnancy impairs the trajectory 
of maternal and offspring’s microbiota [37, 46]. This al-

.........................................................................................................................
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teration was associated with a neuroinflammatory profile 
in the hippocampus and amygdala of the offspring, result-
ing in juvenile impaired social behaviour and anxiety-like 
phenotype [47]. Interestingly, a high-fat diet prior to and 
during pregnancy impairs maternal HPA axis plasticity 
and the offspring’s hypothalamic gene response to stress 
[48, 49]. However, caution is required when interpreting 
the literature on the neurobiological changes induced by 
diets rich in fat and sugar in rodents as the content of the 
control diets regarding fibre and other nutrients needs to 
be taken into account [50, 51]. Nevertheless, preclinical 
studies on maternal high-fat and Western diets (see [8] for 
an extensive review) support the idea of a role for diet-in-
duced microbiota changes in brain programming. 

During fetal development, micronutrients are re-
quired for neurological development. Deficiency in B vi-
tamins, folate or ions, such as iron and zinc, exerts detri-
mental effects on neurocognitive development in humans 
and rodents [52, 53]. Folate deficiency is paradigmatic of 
the impact of micronutrient deficit on offspring neurode-
velopment. Mammalian cells are unable to synthetize this 
vitamin; thus, humans depend on food or supplements to 
compensate for their requirement [54]. Failure to achieve 
normal serum folate levels during pregnancy has been as-
sociated with increased neural tube defects in the off-
spring [55]. Conveniently, bacteria residing in our colon 
can produce many vitamins of the B group, including fo-
late. In mice, a loss-of-function mutation in an intestinal 
folate transporter can account for folate malabsorption, 
suggesting that bacterial produced folate plays a major 
role in host metabolism [56]. In humans, consumption of 

a vegetarian diet during early pregnancy was associated 
with a distinctive microbial composition rich in biosyn-
thesis pathways for fatty acids, lipids and folate [57]. 

Prebiotics and Probiotics
Research on the effect of prebiotic and probiotic ad-

ministration during pregnancy is at an early stage (Table 
3). Current reports indicate that the administration of 
prebiotics or probiotics to pregnant women is not associ-
ated with an increase or decrease in the risk of preterm 
birth or other infant and maternal adverse pregnancy 
outcomes [58]. Researchers are beginning to shed light on 
their effects on offspring’s brain and immune develop-
ment [58]. 

Prebiotics promote the growth of beneficial bacteria 
and include indigestible fibres that are fermented by co-
lonic bacteria to produce short-chain fatty acids and pro-
vide a health benefit [59]. In humans, the effects of mater-
nal intake of prebiotics on neurodevelopment have not 
been well studied, and there is uncertainty about their ef-
fects on allergy risk [60, 61]. Galacto-oligosaccharide 
(GOS) and inulin administration to pregnant mice modu-
lated the gut microbiota and prevented immune activation 
and intestinal permeability in the offspring [62]. More-
over, it has recently been shown that the addition of inulin 
to a mouse maternal high-fat diet abrogated the negative 
metabolic effect of the high-fat diet on offspring [63]. 

Probiotics are beneficial strains of bacteria that confer 
a health benefit to the host [64]. There is lack of research 
on the prenatal impact of probiotics on neurodevelop-
ment in humans and rodents. Administration of probiot-

Table 2. Factors that interfere with the gut microbiota trajectory during development

Factor Effect on the microbiota Ref.

Diet pregnancy Unhealthy diets can disrupt the natural trajectory of microbiota 
during pregnancy

[31]

early life Formula feeding is associated with a distinctive fingerprint in the 
intestinal microbiota 

[108]

Mode of delivery C-section is associated with a distinctive early microbial profile, 
dissimilar to the vaginal microbiota implicated in vertical 
transmission

[35]

Drugs non-antibiotic Inhibition of commensal bacteria growth both during pregnancy 
and early life

[70, 140]

antibiotic Reduce the stability of early-life microbiota

Stress Prenatal and postnatal stress alter the composition of early-life 
microbiota

[78]
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ics to pregnant women impact on immunity, reducing the 
risk of atopy but not of asthma [65, 66]. More preclinical 
and clinical research must be conducted to determine the 
impact of prenatal probiotics on the maternal and off-
spring microbiota. 

Drugs
Antibiotics
Antibiotics are widely used during pregnancy, but lit-

tle is known about their effects on the trajectory of the 
maternal microbiome [67]. Preclinical models are start-
ing to shed light on the effect of antibiotic exposure on 
offspring neurodevelopment. Administration of antibi-
otics to pregnant rats caused impairments in social be-
haviour and pre-pulse inhibition of the offspring [68]. In 
mice, administration of non-absorbable antibiotics dur-
ing pregnancy reduced the exploratory behaviour in the 
offspring [69]. These results warrant further research on 
the effect of microbiota. 

Psychotropics
Recently, Maier et al. [70] showed that a large amount 

of non-antibiotic human-targeted drugs have antimicro-
bial properties. Among them, drugs that can be pre-
scribed during pregnancy, such as proton pump inhibi-
tors, were found to disturb the growth of commensal bac-
teria (Table 2). Interestingly, psychotropic medications 
also influence the composition of gut bacteria in rodents 
[70, 71]. Selective serotonin uptake inhibitors, tricyclic 
antidepressants and antipsychotics negatively impact 
bacterial growth [71–73]. Looking at the effects on post-
natal development, prenatal exposure to fluoxetine in-
duces an anxiety-like phenotype in rats [74]. Also, in ro-
dents, valproic acid administration during pregnancy 
disturbs the microbiome of the offspring and results in 
impairment of the social behaviour of the offspring [75, 

76]. Owing to the prevalence of psychotropic administra-
tion during pregnancy, it is crucial to characterize the in-
teraction between maternal health, microbiota and off-
spring neurodevelopment. 

Stress and the Maternal Microbiota 
In humans, prenatal and postnatal maternal stress has 

been associated with young adult offspring behavioural 
and depressive symptoms [77] and aberrant infant intes-
tinal microbiota development (Table 2) [78, 79]. In ro-
dents, prenatal stress shifts maternal gut and vaginal bac-
terial community and induces long-lasting alterations in 
the gut microbiota composition of the offspring [40, 80]. 
Moreover, this alteration was shown to occur in a sex-
specific manner, and it correlates with hyper-reactivity of 
the HPA axis [40].

The Microbiota in Transition: from Prenatal to 

Postnatal 

When the first contact with the microbiota occurs re-
mains controversial. The sterility of the uterus during 
pregnancy is one of the paradigms that research on the 
microbiome is revisiting. Bacteria have been found in the 
placenta [81, 82], amniotic fluid and meconium of hu-
mans [83, 84]. Moreover, the presence of specific bacteria 
in utero has been associated with pregnancy risks, includ-
ing higher rates of preterm delivery [85]. Nevertheless, 
the reliability of these findings is widely debated in the 
context of whether it is contamination or not [86, 87]. The 
existence of germ-free mice models further dismisses the 
idea of a prenatal microbiome [86]. It is generally accept-
ed that the moment of birth is the first opportunity for 
large-scale bacterial colonization of the newborn. Thus, 
the mode of delivery has a tremendous impact on the es-
tablishment of the microbiota of infants.

Table 3. Interventions that support microbiota development

Factor Effect on the microbiota Ref.

Diet pregnancy Diets high in fibre improve gut microbiota diversity [152]

early life Due to its unique composition that includes prebiotics, breast milk 
supports early-life microbial development

[108]

Prebiotic Growth stimulation of specific bacteria populations that is associated
with a health benefit

[153]

Probiotic Modulates microbiota functionality, intestinal immunity and 
epithelial responsiveness
In adequate amounts confers health benefits to the host

[154]



Microbiota and Neurodevelopmental 
Trajectories 

21Ann Nutr Metab 2019;74(suppl 2):16–27
DOI: 10.1159/000499144

Early-Life Microbiota and Birth Mode

A large number of studies associate the mode of deliv-
ery to a distinctive trajectory of microbiota development 
in the newborn [35, 36, 66, 88–99]. Unexposed to the 
birth canal, Caesarean section (C-section)-born babies 
elude mother-neonate vertical vaginal transmission of 
bacteria and viruses [36, 89, 100]. In turn, the microbiota 
resembles skin and environment microbiota, suggesting 
that C-section first colonizers come from diverse sources 
(Table 2) [35, 89]. 

That said it is worth reinforcing that mode of delivery-
induced changes in microbiota composition are transi-
tory. Vaginally delivered infants have significantly higher 

microbiota richness and diversity than C-section-born 
infants as early as 3 days after birth [88, 100–102]. Never-
theless, the early decline in Proteobacteria and the late 
Firmicutes expansion occur timely over the first year of 
life of C-section-born infants [101].

The time course of these microbiota alterations over-
laps with a critical period for neuro- and immune devel-
opment (see [103] for extensive review). It has been sug-
gested that C-section-distinctive microbiota composition 
plays a functional role in predisposing these infants to a 
greater relative risk of neonatal infections, allergy, asth-
ma, obesity and type 1 diabetes [35, 101, 104–108]. Pre-
clinical models of C-section suggest that the mode of de-
livery could impact on early neuronal maturation [109, 
110]. Whether modifying the initial colonizing microbi-
ota induces directly or indirectly different trajectories in 
brain development has yet to be deciphered.

Epidemiology studies have shown that C-section-in-
duced changes in terms of brain health and school perfor-
mance later in life are subtle at best [111, 112] and, in the 
case of autism, do not withstand correcting for familial 
confounding [111].

Various strategies have been designed to restore the 
normal trajectory of the microbiota [113]. Although con-
troversial, artificial vaginal microbiota transference was 
performed to C-section-born infants to mimic vertical 
transmission [114]. Other interventions, including sup-
plementation with probiotics and prebiotics, were pro-
posed to decrease the impact of delivery mode on the mi-
crobiota. 

Early Postnatal Perturbations of the Microbiota

Early postnatal life entails an intrinsic sensitivity to en-
vironmental factors. As with the maternal microbiome, 
infant exposure to differences in diet, drugs and stress can 
interfere with the trajectory of the microbiota and neuro-
development in a manner that is characteristic of this de-
velopmental period. 

Mode of Nutritional Provision in Early Life
The stability and composition of the early-life gut mi-

crobiota community is also dependent on diet [115]. Ac-
cumulating evidence suggests that breastfeeding and for-
mula-based nutrition leave a distinctive fingerprint in the 
intestinal microbiota (Table 2). Gut bacterial composi-
tion of infants exclusively breastfed is characterized by 
higher relative abundance of Bacteroides and Bifidobacte-
rium compared to the one from formula-fed infants [108, 
116]. Furthermore, breastfeeding had a positive effect on 
myelination and increased general, verbal and non-verbal 
cognitive abilities during childhood [117]. The implica-
tions of these findings are still unclear, but longitudinal 
studies are starting to shed light on the effect of early-life 
nutrition on the temporal course of microbiota matura-
tion. 

Human breast milk has a unique composition that in-
teracts with the developing gut microbiota. Culture-de-
pendent and -independent techniques revealed that it is 
a source of bacteria [118]. Interestingly, the human milk 
microbiome can be influenced by maternal body mass in-
dex and mode of delivery [119]. The other main compo-
nents of breast milk are human milk oligosaccharides, 
which act as prebiotics [120, 121]. Supplementation of 
infant formula with GOS increases the abundance of Bi-
fidobacteria and Lactobacilli to levels reported in breast-
fed infants [122, 123]. Both breast milk microbes and pre-
biotics play a role in the standard gut microbial develop-
mental trajectory. 

Later in life, feeding transitions drive important 
changes in composition and functionality of the intesti-
nal microbiota [36, 89, 124]. From breastfeeding to sol-
id food, the microbiome transitions from being en-
riched in genes associated with digestion of sugars from 
breast milk, vitamin production and iron transport to 
degradation of starch and high sugars [36]. Further-
more, the microbiota continues to undergo change; at 
7–12 years of age, the composition and function of the 
microbiota remains significantly different from the one 
of adults [125], suggesting a role of the microbiome in 
the neurodevelopmental changes associated with ado-
lescence. 

.........................................................................................................................

Mode of delivery-induced changes  
in microbiota composition are  

transitory
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Probiotics and Prebiotics
Most of the evidence available on the effect of early-life 

exposure to pre- and probiotics comes from preclinical 
studies. Early-life prebiotic administration in humans has 
shown effects on reducing the risk of atopy, an autoim-
mune disease [126], but neurodevelopmental outcomes 
have not been studied yet. In preclinical studies, oligosac-
charides have been shown to modulate the gut-brain axis, 
highlighting the role of breastfeeding in neurodevelop-
ment. Administration of the human milk oligosaccha-
rides 3’Sialyllactose (3’SL) or 6’Sialyllactose (6’SL) to mice 
exposed to social disruption prevented stress-induced  
colonic microbial disruption and anxiety-like behavior 
[127]. Furthermore, fructo-oligosaccharide (FOS) and 
GOS administration attenuated corticosterone release in 
response to an acute stressor and protected the mice from 
the impact of chronic stress on the microbiota [128]. 

Preliminary clinical trials of probiotic interventions 
have yielded promising results with regard to reducing 
the risk for gastrointestinal problems, sepsis, allergies and 
even autism spectrum disorder and attention deficit hy-
peractivity disorder [129–134]. Several groups have now 
shown that early probiotic interventions mitigate the ef-
fects of early-life stress, maternal high-fat diet and mater-
nal immune activation on infant outcomes [47, 135–138]. 
Oral administration at weaning of Bifidobacterium fragi-
lis ameliorates the abnormal stereotyped and anxiety-like 
behaviours of the maternal immune activation mouse 
model of autism [136]. Probiotic administration during 
adolescence restores social interaction-induced long-
term potentiation in an animal model of social impair-

ment by maternal high-fat diet exposure [47]. In mater-
nally separated rat pups, a combination of Lactobacillus 
rhamnosus and Lactobacillus helveticus reduced pup cor-
ticosterone responses to stress and normalized fear be-
haviour [135, 137, 138]. Another probiotic, Bifidobacte-
rium infantis, normalized behavioural deficits in adult 
rats exposed to maternal separation [139]. 

Although clinical evidence on the role of pre- and pro-
biotics for neurodevelopment is still lacking, preclinical 
research gives cause for a focus on early-life microbiota 
interventions. 

Drugs: Antibiotics and Beyond in a Paediatric Setting
Antibiotics are commonly prescribed during the first 

years of life, yet the effect on brain health programming is 
unknown. Longitudinal clinical studies support the idea 
that early-life exposure to antibiotics perturbs the natural 
trajectory of the microbial communities by altering their 
stability [140]. Furthermore, neonatal exposure to antibi-
otics in rodents not only altered the microbiota but also 
induced increased visceral sensitivity and long-lasting 
changes in brain cytokines and behaviour [141, 142]. 

The interaction between early-life exposure to psycho-
tropics, neurodevelopment and the microbiota is cur-
rently unknown. Not only exposure to psychotropics me-
diated by breastfeeding but direct administration of these 
drugs early in life could impact the developing microbio-
ta. Serotonin uptake inhibitors and atypical antipsychot-
ics indicated for the treatment of paediatric psychiatric 
disorders are among the non-antibiotic drugs known to 
change the microbiome composition [70, 71]. Atypical 

Healthy-diet
pregnancy

Lifestyle

Vaginal
birth

Breast-
feeding

Parental care

Unhealthy-diet
pregnancy

Drugs and
stress

C-section

Formula
feeding

Drugs and stress

Fig. 1. Factors that determine the trajectory 
of the microbiota during early life. The gut 
and vaginal microbiome of the mother is 
altered by diet, drugs and stress. The mode 
of delivery determines the first colonizers 
of the newborn’s gut. Early in life, diet, 
drugs and stress can also affect the infant 
microbiota composition. 
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antipsychotics indicated for the treatment of the irritabil-
ity associated with autism spectrum disorders have been 
shown to inhibit gut bacteria [70]. At the same time, the 
composition of the microbiota of autistic patients was 
shown to be altered [143–147]. Whether there is an inter-
action between microbiota populations, psychotropic 
drugs and behaviour has yet to be determined. 

Early-Life Stress
The impact of stress on the development of the HPA 

axis has been shown to contribute to the programming of 
brain health in later life [148]. Interestingly, evidence 
from preclinical studies shows that early-life stress also 
alters the microbiota. Maternal separation during early 
life disrupted the microbiota of the offspring of rhesus 
monkeys and rats [149, 150]. Interestingly, a diet contain-
ing prebiotics in combination with live Lactobacillus 
rhamnosus GG attenuated the effects of early-life mater-
nal separation on anxiety-like behaviour and hippocam-
pal-dependent learning [151]. Germ-free mice were more 
vulnerable to restraint stress, resulting in higher adreno-
corticotropic hormone and corticosterone in plasma [14, 
16], a reduction in glucocorticoid receptor mRNA and an 
increased stress response [14]. Remarkably, these effects 
were rescued with microbiota transplantation during ad-
olescence but not adulthood [14].

Future Perspectives

Pregnancy and the first years of life are unique stages 
of plasticity for the intestinal microbiota. In both cases, 
there is a dynamic trajectory of the intestinal microbiota 
composition that is functional to the requirements of the 

host. Although plasticity represents an opportunity for 
adaptation, it is also a vulnerable stage. As we have re-
viewed, clinical and preclinical studies suggest that diet, 
stress and drugs can interact with the natural trajectory of 
the microbiota and play a part in programming brain 
health (Fig. 1). However, the evidence is still scarce, and 
further research is needed to understand the functional 
implications of these interactions. 

The nervous system and the microbiota show concur-
rent developmental trajectories, offering a unique oppor-
tunity for intervention. There is potential for the develop-
ment of early-life-targeted interventions of the microbi-
ome, aiming to reduce the risk of disease later in life. 
Further research is needed on the characterization of crit-
ical windows to modulate the microbiota and the conse-
quences of early intervention. 
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