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Abstract

Background: Colorectal cancer (CRC) is the second leading cause of death among cancers in the United States.

Although individuals diagnosed early have a greater than 90 % chance of survival, more than one-third of

individuals do not adhere to screening recommendations partly because the standard diagnostics, colonoscopy

and sigmoidoscopy, are expensive and invasive. Thus, there is a great need to improve the sensitivity of

non-invasive tests to detect early stage cancers and adenomas. Numerous studies have identified shifts in the

composition of the gut microbiota associated with the progression of CRC, suggesting that the gut microbiota may

represent a reservoir of biomarkers that would complement existing non-invasive methods such as the widely used

fecal immunochemical test (FIT).

Methods: We sequenced the 16S rRNA genes from the stool samples of 490 patients. We used the relative

abundances of the bacterial populations within each sample to develop a random forest classification model that

detects colonic lesions using the relative abundance of gut microbiota and the concentration of hemoglobin in

stool.

Results: The microbiota-based random forest model detected 91.7 % of cancers and 45.5 % of adenomas while FIT

alone detected 75.0 % and 15.7 %, respectively. Of the colonic lesions missed by FIT, the model detected 70.0 % of

cancers and 37.7 % of adenomas. We confirmed known associations of Porphyromonas assaccharolytica,

Peptostreptococcus stomatis, Parvimonas micra, and Fusobacterium nucleatum with CRC. Yet, we found that the loss

of potentially beneficial organisms, such as members of the Lachnospiraceae, was more predictive for identifying

patients with adenomas when used in combination with FIT.

Conclusions: These findings demonstrate the potential for microbiota analysis to complement existing screening

methods to improve detection of colonic lesions.

Background
Colorectal cancer (CRC) mortality has steadily declined

in recent decades, due in large part to increased screen-

ing [1]. Yet current screening tests, the fecal immuno-

chemical test (FIT) and the multitarget DNA test, have a

sensitivity of 7.6 % and 17.2 %, respectively, for detecting

non-advanced adenoma – just the type of early lesion

that screening is meant to identify [2]. Although struc-

tural exams including colonoscopy and sigmoidoscopy

are able to detect both adenomas and carcinomas, the

high cost and invasive nature are barriers for many

people. Fear, discomfort, and embarrassment are among

the most cited reasons patients choose to forego CRC

screening [3]. Likewise, the large disparity in screening

rates between those with and without health insurance

highlights the need for inexpensive screening methods

[1, 4, 5]. Unfortunately cheaper, less invasive stool-based

tests like guaic fecal occult blood test (gFOBT) and FIT

are unable to reliably detect adenomas [6]. The newly in-

troduced stool DNA panel has improved accuracy com-

pared to FIT, but is still limited in its ability to accurately

detect adenomas [2]. Thus there is need for novel screen-

ing methods that are inexpensive and capable of detecting

both cancer and adenomas.
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The gut microbiota, the collection of microorganisms

that inhabit the gastrointestinal tract, are one potential

source of biomarkers for detecting colonic lesions.

Numerous studies have observed alterations in the gut

bacterial communities of patients with CRC [7–12]. Ex-

periments in animal models have demonstrated that

such alterations have the potential to accelerate tumori-

genesis [13]. Furthermore, several members of the gut

microbiota have been shown to potentiate both the de-

velopment and progression of CRC by a variety of mech-

anisms [14–16]. Although each of these organisms may

play a role in certain cases of CRC, none of them is

present in every case. Therefore we postulate that no

one organism is an effective biomarker on its own and

that focusing on a single bacterial population excludes

the potential that the microbial etiology of the disease is

actually polymicrobial.

Two recent studies used statistical models that take

into account the abundances of multiple bacterial spe-

cies and the results of gFOBT to distinguish healthy in-

dividuals from those with CRC [17, 18]. The analysis by

Zackular et al. [17] used samples from a limited number

of participants (n = 30 normal, 30 adenoma, and 30 car-

cinoma), while that of Zeller et al. [18] had a larger co-

hort from multiple clinical sites (n = 156 and n = 335). A

shortcoming of the Zeller study was the pooling of par-

ticipants with non-advanced adenomas with control par-

ticipants as well as the exclusion of participants with

advanced adenomas. A limitation of both studies was

that they relied on gFOBT rather than FIT to detect

hemoglobin in stool. FIT provides a quantitative measure

of hemoglobin concentrations and has largely replaced

gFOBT clinically because of its improved sensitivity. Re-

gardless of their weaknesses, these studies demonstrated

the feasibility of using microbiome data to identify partici-

pants with colonic lesions.

In the present study, we demonstrate the potential for

microbiota analysis to complement FIT for improved de-

tection of colonic lesions, especially adenomas. We utilized

the random forest algorithm, which is a decision tree-based

machine learning algorithm for classification that accounts

for non-linear data and interactions among features and in-

cludes an internal cross-validation to prevent overfitting

[19]. With this method we identified bacterial populations

that could distinguish healthy individuals from those with

adenomas or carcinomas. In doing so, we confirmed previ-

ously observed associations of certain bacterial taxa with

CRC. Many lesions detected using the microbiota were dis-

tinct from those detected by FIT, suggesting the microbiota

could complement FIT to improve sensitivity. By incorpor-

ating data on hemoglobin and bacterial abundances into a

single model (labeled the multitarget microbiota test or

MMT), we were able to improve the sensitivity for aden-

omas and cancer compared to FIT alone.

Methods
Study design/patient sampling

Eligible patients for this study were aged at least 18 years,

willing to sign informed consent, able to tolerate re-

moval of 58 mL of blood, and willing to collect a stool

sample. Patient age at the time of enrollment was in the

range of 29–89 years with a median of 60 years. All

patients were asymptomatic and were excluded if they

had undergone surgery, radiation, or chemotherapy for

current CRC prior to baseline samples or had inflamma-

tory bowel disease, known hereditary non-polyposis

CRC, or familial adenomatous polyposis. Colonoscopies

were performed and fecal samples were collected from

participants in four locations: Toronto (ON, Canada),

Boston (MA, USA), Houston (TX, USA), and Ann Arbor

(MI, USA). Patient diagnoses were determined by colono-

scopic examination and histopathological review of any bi-

opsies taken. Patients with an adenoma greater than 1 cm,

more than three adenomas of any size, or an adenoma

with villous histology were classified as advanced aden-

oma. Whole evacuated stool was collected from each pa-

tient either prior to colonoscopy preparation or 1–2

weeks after colonoscopy. This has been shown to be suffi-

cient time for the microbiota to recover from colonoscopy

preparation [20]. Stool samples were packed in ice,

shipped to a processing center via next day delivery, and

stored at –80 °C. The University of Michigan Institutional

Review Board approved this study, and all participants

provided informed consent. This study conformed to the

guidelines of the Helsinki Declaration.

Fecal immunochemical tests

Fecal material for FIT was collected from frozen stool ali-

quots using OC FIT-CHEK sampling bottles (Polymedco

Inc.) and processed using an OC-Auto Micro 80 automated

system (Polymedco Inc.). Hemoglobin concentrations were

used for generating receiver operating characteristic (ROC)

curves for FIT and for building the MMT.

16S rRNA gene sequencing

DNA was extracted from approximately 50 mg of fecal

material from each participant using the PowerSoil-htp

96 Well Soil DNA isolation kit (MO BIO Laboratories)

and an epMotion 5075 automated pipetting system

(Eppendorf). The V4 region of the bacterial 16S rRNA

gene was amplified using custom barcoded primers and

sequenced as described previously using an Illumina

MiSeq sequencer [21]. The 490 samples were divided

into three sequencing runs to increase the per sample

sequencing depth. Although the same percentage of

samples from the three groups were represented on each

sequencing run, samples were randomly assigned to the

sequencing runs to avoid confounding our analysis based

on diagnosis or demographics.
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Sequence curation

The 16S rRNA gene sequences were curated using the

mothur software package (v1.36), as described previously

[21, 22]. Briefly, paired-end reads were merged into con-

tigs, screened for quality, aligned to SILVA 16S rRNA se-

quence database, and screened for chimeras. Sequences

were classified using a naive Bayesian classifier trained

against a 16S rRNA gene training set provided by the

Ribosomal Database Project (RDP) [23]. Curated se-

quences were clustered into operational taxonomic units

(OTUs) using a 97 % similarity cutoff with the average

neighbor clustering algorithm. Species-level classifica-

tions for OTUs of interest were determined by blasting

the predominant sequences within each OTU to the

NCBI 16S rRNA database. The putative species was only

reported for OTUs with greater than 99 % sequence

identity to a single species in the database; otherwise the

consensus RDP classification was used. The number of

sequences in each sample was rarefied to 10,000 per sample

to minimize the effects of uneven sampling. Only the 335

OTUs present in at least 5 % of samples were included in

the feature selection for the random forest models.

Statistical methods

All statistical analyses were performed using R (v.3.2.0).

Random Forest models were generated using the

AUCRF package [24]. All ROC curves presented for ran-

dom forest models are based on the out-of-bag (OOB)

error rates. For each model, leave-one-out and 10-fold

cross-validations were performed to further estimate the

generalization error of the model. The AUC of ROC

curves were compared using the method described by

DeLong et al. [25]. The optimal cutoff for the MMT was

determined using Youden’s J statistic [26]. This cutoff

was determined using the ROC curve for differentiating

cancer from normal. Comparisons of sensitivities of FIT

and the MMT at the same specificity were performed

using the method developed by Pepe et al. with 1000

bootsrap replicates [27]. All of the aforementioned sta-

tistics for analyzing ROC curves were performed using

the pROC package in R [28]. To control for diagnosis

while testing the effects of sex on the microbiome we used

PERMANOVA as implemented in the adonis function in

the vegan R package [29].

Results
Complementary detection of lesions by FIT and the

microbiota

We characterized the bacterial communities of stool sam-

ples from 490 patients using 16S rRNA gene sequencing.

Among these patients, 120 had CRC, 198 had adenomas,

and 172 had no colonic lesions. In addition to characteriz-

ing the bacterial community, we tested each sample for

the concentration of hemoglobin using FIT. With these

data, we compared the ability to detect lesions using FIT

to using a microbiota-based model. First, we developed a

random forest classification model for differentiating

healthy individuals from those with adenomas based on

the relative abundance of bacterial populations in stool.

We determined the optimal model using the AUC-RF al-

gorithm for maximizing the area under the curve (AUC)

of the ROC curve for a random forest model [24]. The op-

timal model utilized 22 bacterial populations (Additional

file 1: Figure S1A). The vast majority of OTUs in the

model (17 out of 22) belonged to the order Clostridales,

four were associated with the genus Bacteroides, and one

OTU was unclassified at the phylum level (Additional file

1: Figure S1B). The AUC for this and subsequent random

forest models were generated based on the OOB probabil-

ities for each sample. Additional leave-one-out and 10-

fold cross validations showed no significant difference in

AUC compared to the OOB AUC (Additional file 2: Fig-

ure S2A). The AUC for the microbiota model (0.673) was

significantly different from a random assignment (p

<0.001), but not significantly different from that of FIT

(FIT AUC:0.639, p >0.05, Fig. 1a). At the 100 ng/mL cutoff,

FIT detected 15.7 % of adenomas with a specificity of 97.1 %.

Setting the microbiota model to the same 97.1 % specificity

resulted in 18.2 % sensitivity for adenomas. When comparing

the results of the tests for each sample, only 2.5 % of

adenomas were detected by both tests, while 28.8 % were

detected by only one of the two tests (Fig. 1b). Thus, the two

tests detected small but distinct subsets of adenomas.

Next we generated a random forest model for differenti-

ating normal individuals from those with cancer using the

relative abundance of 34 bacterial populations (Additional

file 3: Figure S3A and S3B). Consistent with previous

observations, the bacteria most strongly associated with

CRC belonged to taxa commonly associated with peri-

odontal disease [18, 30, 31]. These include OTUs asso-

ciated with Pophyromonas assaccharolytica (OTU105),

Fusobacterium nucleatum (OTU264), Parvimonas micra

(OTU281), Peptostreptococcus stomatis (OTU310),

Gemella spp. (OTU356), and an unclassified Prevotella

(OTU57) (Additional file 3: Figure S3C). The ROC curve

for the model had an AUC of 0.847, which was similar to

AUCs reported for other microbiota-based models for

CRC [17, 18]. The AUC of this model was significantly

better than a random assignment (p <0.001), but was

significantly lower than that of FIT (FIT AUC:0.929,

p = 0.005, Fig. 1c). As with the adenoma versus normal

model, we confirmed the OOB AUC with leave-one-out

cross validation and 100 iterations of 10-fold cross valid-

ation (Additional file 2: Figure S2B). At the manufacturer’s

recommended cutoff of 100 ng/mL, FIT detected 75.0 %

of cancers with a specificity of 97.1 %. At the same

specificity, the microbiota model detected 51.7 % of

cancers. Although more cancers were detected by FIT, the
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microbiota model was able to detect 33.3 % of cancers

missed by FIT (Fig. 1d).

MMT for colonic lesions

Many of the adenomas and some of the carcinomas

were detected by the microbiota models, but not FIT,

suggesting that the two screening methods could com-

plement each other if combined into a single test. Based

on these observations, we developed a random forest

model using both the microbiota and FIT that would

differentiate normal individuals from those with any type

of colonic lesion (i.e. adenoma or carcinoma). The opti-

mal model, referred to as the MMT, used the relative

abundances of 23 OTUs and the concentration of

hemoglobin as determined by FIT. Of those OTUs, 16

were members of the Firmicutes phylum, including three

from the Ruminococcaceae family and 10 from the

Lachnospiraceae family (Additional file 4: Figure S4).

Three OTUs were associated with the genus Bacteroides.

The remaining OTUs were associated with Porphyromo-

nas, Parabacteroides, Collinsella, and Enterobacteriaceae.

The OTU associated with Porphyromonas was most

closely related to Porphyromonas asaccharolytica,

which has been previously shown to be predictive of CRC

[17, 18, 32]. Interestingly the majority of OTUs used in

the model, especially the Lachnospiraceae, were enriched

in normal patients (Additional file 4: Figure S4), suggest-

ing that a loss of beneficial organisms in addition to the

emergence of pathogens may be indicative of CRC devel-

opment. As with the previous random forest models we

performed leave-one-out cross validation and 100 itera-

tions of 10-fold cross-validation and found no difference

Fig. 1 Microbiota-based models can complement FIT. a, c ROC curves for distinguishing healthy patients from those with adenoma (a) or cancer

(c) based on FIT or a microbiota-based random forest model. Open circles show the sensitivity and specifity of FIT with a 100 ng/mL cutoff. Black

points show the sensitivity and specificity of the microbiota-based models at the same specificity as FIT. b, d Results of FIT and a microbiota-

based model for each adenoma (b) or cancer (d) sample. Dotted lines represent the cutoffs for each test. Points are shaded based on whether the

lesion was detected by both tests (black), one of the two tests (gray), or neither test (white)
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in AUC compared to the OOB estimates (Additional file

5: Figure S5).

Comparing MMT to FIT

To determine whether microbiota sequence data could

be used to complement FIT, we compared the perform-

ance of the MMT to FIT. For differentiating any lesions

from normal, the AUC for the MMT was significantly

higher than FIT (MMT AUC: 0.829, FIT AUC: 0.749,

p <0.001, Fig. 2a). Subdividing the lesions, detecting aden-

omas by the MMT (AUC: 0.755) was significantly better

than FIT (AUC: 0.639, p <0.001), but not for differentiat-

ing cancer from normal (MMT AUC: 0.952, FIT AUC:

0.929, p = 0.09). To generate a categorical prediction from

the MMT, we determined the model’s optimal threshold

for detecting cancer (0.57 probability of a lesion) using

Youden’s J statisitc [26]. Samples scoring above this cutoff

were classified as lesions, and those below the cutoff were

classified as normal. We then compared the sensitivity

and specificity of the MMT to those of FIT using a thresh-

old of 100 ng/mL of hemoglobin. At these cutoffs, the

MMT detected 91.7 % of cancers and 45.5 % of adenomas

compared to 75.0 % and 15.7 % for FIT (Table 1, Fig. 2b,

c). When adenomas and cancers were pooled together, the

MMT detected 62.9 % of lesions, while FIT only detected

38.1 %. However, the increased sensitivity of the MMT

was accompanied by a decrease in specificity (90.1 %)

compared to FIT (97.1 %).

To better understand the relationship between the

MMT and FIT, we compared the results of the two tests

for each sample (Fig. 3a). All but one of the samples that

tested positive by FIT also tested positive by the MMT.

However, the MMT was able to detect 70.0 % of cancers

and 37.7 % of adenomas that FIT had failed to detect,

while maintaining a specificity of 92.8 % (Fig. 3b). This

result demonstrated that incorporation of data from a

participant’s microbiota could complement FIT to im-

prove its sensitivity.

To make a fairer comparison of the sensitivities of

these two tests, we reduced the cutoff for FIT to 7 ng/

mL to match the 90.1 % specificity of the MMT. At the

lower cutoff for FIT there was no significant difference

in sensitivity for cancer between the two tests (p = 0.2),

but the MMT remained significantly more sensitive for

detecting adenomas (p = 0.02) and all lesions grouped

together (p = 0.04, Fig. 4).

The purpose of screening is to identify asymptomatic

individuals with early stage disease (i.e. true positives).

Therefore, we estimated the number of true positives

captured through FIT and MMT in the recommended

screening population in the United States (adults aged

50–75 years). The prevalence of lesions in an average-

risk population was obtained through a previously pub-

lished meta-analysis [33]. Based on sensitivities of FIT

and MMT in our dataset, we estimate that MMT would

detect approximately 40 thousand additional cancers, 1.3

million additional advanced adenomas, and 5.1 million

additional non-advanced adenomas compared to using

FIT (Table 2). Thus the improved sensitivity of the

MMT would increase the total number of true positives

Fig. 2 Comparing MMT to FIT. a ROC curves for the MMT (solid lines) or FIT (dashed lines) for distinguishing normal from any lesion (dark red),

normal from cancer (red), and normal from adenoma (orange). Filled dots show the sensitivity and specificity of the MMT at the optimal cutoff

(0.57). Open dots show the sensitivity and specificity of FIT at the 100 ng/mL cutoff. b, c Stripcharts showing the results for FIT (b) and the MMT

(c). Dashed lines show the cutoff for each test. Points with a FIT result of 0 are jittered to improve visibility
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identified in the recommended screening population of

the United States by approximately 6.5 million. However,

due to the lower specificity of MMT, it would also result

in an estimated 4.3 million additional false positives

compared to FIT. Further studies would be needed to

determine whether detection of 6.5 million additional le-

sions (mostly non-advanced adenomas) would outweigh

the added cost of 4.3 million additional false positives.

Effect of patient characteristics on model performance

Previous studies have identified differences in diagnostic

test performance for certain demographic groups or for

people taking certain medications [34–36]. Therefore we

tested whether the MMT performance differed between

patient populations. We found no difference in model

performance according to age, BMI, NSAID usage,

diabetes, smoking, or previous history of polyps (all

p > 0.05). However, the model was significantly better

at differentiating normal from lesion for women than for

men (p = 0.02; Additional file 6: Figure S6). For women

the model detected 63.6 % of lesions with a specificity of

94.6 %. For men the model detected 64.5 % of lesions with

a much lower specificity of 82 %. The MMT detected

51.2 % of adenomas in women and 44.9 % in men. Con-

sistent with the lower specificity for men, the MMT had a

higher sensitivity for cancer among men (98.5 %) than

women (82.7 %). The discrepancy appeared to be due to

differences in FIT results rather than differences in the

microbiome. After correcting for diagnosis, there was a

significant effect of sex on FIT result (p = 0.006, two-way

ANOVA), but not on the overall structure of the micro-

biome (PERMANOVA: p = 0.07). The lower specificity

and higher sensitivity for cancer among men is consistent

with previous observations that men have a higher posi-

tive rate for FIT [34, 35].

We have previously shown that incorporating patient

metadata into microbiome-based diagnostic models can

improve screening accuracy [17]. To test whether the

same was true for the MMT we generated a random for-

est model that combined patients’ age, BMI, sex, and

smoking status with the OTUs and FIT result from the

MMT. The AUC of the ROC curve for this model

(0.869) was not significantly different from that of the

MMT (AUC: 0.829, p = 0.11, Additional file 7: Figure S7).

Table 1 Sensitivities and specificities for FIT and MMT. The 95 % confidence intervals were computed with 2000 stratified bootstrap

replicates

Diagnosis Fecal immunochemical test Multitarget microbiota test

True positives Sensitivity (95 % CI) True positives Sensitivity (95 % CI)

Cancer n = 120 90 75.0 (67.5–82.5) 110 91.7 (86.7–95.8)

Adenoma n = 198 31 15.7 (10.6–20.7) 90 45.5 (38.4–52.5)

Any lesions n = 318 121 38.1 (32.7–43.4) 200 62.9 (57.2–67.9)

True negatives Specificity (95 % CI) True negatives Specificity (95 % CI)

Normal n = 172 167 97.1 (94.2–99.4) 155 90.1 (85.5–94.2)

Fig. 3 Relationship between FIT and MMT for each sample. a Scatterplot of MMT and FIT results for each sample. Dashed lines show the cutoff

for each test. Points with a FIT result of 0 are jittered to improve visibility. b Stripchart of MMT results for samples separated by binary FIT result
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When the model with patient metadata was set to the

same specificity as the MMT (90.1 %), it did not improve

the sensitivity for lesions (63.4 %) compared to MMT

(62.9 %, p = 0.9). Thus, contrary to our previous findings,

incorporation of patient metadata did not significantly

improve the MMT.

Discussion

We confirmed previous findings that the gut microbiota

can be used to differentiate healthy individuals from

those with colonic lesions. Although FIT was better at

detecting cancers than a model using only the micro-

biota, microbiota-based models detected a subset of le-

sions that were not detected by FIT. This suggested that

the two methods could complement each other. Based

on this observation we developed a cross-validated ran-

dom forest model that combined both FIT and the

microbiota to detect colonic lesions. The resulting MMT

had higher sensitivity than FIT for detecting lesions, es-

pecially adenomas. The MMT was also able to detect

the majority of cancers missed by FIT. However, the in-

creased sensitivity of MMT was accompanied by a de-

crease in specificity compared to FIT. With a false

positive rate more than three times higher than FIT

(9.9 % versus 2.9 %), an annual MMT would result in

more colonoscopies than using FIT as the primary

screening test. However, the higher sensitivity of the

MMT might make it possible to reduce the frequency of

screening, thereby offsetting the difference in the num-

ber of colonoscopies. Additional studies would be

needed identify the appropriate screening interval and to

determine whether the increased number of true posi-

tives identified by MMT justify the increased number of

false positives.

It was recently shown that when FIT was combined

with host-associated DNA biomarkers, the ability to de-

tect adenomas and carcinomas was significantly im-

proved over FIT alone [2]. The sensitivity of the host-

associated DNA screen was 92.3 % for cancer and

42.4 % for adenomas with a specificity of 89.8 %, all very

similar to what we observed with our MMT. Such re-

sults support the assertion that because of the large

interpersonal variation in markers for adenomas and

carcinomas, it is necessary to employ a panel of bio-

markers and to use a model that integrates the bio-

markers. The accuracy of our model may be further

improved by incorporating additional indicators such as

Fig. 4 Sensitivities for FIT and MMT for each stage of tumor development with matching specificities. The cutoff for FIT was reduced to 7 ng/mL

to match the specificity of the MMT. Sensitivities were compared using the method proposed by Pepe et al. (* = p <0.05, 1000

bootstrap replicates)

Table 2 Estimated number of true positives detected in average

risk population. Number of true positives identified through FIT

and MMT in the United States in adults aged 50–75 years, based

on published estimates of CRC prevalence. The sensitivities for FIT

(100 ng/mL cutoff) on advanced and non-advanced adenomas

were 19.3 % and 11.2 %, respectively

Condition Prevalence Number of
persons, aged
50–75 years,
with conditiona

True positives
identified
by FIT

True
positives
identified
by MMT

Cancer 0.3 % 241,483 181,112 221,359

Advanced
adenoma

5.7 % 4,588,174 883,960 2,188,854

Non-advanced
adenoma

17.7 % 14,247,488 1,600,841 6,723,534

aNumber of persons in the United States in 2010 aged 50–75 years

was 80,494,283
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host-associated biomarkers or those targeting specific

genes involved in the underlying mechanism of tumori-

genesis such as bacterial toxins [15, 16, 18]. More gener-

ally, predictive and diagnostic models for other diseases

with a microbial etiology may benefit from a similar ap-

proach. For example, we recently demonstrated the abil-

ity to detect Clostridium difficile infection based on the

composition of the microbiota [37]. Such models are

likely to be useful as microbiota sequencing gains trac-

tion as a tool for characterizing health.

Surprisingly most of the OTUs that work well for

identifying cancers, including Fusobacterium nucleatum

(OTU264), Peptostroptococcus stomatis (OTU310), and

Parvimonas micra (OTU281), were excluded from the

MMT. This is likely due to these OTUs being positively

correlated with FIT (all p <0.001, Spearman correlation),

meaning they add little information when used in com-

bination with FIT. Instead the MMT is enriched for

OTUs that help detect adenomas. Thus the MMT model

relies primarily on FIT for detecting cancer, and uses the

microbiota to help identify adenomas undetectable by

FIT alone. It is also interesting that most of the OTUs

used in the MMT were enriched in normal individuals,

suggesting that a loss of beneficial organisms in addition

to the emergence of pathogens may be important for

colorectal cancer development. Many of the OTUs that

were depleted in patients with lesions belonged to the

Ruminococcoaceae and Lachnospiraceae families, which

contain the predominant producers of butyrate, a

short-chain fatty acid with anti-inflammatory and anti-

tumorigenic properties [38–41]. Likewise Zeller et al.

observed a depletion of a potential butyrate-producing

Eubacterium spp. in patients with CRC [18]. Loss of

butyrate or other anti-inflammatory microbial metabo-

lites may contribute to CRC development. These possi-

bilities highlight the need for longitudinal studies to

better understand how changes to an individual’s

microbiome or the metabolic profile of the gut might

predispose them to CRC.

Like other groups, we noticed that the microbiota of CRC

patients contained higher levels of bacterial taxa traditionally

thought of as oral pathogens, including Fusobacterium,

Porphyromonas, Peptostreptococus, Gemella, Parvimonas,

and Prevotella. Periodontal pathogens have been shown

to promote the progression of oral cancer [42]. There-

fore it is possible that these taxa could influence the

progression of CRC by a similar mechanism. These

observations may warrant further investigation into a

potential link between periodontal disease and CRC.

Furthermore, since the structure of an individual’s oral

microbiome is correlated with that of the gut [43],

alterations in the oral community could potentially be a

proxy for ongoing or future changes to the gut

community.

Although it is exciting that the addition of the micro-

biota can improve the sensitivity of FIT, further valid-

ation is needed prior to clinical adoption. This

represents the largest cohort to date, but still only con-

sists of 490 patients. In contrast, the cohort used to val-

idate the Multitarget stool DNA test included 9989

participants. Development of a larger cohort will allow

us to apply the MMT to a separate validation set. It is

also unclear how sensitive the MMT is to variation in

sample preparation and processing. Many of the samples

included in the current study were collected 1–2 weeks

after the participants’ colonoscopy. A previous study

showed that the microbiome quickly returns to normal

following colonoscopy [20]. Likewise, we found no dif-

ference in the microbiome between samples collected

prior to or after colonoscopy (PERMANOVA: p = 0.45).

Regardless, we would have greater confidence in the pre-

dictive potential of the microbiota if all samples were

collected prior to colonoscopy. Despite these shortcom-

ings, the ability to improve the sensitivity of detecting

adenomas suggests that further methods development

and validation are warranted.

Conclusions

Our findings demonstrate the potential for combining

the analysis of a patient’s microbiota with conventional

stool-based tests to improve CRC detection. Using the

random forest algorithm it was possible to interpret FIT

results in the context of the microbiota. The MMT had

higher sensitivity for lesions, especially at early stages of

tumorigenesis. Moreover the model detected the major-

ity of cancers that FIT was unable to detect. The short-

coming of the MMT is its lower specificity. However,

the potential value of the MMT is its higher sensitivity,

which is the purpose of preventive screening – finding

lesions earlier so that cancer would be avoided.

Availability of data and materials

Raw fastq files and a MIMARKS file are available

through the NCBI Sequence Read Archive (SRP062005).

The exact data processing steps for going from the raw

sequence data to the final manuscript is available at

http://www.github.com/SchlossLab/Baxter_glne007Mo

deling_GenomeMed_2015.
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Additional file 1: Figure S1. Random forest feature selection for

detecting adenomas. (A) Change in AUC with varying number of

variables in the random forest model. The model with the highest AUC

contained 22 OTUs. (B) Importance of each OTU in the model as

measured by mean decrease accuracy when the OTU is removed from

the model. (C) Relative abundance of the most discriminatory OTUs in

adenoma and normal samples. (PDF 19 kb)
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Additional file 2: Figure S2. Cross-validation of OTU random forest

models. ROC curves for the (A) adenoma versus normal OTU model and

(B) cancer versus normal OTU model based on OOB estimates, leave-one-out

cross-validation, and 10-fold cross-validation. (PDF 13 kb)

Additional file 3: Figure S3. Random forest feature selection for

detecting cancers. (A) Change in AUC with varying number of variables

in the random forest model. The model with the highest AUC contained

34 OTUs. (B) Importance of each OTU in the model as measured by

mean decrease accuracy when the OTU is removed from the model.

(C) Relative abundance of the most discriminatory OTUs in cancer and

normal samples. (PDF 19 kb)

Additional file 4: Figure S4. Bacterial OTUs in MMT. (left) Importance

of each OTU used in the MMT as measured by the mean decrease in the

Gini index when the OTU is removed from the model. (right) Stripchart

of the relative abundances of each OTU in the MMT with black lines at

the medians. (PDF 76 kb)

Additional file 5: Figure S5. Cross-validation of MMT. ROC curves for

the MMT model based on OOB estimates, leave-one-out cross-validation,

and 10-fold cross-validation. (PDF 9 kb)

Additional file 6: Figure S6. MMT performance by sex. ROC curves

(left) and stripchart (right) of MMT results separated by sex. (PDF 12 kb)

Additional file 7: Figure S7. MMT with patient metadata. ROC curves

for distinguishing normal from lesion using FIT, the MMT, or the MMT

with metadata. (PDF 8 kb)
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