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Weimer3, Denise M. Monack1, and Justin L. Sonnenburg1,†

1Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, 

CA 94305, USA

2Glycobiology Research and Training Center, University of California, San Diego, CA 92093, USA

3Department of Population Health and Reproduction, University of California, Davis, CA, 95616, 
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Abstract

The human intestine, colonized by a dense community of resident microbes, is a frequent target of 

bacterial pathogens. Undisturbed, this intestinal microbiota provides protection from bacterial 

infections. Conversely, disruption of the microbiota with oral antibiotics often precedes the 

emergence of several enteric pathogens1–4. How pathogens capitalize upon the failure of 

microbiota-afforded protection is largely unknown. Here we show that two antibiotic-associated 

pathogens, Salmonella typhimurium and Clostridium difficile, employ a common strategy of 

catabolizing microbiota-liberated mucosal carbohydrates during their expansion within the gut. S. 

typhimurium accesses fucose and sialic acid within the lumen of the gut in a microbiota-dependent 

manner, and genetic ablation of the respective catabolic pathways reduces its competitiveness in 

vivo. Similarly, C. difficile expansion is aided by microbiota-induced elevation of sialic acid levels 

in vivo. Colonization of gnotobiotic mice with a sialidase-deficient mutant of the model gut 

symbiont Bacteroides thetaiotaomicron (Bt) reduces free sialic acid levels resulting in a 

downregulation of C. difficile’s sialic acid catabolic pathway and impaired expansion. These 

effects are reversed by exogenous dietary administration of free sialic acid. Furthermore, antibiotic 
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treatment of conventional mice induces a spike in free sialic acid and mutants of both Salmonella 

and C. difficile that are unable to catabolize sialic acid exhibit impaired expansion. These data 

show that antibiotic-induced disruption of the resident microbiota and subsequent alteration in 

mucosal carbohydrate availability are exploited by these two distantly related enteric pathogens in 

a similar manner. This insight suggests new possibilities for therapeutic approaches for preventing 

diseases caused by antibiotic-associated pathogens.

The intestinal microbiota is composed of trillions of microbial cells that together form a 

complex, dynamic, and highly competitive ecosystem5,6. Limited nutrients and high 

microbial densities likely play a key role in protecting the host against invading microbes7. 

Carbohydrates derived from diet or host play a well-established role in sustaining the 

resident members of the microbiota8–10, and more recently have been shown to play 

important roles in gut microbiota-pathogen dynamics11–14. Oral antibiotic use is one of the 

leading risk factors for disease associated with Salmonella spp. and Clostridium difficile, 

consistent with increased enteric vulnerability upon disruption of the resident 

microbiota1–4,15. In addition, mouse models of S. typhimurium or C. difficile infection 

commonly require disruption of the intestinal microbiota with antibiotics to promote 

pathogen expansion within the lumen of the gut and to initiate disease16–19. Deciphering the 

numerous mechanisms by which the microbiota prevents bacterial pathogen expansion and 

how microbiota disruption enables pathogens to circumvent these mechanisms remains an 

important task.

We used transcriptional profiling of Salmonella typhimurium from orally infected 

gnotobiotic mice to gain insight into the pathogen’s biology while inhabiting the 

gastrointestinal tract. Our goal was to reveal adaptations of the pathogen within a ‘low-

complexity’ gnotobiotic microbiota that might be relevant to antibiotic-induced microbiota 

disruption. Mice that were monoassociated with the model gut symbiont Bacteroides 

thetatiotaomicron (Bt) were used as a simplified model of a microbiota that is susceptible to 

pathogen emergence within the gut. Five days after S. typhimurium infection of the Bt-

monoassociated or germ-free (GF) mice (Fig. 1a), cecal contents were collected and 

subjected to transcriptional profiling using a custom S. typhimurium GeneChip. In the 

presence of Bt, all 59 S. typhimurium genes that displayed significantly altered expression 

relative to infection of GF mice were upregulated (Supplementary Table 1). Functional 

classification of these genes revealed enriched COG categories: “carbohydrate metabolism 

and transport” and “secondary metabolites biosynthesis, transport, and catabolism” 

(Supplementary Fig. 2). Genes encoding host mucin carbohydrate metabolism pathways are 

prominently represented in this gene set, including three operons encoding catabolic 

pathways for sialic acid, fucose, and the fucose catabolite propanediol, (nan, fuc and pdu, 

respectively) (Fig. 1b). We surveyed expression of genes within the nan and fuc operons 1 

day after S. typhimurium infection in GF or Bt-monoassociated mice, to determine if these 

operons identified by expression profiling on day 5 post-infection also display high 

expression earlier in the infection. S. typhimurium nanE and fucI are significantly 

upregulated 1 day after infection of Bt-monoassociated mice relative to infection of GF mice 

(nanE, 6.0-fold, p=1.47 × 10−5; fucI, 3.5-fold, p=0.0028) (Fig. 1c) when S. typhimurium 

densities and host pathology are similar between colonization states (Supplementary Fig. 3, 
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4). These data are consistent with S. typhimurium catabolizing sialic acid and fucose in the 

lumen of the gut in a Bt-dependent manner soon after infection.

We next constructed mutant strains of S. typhimurium to quantitatively assess the 

requirement of sialic acid and fucose during expansion in vivo. Deletion of nanA and fucI, 

the first committed steps in the sialic acid and fucose utilization pathways, abolished growth 

of the strains on the respective sugars (Supplementary Fig. 5). In competition experiments, 

Bt-monoassociated mice coinfected with wildtype S. typhimurium and a nanA/fucI double 

mutant strain (St-ΔnanAΔfucI) revealed a significant disadvantage of the mutant on days 1 

and 2 after infection (day 1, CI = 1.87, p=0.028; day 2, CI = 1.45, p=0.016; Fig. 1d). This 

mutant, however, displayed no competitive disadvantage when competing with wild-type S. 

typhimurium within GF mice, consistent with S. typhimurium’s sialic acid and fucose use 

being microbiota-dependent (day 1, p=0.26). The competitive index was not significantly 

different between the two colonization conditions (Supplementary Fig. 5), however this is 

likely due to the small amount of free sialic acid present in the GF mouse gut (see Fig. 2a).

C. difficile possesses a sialic acid catabolic operon, like S. typhimurium, but encodes no 

apparent genes for fucose consumption (Supplementary Fig. 6). To identify whether C. 

difficile also expresses sialic acid catabolism genes during its expansion within the gut, we 

quantified the expression of two genes within the nan operon, nanE and nanA, by qRT-PCR 

of RNA extracted from gnotobiotic mouse cecal contents. C. difficile nanE and nanA 

displayed elevated expression in Bt-monoassociated mice relative to expression levels 

observed when C. difficile colonized GF mice alone (nanE, 15-fold higher expression, p= 

0.02; nanA 11-fold higher expression, p=0.039; Fig. 1e). The presence of Bt in the gut of 

gnotobiotic mice resulted in an increased density of C. difficile one day post-infection 

compared to infection of GF mice (1.5 × 108 vs. 7.9 × 108 CFU/ml; p= 0.0009; Fig. 1f).

Many commensal and pathogenic bacteria can utilize sialic acids from their hosts as a source 

of energy, carbon, and nitrogen20. However, some bacteria, such as Bt, encode the sialidase 

required to cleave and release this terminal sugar from the mucosal glycoconjugates, but 

lack the catabolic pathway (i.e., nan operon) required to consume the liberated 

monosaccharide. Presumably, the release of sialic acids allows Bt to access highly coveted 

underlying carbohydrates in the mucus21,22. Conversely, S. typhimurium and C. difficile 

encode the nan operon but each lacks the sialidase required for sialic acid liberation23,24.

We quantified levels of free sialic acids in the ceca of Bt-monoassociated and GF mice. Bt-

monoassociated mice exhibited a significantly higher concentration of the common sialic 

acid N-acetylneuraminic acid (Neu5Ac) versus GF mice, consistent with Bt’s ability to 

liberate but not consume the monosaccharide (1059 pmoles/mg, Bt-associated; 188 

pmoles/mg, GF; p=0.029; Fig. 2a). Colonization of mice with Bt-ΔBT0455 (a mutant strain 

of Bt lacking a predicted cell surface sialidase that achieves the same density as wt in vivo; 

Supplementary Fig. 7) did not result in increased free sialic acid, nor did colonization with 

Bacteroides fragilis (Bf), which encodes both a sialidase and the nan operon and is therefore 

able to catabolize Neu5Ac (Fig. 2a). Expression of S. typhimurium’s nan operon was 

reduced upon infection of gnotobiotic mice colonized with Bt-ΔBT0455 or B. fragilis, 

Ng et al. Page 3

Nature. Author manuscript; available in PMC 2014 April 03.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



consistent with S. typhimurium’s dependence upon elevated levels of microbiota liberated 

sialic acid (Fig. 2b).

Loss of Bt-liberated sialic acid impacts C. difficile in a manner similar to that observed with 

S. typhimurium. Nan gene expression in C. difficile was lower in mice colonized with the 

sialidase-deficient mutant Bt-ΔBT0455 relative to expression in the presence of Bt-colonized 

mice (nanE, 75-fold higher expression, p= 0.0187; Fig. 2c). Furthermore, C. difficile density 

decreased in infected mice colonized with Bt-ΔBT0455 mutant relative to densities in mice 

colonized with wild-type Bt, (9.7 × 107 vs. 4.6 × 108 CFU/ml; p= 0.0143) illustrating the 

importance of Bt-liberated sialic acid in C. difficile expansion in vivo (Fig. 2d; 

Supplementary Fig. 8). Free sialic acid was orally administered to Bt-ΔBT0455 and C. 

difficile co-colonized mice to determine if exogenous administration of the monosaccharide 

could reverse the decrease in C. difficile density by complementing the sialidase deficiency 

in this model. C. difficile densities increased 1 day post-infection in Bt-ΔBT0455 

monoassociated mice fed free sialic acid compared to unsupplemented controls (4.8 × 108 

vs. 6.8 × 107 CFU/ml; p=0.0066) reaching densities similar to those observed in the 

presence of wild-type Bt (Fig. 2e). Furthermore, expression of C. difficile nanE increases in 

the sialic acid-fed Bt-ΔBT0455-associated mice, further demonstrating that sialic acid use by 

C. difficile occurs concomitant with its increased densities in vivo (nanE, 58-fold higher 

expression over PBS-treated controls, p= 0.019; Fig. 2f). Notably, free sialic acid 

administration to GF mice infected with C. difficile resulted in higher densities of the 

pathogen in the lumen of the gut, confirming the important role of this monosaccharide in 

vivo (Supplementary Fig. 9). These data demonstrate that sialic acid catabolism by C. 

difficile promotes higher densities of the pathogen and depends upon the availability of the 

liberated monosaccharide within the lumen of the gut.

To determine if sialic acid use is relevant to pathogen proliferation in an antibiotic-treated 

complex microbiota, we quantified free sialic acids in the ceca of conventional mice before 

and after antibiotic treatment. Levels of free Neu5Ac were very low within untreated 

conventional mice, consistent with efficient partitioning of Neu5Ac between members of an 

undisturbed complex microbiota (Fig. 3a). However, antibiotic-treated mice exhibited 

elevated levels of free sialic acid 1 day after treatment (725 pmoles/mg 1 day post-

streptomycin compared to 17 pmoles/mg in untreated mice; p=0.0019), a time frame that 

coincides with pathogen expansion and acute microbiota disturbance (Supplementary Fig. 

10)25. The pool of free sialic acids decreased by day 3 post-treatment, consistent with 

recovery of the microbiota after antibiotic treatment25 (Fig. 3a). St-ΔnanA and St-

ΔnanAΔfucI mutants both showed a competitive defect relative to wild-type St 1 day after 

infection in antibiotic-treated conventional mice (St-ΔnanA, CI=1.83 p=0.0095; St-Δ 

nanAΔfucI, CI=2.77, p=0.036), consistent with sialic acid and fucose utilization providing 

an advantage to S. typhimurium during emergence (Fig. 3b). The lack of significance of the 

phenotype in the fucI single mutant suggests possible redundancy for the functional 

significance of the fucose catabolic pathway in this experimental model (Supplemental Fig. 

11). To test whether C. difficile relies upon sialic acid catabolism in post-antibiotic 

expansion, we quantified the expression of the nan operon in antibiotic-treated conventional 

mice 1 day post-infection. Coincident with expansion of C. difficile, the nan operon was 
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highly induced compared to basal expression in vitro (nanA, 230-fold, p= 0.0358; nanT, 

112-fold, p= 0.0217) confirming that C. difficile expresses this operon at high levels during 

its post-antibiotic-expansion within a complex microbiota (Fig. 3c). As a test of sialic acid 

catabolism importance in C. difficile proliferation, we constructed a nanT-mutant strain of C. 

difficile (Cd-nanT−) that is deficient in sialic acid consumption (Supplementary Fig. 4). Cd-

nanT− was significantly compromised in post-antibiotic expansion of conventional mice 

relative to wt Cd (3.1 × 107 vs. 7.0 × 107 CFU/ml; p= 0.0023) demonstrating the importance 

of sialic acid catabolism to C. difficile in attaining high densities in the context of an 

antibiotic-disrupted complex microbiota (Fig. 3d).

Recent studies have illustrated that enteric bacterial pathogens can subvert aspects of host 

inflammation to hold potential competitors within the microbiota at bay and enable pathogen 

proliferation7,26–28. Our results indicate that the antibiotic-associated pathogens S. 

typhimurium and C. difficile exploit increases in mucosal carbohydrate availability that 

occur upon disruption of the competitive ecosystem in which nutrients are typically 

efficiently consumed by endogenous community members. The transient post-antibiotic 

increase in monosaccharides liberated by the resident microbiota from host mucus provides 

a window of opportunity for these pathogens to expand to densities sufficient to induce self-

promoting host inflammation (Supplementary Fig. 1). Implicit in these findings are new 

potential therapeutic strategies to combat post-antibiotic pathogen expansion.

Online-Only Methods

Bacterial Strains and Culture Conditions

B. thetaiotaomicron (ATCC 29148, also known as VPI-5482), was grown anaerobically (6% 

H2, 20% CO2, 74% N2) overnight in TYG medium (1% tryptone, 0.5% yeast extract, 0.2% 

glucose, w/v) supplemented with 100 mM potassium phosphate buffer, (pH 7.2), 4.1 mM 

cysteine, 200 µM histidine, 6.8 µM CaCl2, 140 nM FeSO4, 81 µM MgSO4, 4.8 mM 

NaHCO3, 1.4 mM NaCl, 1.9 µM hematin, plus 5.8 µM Vitamin K3.

All strains of S. typhimurium were derived from wild-type strain SL1344, which is naturally 

streptomycin-resistant. Using the methods of Datsenko and Wanner29, mutant strains were 

first constructed in strain LT2, verified by PCR and then transduced into SL1344 using P22 

phage transduction. Mutant strains and primers utilized in their generation are listed in 

Supplementary Table 2. Growth defects were not observed on glucose for either mutant, and 

the presence of sialic acid did not pose a toxicity issue with the nanA mutant as has been 

previously reported for E. coli30 consistent with its polarity that compromises nanT 

expression (Supplementary Fig 5e). For colonization experiments, S. typhimurium strains 

were grown in Luria-Bertani (LB) broth at 37°C with aeration or on LB agar plates, with the 

appropriate antibiotics (200 µg/ml streptomycin, 30 µg/ml kanamycin). Minimal medium 

used for transcriptional profiling consisted of 100 mM KH2PO4 (pH 7.2), 15 mM NaCl, 8.5 

mM (NH4)2SO4, 4 mM L-cysteine, 1.9 mM hematin+200 mM L-histidine, 100 mM MgCl2, 

1.4 mM FeSO4, 50 mM CaCl2, 1 mg ml−1 vitamin K3, and 5 ng ml−1 vitamin B12, and 0.5% 

glucose (w/v). For evaluation of growth on various monosaccharides, strains were grown in 

M9 minimal media supplemented with 0.02% w/v histidine. Fecal densities (CFU) of S. 

typhimurium were quantified by duplicate sampling with 1 µl loops, and subsequent dilution 

Ng et al. Page 5

Nature. Author manuscript; available in PMC 2014 April 03.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



and spot plating on plain LB agar for gnotobiotic experiments and LB agar with 

streptomycin for conventional experiments.

C. difficile strain 630 was utilized in all C. difficile experiments and was cultured in 

Reinforced Clostridial Medium (RCM) + cysteine (Becton Dickinson, MD) anaerobically 

(6% H2, 20% CO2, 74% N2). C. difficile growth curves were generated using minimal 

medium (MM) composed of ammonium sulfate, sodium carbonate, calcium chloride, 

magnesium chloride, manganese chloride, cobalt chloride, histidine hematin, vitamin B12, 

vitamin K1, FeSO4, and 1% Bacto Tryptone diluted 1:1 with 1% or 0.5% carbon source. 

OD600 was monitored using a BioTek PowerWave 340 plate reader (BioTek, Winooski, VT) 

every 30 minutes, at 37°C anaerobically (6% H2, 20% CO2, 74% N2). Fecal densities (CFU) 

of C. difficile were quantified by duplicate sampling with 1 µl loops and subsequent dilution 

and spot plating on blood-BHI supplemented with erythromycin. For quantification of C. 

difficile CFU in conventional mice, 1ul of feces was serially diluted in PBS and plated onto 

CDMN plates, composed of Clostridium difficile Agar Base (Oxoid) with 7% v/v of 

Defibrinated Horse Blood (Lampire Biological Laboratories), supplemented with 32 mg/L 

Moxalactam (Santa Cruz Biotechnology) and 12 mg/L Norfloxacin (Sigma-Aldrich). Plates 

were incubated overnight at 37°C in an anaerobic chamber (Coy). Colonies identified as C. 

difficile were validated by colony PCR.

To construct the nanT null mutant (Cd-nanT−), the ClosTron method for targeted gene 

disruption in C. difficile and detailed protocol were used31, 32. SOEing PCRs with primers 

IBS, EBS1d, EBS2 and EBS (see Supplementary Table 2) were used to assemble and 

amplify the product for intron targeting, as outlined in the TargeTron users’ manual (Sigma 

Aldrich). The retargeting sequence was digested with BsrGI/HindIII and cloned into 

pMTL007C-E2. The resulting plasmid was transformed into HB101/pRK24 for conjugation 

into JIR809433 (a generous gift from Aimee Shen) to generate Cd-nanT−.

Reagents and Mice

Germ-free Swiss-Webster mice were maintained in gnotobiotic isolators and fed an 

autoclaved standard diet (Purina LabDiet 5K67) or a polysaccharide-deficient diet34, in 

accordance with A-PLAC, the Stanford IACUC. All animals were 6–12 weeks of age and 

both genders were used. For all experiments involving C. difficile colonization of germ-free 

mice, the diet was switched to polysaccharide-deficient chow one day before inoculation 

with C. difficile. Conventional Swiss-Webster mice (RFSW, Taconic) were used for S. 

typhimurium and C. difficile antibiotic-treated experiments. Number of animals per group 

was chosen as the minimum likely required for conclusions of biological significance, 

established from prior experience. Randomization was not possible in the gnotobiotic setting 

and blinding was not applicable.

Conventional mice were orally gavaged with 20 mg streptomycin dissolved in water 24 

hours before infection, and starved 18 hours before infection. Mice were infected via oral 

gavage of 14 hour overnight cultures of S. typhimurium resuspended in PBS. For single 

infections of gnotobiotic mice, 108 cfu of S. typhimurium were gavaged. For S. typhimurium 

competitive index experiments, pure cultures of wild-type and mutant bacteria were diluted 

to equal densities, mixed in a 1:1 ratio and serial diluted in PBS to a total of 103 cfu/200 µl. 
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Each mouse was orally gavaged with 200 µl of this dilution. Throughout the experiment, 

fecal samples were taken and dilutions were plated on LB agar plates containing 

streptomycin, which allows for growth of both the wild-type and mutant strains. Colonies 

from these plates were then patched onto LB agar + kanamycin plates to determine the 

proportion of kanamycin-resistant (mutant) cells. With each sample, the ratio of kanamycin-

sensitive (wild-type) bacteria to kanamycin-resistant (mutant) bacteria was divided by the 

kans/kanr ratio determined from the original inoculum to produce the competitive index. 

Significance was evaluated using one-sample t-tests with a theoretical mean of 1. All 

competitive indices were determined for fecal samples with the exception of St-ΔnanA, 

which was surveyed in cecal contents.

For C. difficile experiments involving conventional mice, antibiotics were administered in 

the water for 3 days, starting 6 days before inoculation including: kanamycin (0.4 mg/mL), 

gentamycin (0.035 mg/mL), colistin (850 U/mL), metronidazole (0.215 mg/mL) and 

vancomycin (0.045 mg/mL)19. Mice were then switched to regular water for 2 days, and 

administered 1mg of clindamycin by oral gavage 1 day before inoculation with C. difficile. 

Inoculations were by oral gavage at a density of 108 CFU from overnight cultures.

For sialic acid administration experiments, N-acetylneuraminic acid (Calbiochem or Santa 

Cruz Biotechnology) was administered in the water at a 1% concentration. Additionally, 

mice were orally gavaged 1mg of sialic acid twice a day. The amount of sialic acid in the 

cecal contents were calculated to equal approximately 700 pmoles/mg of cecal contents, 

which mirrors the average concentration of free sialic acids we quantified post-antibiotic 

treatment (725 pmoles/mg).

Expression analysis

Genome-wide transcriptional profiling of S. typhimurium was conducted using custom-made 

GeneChips, which contain probes for all annotated coding sequences for S. typhimurium 

LT2. RNA was purified from cecal contents and in vitro culture and cDNA was prepared, 

fragmented and labeled as described36.

GeneChip data were RMA-MS normalized as described37 and log2 transformed. Statistical 

significance for differential gene expression was determined using Significance Analysis of 

Microarrays (SAM)38. The delta parameter was adjusted to achieve a FDR nearest to 10%, 

and this delta value was used to select significantly-regulated genes.

qRT-PCR analysis was performed on RNA extracted from cecal or fecal contents by phenol-

chloroform extraction and bead beating. Superscript II (Invitrogen) was utilized to convert 

RNA to cDNA, and SYBR Green (ABgene) in a MX3000P thermocycler (Strategene) was 

utilized. Fold changes were normalized to in vitro growths in Minimal Medium containing 

0.5% glucose (MM-G) for C. difficile and LB for S. typhimurium.

Quantification of sialic acids

All steps were carried out at 4°C to minimize enzymatic hydrolysis. Approximately 200 mg 

of flash-frozen cecal contents were weighed out and resuspended in 400 µl dH2O. Samples 

were vortexed for 30 minutes at max speed and centrifuged for 15 minutes at 14,000 × g in 
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the tabletop centrifuge. The supernatant was stored, and the pellet resuspended in an 

additional 400 µl dH2O. The tubes were vortexed individually until the pellet was dispersed, 

and then all samples were vortexed for 30 minutes, centrifuged, and supernatants were 

pooled. This process was repeated once more for a total volume of approximately 1 ml. 

700µl of each sample was filtered through a Pall 1K MWCO filter for 9 hours at 7,000 × g. 

Samples were derivatized with DMB (1,2-diamino-4,5-methylene-dioxybenzene) as 

described previously39. The resulting product was analyzed by reverse-phase HPLC using a 

C18 column (Dionex) at a flow rate of 0.9 ml/min, using a gradient of 5% to 11% 

acetonitrile in 7% methanol. The excitation and emission were 373 and 448 nm, 

respectively. The DMB-derivatized sialic acids were identified and quantified by comparing 

elution times and peak areas to known standards.

16S rRNA microbial community composition analysis

Fecal DNA was isolated and amplicons generated of the 16S rRNA V4 region (515F, 806R). 

Samples were sequenced at Medical Genome Facility, Mayo Clinic, Rochester, MN using 

the MiSeq (Illumina) platform40. Data analysis was done using QIIME41. Single end reads 

were analyzed to determine OTUs (Operational Taxonomic Units) at 97% sequence 

similarity using uclust. Taxonomy was assigned using RDP classifier against the 

GreenGenes database and a phylogenetic tree was built using FastTree. The OTU table was 

rarified to a sequencing depth of 900 for each set of samples. Beta diversity was determined 

using unweighted and weighted UniFrac42.

Statistical analyses

The Student’s t-test was used for statistical calculations, and * indicates p < 0.05, ** 

indicates p < 0.01 and *** indicates p < 0.001. Error bars indicate SEM. n indicates the 

number of mice used per condition. Normal distribution was assumed for all data, and no 

deviations were noted. Grubbs’ test was used to identify and eliminate statistical outliers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Bt facilitates S. typhimurium and C. difficile carbohydrate utilization during emergence
a, Schematic of mouse infection experiments. Germ-free, GF; B. thetaiotaomicron, Bt; S. 

typhimurium, St; C. difficile, Cd.

b, S. typhimurium operons displaying significant differences in gene expression levels in 

vivo in the presence and absence of Bt, 5 days post-infection. Colors indicate the deviation 

of each gene's signal above (purple) and below (green) its mean expression value across all 

six in vivo samples and duplicate in vitro growths conducted in minimal medium.
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c, Induction of S. typhimurium nanE and fucI in cecal contents 1 day post-infection relative 

to growth in LB broth [n = 9 and 4 for St and St+Bt, respectively].

d, Competitive index of wild-type St/St-ΔnanAΔfucI in Bt-monoassociated (St+Bt) and ex-

germ-free (St) mice 1 day post-infection. Horizontal bars indicate the geometric means of CI 

values, and individual CI values are represented with dots [n = 5/group].

e, Induction of C. difficile nan genes in cecal contents 3 days post-infection relative to 

growth in minimal medium containing 0.5% glucose [n = 4/group].

f, C. difficile density in feces 1 day post-infection [n = 4/group].

Error bars indicate SEM.
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Figure 2. Bt-liberated sialic acid promotes emergence of S. typhimurium and C. difficile
a, Levels of free sialic acid in cecal contents in GF and gnotobiotic mice monoassociated for 

10 days [n=3, 3, 5, 5, respectively].

b, Fold change of expression of S. typhimurium nanE in cecal contents 1 day post-infection 

relative to growth in vitro [n = 9, 4, 5, 5, respectively].

c, Induction of C. difficile nanE expression in cecal contents 3 days post-infection relative to 

growth in minimal medium containing 0.5% glucose [n = 4/group].

d, C. difficile density in feces 1 day post-infection [n = 5/group].

Ng et al. Page 13

Nature. Author manuscript; available in PMC 2014 April 03.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



e, C. difficile density 1 day post-infection in feces of PBS or exogenous free sialic acid 

(SIA) treated mice. [n = 4–5/group].

f, Induction of C. difficile nanE gene expression 1 day post-infection in feces of PBS or 

exogenous free sialic acid (SIA) treated mice relative to growth in minimal medium 

containing 0.5% glucose [n = 5/group].

Error bars indicate SEM.
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Figure 3. S. typhimurium and C. difficile utilize mucin-derived monosaccharides resulting from 
antibiotic treatment of conventional mice
a, Levels of free sialic acid in cecal contents of conventional mice (CONV), antibiotic-

treated mice 1 day (Ab D1) and 3 days (Ab D3) post-treatment [n= 8, 9, 3, respectively].

b, Competitive index of wt S. typhimurium versus S. typhimurium mutants in cecal contents 

(St-ΔnanA) or feces (St-ΔnanAΔfucI) of antibiotic-treated conventional mice. Horizontal 

bars indicate the geometric means of CI values, and individual CI values are represented 

with dots [n=5 and 9, respectively].
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c, Induction of C. difficile nanA and nanT expression in fecal samples 1 day post-infection 

of antibiotic-treated conventional mice relative to growth in minimal medium containing 

0.5% glucose [n = 4/group].

d, Density of wt C. difficile or a mutant deficient in sialic acid consumption (Cd-nanT−) 3 

days post-infection in feces of antibiotic-treated conventional mice. [n = 10/group].

Error bars indicate SEM.
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