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RESEARCH Open Access

Microbiota long-term dynamics and
prediction of acute graft-versus-host
disease in pediatric allogeneic stem cell
transplantation
Anna Cäcilia Ingham1,2, Katrine Kielsen3,4, Hanne Mordhorst1, Marianne Ifversen4, Frank M. Aarestrup1,

Klaus Gottlob Müller3,4,5 and Sünje Johanna Pamp1,6*

Abstract: Background: Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) exhibit

changes in their gut microbiota and are experiencing a range of complications, including acute graft-versus-host

disease (aGvHD). It is unknown if, when, and under which conditions a re-establishment of microbial and

immunological homeostasis occurs. It is also unclear whether microbiota long-term dynamics occur at other body

sites than the gut such as the mouth or nose. Moreover, it is not known whether the patients’ microbiota prior to

HSCT holds clues to whether the patient would suffer from severe complications subsequent to HSCT. Here, we

take a holobiont perspective and performed an integrated host-microbiota analysis of the gut, oral, and nasal

microbiota in 29 children undergoing allo-HSCT.

Results: The bacterial diversity decreased in the gut, nose, and mouth during the first month and reconstituted

again 1–3 months after allo-HSCT. The microbial community composition traversed three phases over 1 year.

Distinct taxa discriminated the microbiota temporally at all three body sides, including Enterococcus spp.,

Lactobacillus spp., and Blautia spp. in the gut. Of note, certain microbial taxa appeared already changed in the

patients prior to allo-HSCT as compared with healthy children. Acute GvHD occurring after allo-HSCT could be

predicted from the microbiota composition at all three body sites prior to HSCT. The reconstitution of CD4+ T cells,

TH17, and B cells was associated with distinct taxa of the gut, oral, and nasal microbiota.
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Conclusions: This study reveals for the first time bacteria in the mouth and nose that may predict aGvHD.

Monitoring of the microbiota at different body sites in HSCT patients and particularly through involvement of

samples prior to transplantation may be of prognostic value and could assist in guiding personalized treatment

strategies. The identification of distinct bacteria that have a potential to predict post-transplant aGvHD might

provide opportunities for an improved preventive clinical management, including a modulation of microbiomes.

The host-microbiota associations shared between several body sites might also support an implementation of more

feasible oral and nasal swab sampling-based analyses. Altogether, the findings suggest that the microbiota and host

factors together could provide actionable information to guiding precision medicine.

Keywords: Holobiont, Gut, oral, and nasal microbiota, HSCT, Acute GvHD, Immune reconstitution, Microbiome,

Antibiotics, Amplicon sequence variants, Machine learning, Prediction

Background
In allogeneic hematopoietic stem cell transplantation

(allo-HSCT), the infusion of donor-derived stem cells is

employed as a curative treatment for various types of

hematologic and non-hematologic disorders [1]. In allo-

HSCT patients, the human gut microbiota changes sub-

sequently to transplantation, which may in part be at-

tributable to antimicrobial treatment and conditioning

regimens [2–4]. Butyrate-producing bacteria affiliated

with the order Clostridiales are depleted in the gut early

after transplantation, while Proteobacteria and Lactoba-

cillales such as Enterococcus spp. expand, possibly due

to both increased oxygen levels in the intestinal lumen

in the absence of butyrate, and antimicrobial resistance

[2–5]. However, microbiota dynamics in HSCT patients

have so far mainly been monitored in detail during the

first month post HSCT and not over longer periods of

time. Hence, it is unclear whether and when the micro-

biota re-establishes to similar microbial community

structures as prior to HSCT.

Conditioning-induced intestinal epithelial permeability

might promote bacterial translocation and bacteremia

[6]. This is recognized as the initial step in the pathogen-

esis of acute graft-versus-host disease (aGvHD) [7].

Acute GvHD is a common side effect of allo-HSCT in

which alloreactive donor T cells exhibit cytotoxic activity

against healthy tissue in the host, including the gut epi-

thelium [7]. Acute GvHD severity can be distinguished

in four grades dependent on the extent of organs af-

fected: Grade 0–I presents as no or mild and grade II–

IV as moderate to severe aGvHD. Recently, studies have

suggested that a lower gut microbiota diversity is associ-

ated with aGvHD and aGvHD-related mortality and that

certain bacterial taxa dominating post HSCT may be in-

volved in promoting aGvHD [3, 8–12]. However, it has

not been examined whether microbiota composition

prior to HSCT has a predictive value in forecasting pos-

sible aGvHD severity, and which is addressed in the

present study.

The microbiota exert immunomodulatory function on

the host’s adaptive immune system, for example on T

cells [13]. For instance, human commensal gut strains

affiliated with Bacteroides and Clostridia can induce T

regulatory (Treg) cells in germ-free mice [14]. Recent

findings suggest that functionally different T cell subsets,

such as T helper 17 (TH17) and Treg cells are involved in

the pathogenesis of aGVHD [15–17]. The microbiota at

body sites other than the gut, such as the oral and nasal

cavities, have also been suggested to be involved in

immunomodulation [18]. We have previously proposed

that the gut microbiota is associated with immune cell

reconstitution after allo-HSCT [4]. However, it is un-

known if the microbiota at other mucosal sites are af-

fected by allo-HSCT, whether they are associated with

aGvHD and whether they are associated with recovery

of the patients’ immune system.

Here, we monitored the microbiota dynamics in the

gut, oral, and nasal cavities in pediatric allogeneic HSCT

patients over a period of 1 year. At all three body sites,

we identify distinct temporal bacterial abundance trajec-

tories. In a machine learning approach, we predict

aGvHD severity from pre-transplant microbiota in the

gut, oral, and nasal cavities which may be useful for early

preventive managements in the clinical setting. By relat-

ing the microbiota composition to immune cell counts,

inflammation and infection markers, antibiotic treat-

ment, clinical outcomes, and patients’ baseline parame-

ters, we uncover similarities in host–microbial

associations at different body sites.

Results
We characterized long-term microbiota dynamics in

pediatric allo-HSCT at three body sites: the gut, and oral

and nasal cavities (Fig. 1). Fecal samples, buccal swabs,

and anterior naris swabs were collected from 29 children

at 10 time points over a 1-year period: twice prior to

HSCT, on the day of HSCT, weekly during the first

month after HSCT, and at three follow-up time points

up to 12 months post HSCT (Fig. 1). Microbial commu-

nity dynamics in these samples were determined by 16S

rRNA gene profiling. A total of 709 patient samples (212

fecal samples, 248 oral swabs, and 249 nasal swabs from
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10 time points) were characterized. Upon sequence fil-

tering (see Methods), we retained 2465 ASVs for the

fecal, 377 ASVs for the oral, and 197 ASVs for the nasal

core microbiota sets. We predicted the development of

aGvHD severity from pre-transplant gut, oral, and nasal

microbial abundances using machine learning. In

addition, we assessed multivariate associations between

the microbiota at the different body sites and immune

reconstitution, immune markers, and clinical outcomes.

Immune reconstitution was determined through quanti-

tative measurements of T, B, and NK cells, and other

leukocyte subpopulations in peripheral blood (Fig. 1).

We assessed systemic inflammation through levels of C-

reactive protein (CRP), and measured procalcitonin as

an approximation of infection (Fig. 1, see Methods).

Patient cohort and outcomes

The 29 children had a median age of 8.2 years (range:

2.5–16.4) at the time of HSCT. Nine patients (31%) had

no or mild aGvHD (grade 0 or I), and 20 patients (69%)

developed moderate to severe aGvHD (grade II–IV) at

median +14 days following HSCT (range: day +9 to day

+61) (Supplementary Table S1, Additional file 1; and

https://doi.org/10.6084/m9.figshare.13567502). The main

organs involved in aGvHD included the skin (all), intes-

tinal tract (n = 3), and the liver (n = 2). During the

follow-up period of 21.4 months on average (range:

10.1–32.7 months), two patients (7%) relapsed, and one

patient underwent a donor lymphocyte infusion. Three

patients (10%) died (one relapse-related death at day +91

and two treatment-related deaths at days +111 and

+241, respectively). Due to their low incidence, we did

not focus our analysis on relapse and mortality. For 25

patients (86.2%), ≥ 1 bacterial infection indicated by

positive microbial culture was reported throughout the

monitored period. All patients were treated prophylac-

tically with trimethoprim and sulfamethoxazole prior to

HSCT. In cases of fever or clinical signs of infections,

antibiotic treatment with meropenem (28 patients),

vancomycin (24 patients), ciprofloxacin (20 patients),

phenoxymethylpenicillin (14 patients), or other antibi-

otics was commenced according to culture-based results

or clinical presentation.

Bacterial alpha diversity decreases in relation to allo-HSCT

at all three body sites

Alpha diversity (Inverse Simpson) in the gut was overall

the highest, followed by the oral cavity and the nose

(Fig. 1B). The lowest alpha diversity was observed within

the first month post HSCT for all three body sites. How-

ever, the exact time points were somewhat different for

each body site: the day of HSCT to week +3 for the gut,

week +3 for the oral cavity, and week +1 for the nasal

cavity. The decrease in microbial diversity was signifi-

cant for the nasal cavity, where the median alpha diver-

sity decreased from 4.43 at the start of conditioning to

2.65 in week +1 (P = 0.02) (Fig. 1B). Alpha diversity in-

creased again at all body sites thereafter. However, alpha

diversity was lower again at month +12 in the nasal

cavity.

Microbial community composition in patients prior to

HSCT differs from healthy controls

We hypothesized that the bacterial alpha diversity at the

first sampling time point (preexamination) might already

be lower in these patients as compared to age-matched

healthy children due to the treatment given prior to the

referral to allo-HSCT and enrolment in this study. To

assess this, we compared the gut microbiota at preexa-

mination to that of healthy children (median age 6.8

years) [19]. As expected, the alpha diversity was 2.4-fold

lower in the patients at preexamination (median

InvSimpson 11.7) as compared with the healthy children

(median InvSimpson 28.2) (Supplementary Figure S1A,

Additional File 2). Bacterial composition differed be-

tween the two groups (anosim, P = 0.001, R = 0.44, Add-

itional File 2 Figure S1B). This difference was to a

certain extent due to a larger variation within the HSCT

group (betadisper, P < 0.001) (Supplementary Figure S1

B, Additional File 2). Through linear discriminant ana-

lysis (LEfSe) and differential abundance analysis

(DeSeq2), we found taxa that were significantly more

abundant in the patients already at preexamination as

compared with the healthy controls: these included Ba-

cilli (e.g., Lactobacillus, Enterococcus), Erysipelotricha-

ceae, and Enterobacteriaceae (e.g., Klebsiella). In

contrast, certain taxa were more abundant in the healthy

children, such as Prevotella, Ruminococcaceae (e.g.

(See figure on previous page.)

Fig. 1 Monitoring gut, oral, and nasal microbiota and the host immune system in allogeneic hematopoietic stem cell transplantation (HSCT).

A Twenty-nine children were monitored before, at the time of and immediately post allogeneic HSCT, as well as at late follow-up time points.

Patients’ baseline characteristics, clinical outcomes, as well as immune cell counts, and inflammation and infection markers over time were

monitored. Patient characteristics are described in detail in Table S1 (Additional File 1). Host immune system parameters were related to

longitudinal dynamics of the gut, oral, and nasal microbiota that was assessed at the denoted time points. B Bacterial alpha diversity before, at

the time of, and after HSCT at each body site, displayed on a log10 transformed y-axis for visualization purposes. Asterisks indicate significant

differences in median inverse Simpson index between time points. * P < 0.05. C Tree-based sparse linear discriminant (LDA) analyses by time

point in relation to HSCT. For fecal samples, positive LDA scores were observed for samples collected immediately post HSCT. For both oral and

nasal samples, positive LDA scores were observed for samples from before HSCT and from late follow-up time points
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Ruminococcus), and Akkermansia, as compared with the

patients at preexamination (Supplementary Figure S1 C

and D, Additional File 2; and https://doi.org/10.6084/

m9.figshare.13614230).

Temporal microbial community dynamics appear in three

interlaced phases over one year

For a more detailed assessment of gut, oral, and nasal

ASVs that best characterized samples from different

time points, we performed tree-based sparse linear dis-

criminant analyses (LDA). We observed at all three body

sites that samples divided into three partly interlaced

phases: phase I (samples at preexamination and condi-

tioning start), phase II (day of HSCT to month +1), and

phase III (month +3 to month +12) (Fig. 1C). Interest-

ingly, samples from phases I and III overlapped for the

oral and nasal cavities, suggesting a possible return of

microbial communities from later time points to a state

similar to that before HSCT. Of note, the nasal commu-

nity composition at month +12, that exhibited low alpha

diversity, was different from samples of week +1 (phase

II) that also exhibited low alpha diversity (Fig. 1B, C).

To get a more detailed view of the microbial abun-

dance dynamics, we examined the 12 most abundant

families at each body site, respectively (Figs. 2A and 3A,

Additional File 2: Figures S2 and S3A). In the gut, we

observed a reduction in Lachnospiraceae in phase II, im-

mediately after HSCT, from 13% at preexamination to

4.7% in week +1, followed by a recovery to 27.5% in

month +3 at the start of phase III (Fig. 2A). Concur-

rently, an expansion of Enterococcaceae in phase II (pre-

examination: 6.1%; week +1: 22.8%) and Lactobacillaceae

in phase II (preexamination: 2%; week +1: 7%) occurred,

followed by a reduction in phase III from month +3 on-

wards to 0.2% and 0.6%, respectively (Fig. 2A).

In the oral cavity, we observed a reduced relative

abundance of Actinomycetaceae for several time points

in phase II as compared with the time points in phase I

(prior to HSCT) and at later follow-up time points. For

example, Actinomycetaceae abundances were 9.7% at

preexamination and 2.9% in week +3 (Fig. 3A). Further-

more, Streptococcaceae abundances were lower from the

day of HSCT until week +2 compared with that before

HSCT and late follow-up time points (preexamination:

44.6%; week +1: 23.3%; month +3: 51.3%, Fig. 3A).

In the nasal cavity, we observed a reduced relative

abundance of Corynebacteriaceae and Moraxellaceae at

most time points in phase II, as compared with samples

from phases I and III (Additional File 2: Fig. S3). For ex-

ample, Corynebacteriaceae abundances were 28.7% at

preexamination and 0.7% in week +1 (Additional File 2:

Figure S3).

Distinct Enterococcus, Lactobacillus, and Blautia lineages

discriminate the gut microbiota temporally

In order to determine which specific taxa in the gut were

driving the differences between samples in the LDA (Fig.

1C), we examined the individual discriminating ASVs. In

general, in tree-based sparse LDA, ASVs with positive

LDA coefficients are overrepresented in samples with

positive LDA scores, while ASVs with negative LDA co-

efficients likewise are associated with samples with nega-

tive LDA scores (Figs. 1C, 2B, 2C, and 2D). The LDA

revealed 19 clades (total 102 ASVs) in the gut that best

separated samples by time point (Fig. 2B). The two most

discriminating clades with positive LDA coefficients

comprised ASVs of the family Enterococcaceae and Lac-

tobacillaceae (Fig. 2B). The ASVs of these two clades in-

creased in abundance from the day of HSCT

(Enterococcaceae) and week +1 (Lactobacillaceae), re-

spectively, in support of the family abundances and in

line with the positive LDA scores of phase II samples

(Figs. 2A, C and 1C). Of note, the order Lactobacillales

and genus Lactobacillus (family Lactobacillaceae) ap-

peared already to be higher at preexamination as com-

pared with healthy children (Supplementary Figure S1D,

Additional File 2). From month +3 onwards, their abun-

dances decreased again to levels comparable with the

time of preexamination (i.e., pretreatment) (Fig. 2C). All

members of the Enterococcaceae clade, with the excep-

tion of one ASV, were Enterococcus spp. (Additional File

1: Table S2). The most abundant and most frequently

observed Enterococcus was ASV 1 (Fig. 2C and Add-

itional File 1: Table S2). More detailed sequence analysis

of the partial 16S rRNA gene sequence using SINA and

BLAST alignments revealed that it belonged to the

Enteroccoccus faecium group. The most abundant and

most frequently observed Lactococcus was ASV 3 (Fig.

2C and Additional File 1: Table S2), and its partial 16S

rRNA gene sequence exhibited a high sequence similar-

ity to Lactobacillus rhamnosus.

The two most discriminative clades with negative LDA

coefficients included two individual ASVs and one clade

of the Lachnospiraceae family, and two Ruminococcaceae

clades (Fig. 2B, Additional File 1: Table S2). The abun-

dances of these ASVs decreased in week +1 and recov-

ered from month +3 onwards, returning to abundances

comparable with that before HSCT or higher (Fig. 2D),

in agreement with the abundance patterns for those

families (Fig. 2A). Of note, the family Ruminococcaceae

appears already to be lower at preexamination as com-

pared with healthy children (Supplementary Figure S1 C

and D, Additional File 2). All ASVs within the Lachnos-

piraceae group belonged to the genus Blautia (Add-

itional File 1: Table S2). The most abundant and most

frequently observed Blautia was ASV 78 (Fig. 2D and

Additional File 1: Table S2), and its partial 16S rRNA

Ingham et al. Microbiome           (2021) 9:148 Page 5 of 28
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Fig. 2 (See legend on next page.)
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gene sequence exhibited a high sequence similarity to

Blautia wexlerae.

The two most discriminative clades with negative LDA

coefficients included two individual ASVs and one clade

of the Lachnospiraceae family, and two Ruminococcaceae

clades (Fig. 2B, Additional File 1: Table S2). The abun-

dances of these ASVs decreased in week +1 and recov-

ered from month +3 onwards, returning to abundances

comparable with that before HSCT or higher (Fig. 2D),

in agreement with the abundance patterns for those

families (Fig. 2A). Of note, the family Ruminococcaceae

appears already to be lower at preexamination as com-

pared to healthy children (Supplementary Figure S1 C

and D, Additional File 2). All ASVs within the Lachnos-

piraceae group belonged to the genus Blautia (Add-

itional File 1: Table S2). The most abundant and most

frequently observed Blautia was ASV 78 (Fig. 2D and

Additional File 1: Table S2), and its partial 16S rRNA

gene sequence exhibited a high sequence similarity to

Blautia wexlerae. A separate PCA analysis supported

these findings (Fig. 2E). Enterococcaceae were more

abundant in samples from phase II, and Lachnospiraceae

and Ruminococcaceae were more abundant in samples

from phases I and III (Fig. 2E).

Distinct Actinomyces and Streptococcus lineages

discriminate the oral microbiota temporally

The tree-based sparse LDA identified 10 clades of, in

total, 71 ASVs in the oral cavity that best separated sam-

ples by time points along the first axis (Fig. 3B). The two

largest discriminating groups of ASVs were affiliated

with Actinomycetaceae and Streptococcaceae (Fig. 3B,

Additional File 1: Table S2). The most abundant and

among the most frequently observed ASVs were Actino-

myces ASV 18 and Streptococcus ASV 28 (Fig. 3C and

Additional File 1: Table S2), and their partial 16S rRNA

gene sequence exhibited a high sequence similarity to

the Actinomyces viscosis and Streptococcus mitis groups,

respectively. Additional discriminating ASVs were affili-

ated with Prevotellaceae, and Bacillales Family XI

(Gemella spp.), respectively. The most abundant and fre-

quently observed ASVs were affiliated with Prevotella

melaninogenica (ASV 42) and Gemella sanguis (ASV

208). In agreement with the relative family abundance

dynamics, these clades shared a pattern of depletion

from the day of HSCT or week +1 onwards (phase II),

until their abundances recovered from month +3 on-

wards (phase III) (Fig. 3A, C) to an abundance similar to

that before HSCT, as observed for Ruminococcaceae and

Lachnospiraceae in the gut. A separate PCA analysis

supported these findings (Fig. 3D). For example, Actino-

mycetaceae, Prevotellaceae, and Bacillales Family XI

were more abundant in samples from phases I and III as

compared with samples from phase II (Fig. 3D).

Distinct Corynebacteriaceae and Streptococcaceae lineages

discriminate the nasal microbiota temporally

The LDA revealed 30 discriminating nasal clades on axis

1 (comprising in total 36 ASVs), many of which con-

sisted of individual ASVs (Additional File 2: Figure S3B).

ASVs affiliated with the same family did not always co-

vary in abundance. The Corynebacteriaceae, Streptococ-

caceae, and Moraxellaceae ASVs all had positive LDA

coefficients (i.e., their abundances decreased after HSCT

and increased again from month+3 onwards) (Additional

File 2: Figures S3B and S3C). The most abundant and

most frequently observed Corynebacteriaceae was ASV

14 (Additional File 2: Figure S3C and Additional File 1:

Table S2), and its partial 16S rRNA gene sequence ex-

hibited a high sequence similarity to Corynebacterium

propinquum. A separate PCA analysis supported these

findings (Figure S3D Additional File 2). For example,

Corynebacteriaceae, Streptococcaceae, and Moraxella-

ceae were more abundant in samples from phases I and

III as compared with samples from phase II (Figure S3D

Additional File 2).

Acute GvHD severity can be predicted from gut

microbiota composition prior to HSCT

To reveal potential associations between the gut micro-

biota and the severity of acute GvHD, we examined the

12 most abundant families at each body site in patients

with no or mild (grades 0–I) and moderate to severe

(grades II–IV) aGvHD. In the gut, Tannerellaceae were

less abundant at time points before HSCT in patients

with grades 0–I compared with grades II–IV, especially

(See figure on previous page.)

Fig. 2 Temporal microbial community dynamics in the gut. A Relative abundances over time of the 12 most abundant families in the gut.

B Tree-based sparse linear discriminant analysis (LDA). Coefficients of discriminating clades of ASVs on the first LDA axis, colored by taxonomic

family, and plotted along the phylogenetic tree. C Trajectories of ASVs affiliated with the families Enterococcaceae and Lactobacillaceae, with

increasing abundances after HSCT. The most abundant discriminating ASV for each family is indicated. D Trajectories of ASVs affiliated with the

families Lachnospiraceae and Ruminococcaceae, with decreasing abundances after HSCT and recovery at late follow-up time points. The most

abundant discriminating ASV for Blautia spp. is indicated. Detailed taxonomic information and LDA-coefficients of the displayed ASVs are listed in

Additional File 1: Table S2. E PCA biplots with the top 100 predictors (ASVs) identified by PCA (left) and the top predictors (ASVs) identified by

sparse LDA (right). The time points are indicated in the same color as in Fig. 1C (phase I: yellow colors; phase II: red colors; phase III: blue colors).

The PCA plots with dimensions 3 and 4 are displayed here as the separation by time point was best resolved in these dimensions. The PCA plots

resolved at the first two dimensions are available from https://doi.org/10.6084/m9.figshare.14510661
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at preexamination and at start of conditioning (Fig. 4A).

In order to predict aGvHD (grades 0–I versus grades II–

IV) from microbial abundances at time points up until

the time of stem cell infusion, we implemented machine

learning models (see Methods—Statistical analysis). This

analysis revealed 3 significant predictive ASVs in the

gut: ASV 128 (Parabacteroides distasonis, Tannerella-

ceae, P < 0.01), ASV 268 (Lachnospiraceae NK4A136

group sp., Lachnospiraceae, P = 0.01) and ASV 3 (Lacto-

bacillus sp., Lactobacillaceae, P < 0.01) (Fig. 4B, C, and

Additional File 1: Table S3). This means, high abun-

dances of these ASVs before HSCT were associated with

the subsequent development of aGvHD grades II–IV

post HSCT (Fig. 4C). For instance, all pretransplant

samples with a variance stabilized abundance > 5.7 of

ASV 128 (Parabacteroides distasonis) and 67% with a

variance stabilized abundance > 3 of ASV 3 (Lactobacil-

lus sp.) originated from patients who later developed

aGvHD grades II–IV (Fig. 4C). In agreement, log-

transformed relative abundances of these ASVs were

mostly higher at preexamination, conditioning start, and

the day of HSCT in patients who later developed aGvHD

grades II–IV compared with those exhibiting grades 0–I

(Fig. 4D). For instance, the average abundance of ASV

128 (Parabacteroides distasonis) was 5.5 times higher at

preexaminantion in grades II–IV versus in grades 0–I

patients (Fig. 4D). The temporal trajectory of ASV 3

(Lactobacillus sp.) also revealed a higher abundance at

time points up to the transplantation in patients with

grades II–IV aGvHD compared with those with grades

0–I (Fig. 4E). Within the Lactobacillaceae identified by

the LDA, this pattern seemed to be restricted to ASV3

(Fig. 4E). ASV 128 (Parabacteroides distasonis) was part

of the discriminating group of Tannerellaceae identified

in the LDA (Fig. 4E, and Additional File 1: Table S3). Its

trajectory facetted by aGvHD severity confirmed the ob-

servation of increased pre-HSCT abundances in patients

with subsequent development of aGvHD grades II–IV

(Fig. 4E).

Acute GvHD severity can be predicted from oral

microbiota composition prior to HSCT

In the oral cavity, the bacterial community before HSCT

in patients with grades II–IV aGvHD was characterized

by a lower relative abundance of Neisseriaceae, and

higher relative abundances of Aerococcaceae and Prevo-

tellaceae, compared with grades 0–I aGvHD, especially

at preexamination and conditioning start (Fig. 5A). Our

machine learning approach predicted aGvHD severity

(grades 0–I versus II–IV) from the abundances of 3 sig-

nificant oral ASVs pre-HSCT: ASV 568 (Actinomyces

sp., Actinomycetaceae, P < 0.001), ASV 226 (Prevotella

melaninogenica, Prevotellaceae, P < 0.001) and ASV 500

(Pseudopropionibacterium propionicum, Propionibacter-

iaceae, P < 0.001) (Fig. 5B, C and Additional File 1: Table

S3). High abundances of these ASVs before transplant-

ation predicted the development of aGvHD grades II–IV

after HSCT (Fig. 5C). For instance, 91% of samples with

a variance stabilized abundance > 0.4 of ASV 568 (Acti-

nomyces sp.) and 92% of samples with a variance stabi-

lized abundance > 6.1 of ASV 226 (Prevotella

melaninogenica) originated from patients with subse-

quent development of aGvHD grades II–IV (Fig. 5C). In

support, pre-HSCT log-transformed relative abundances

of these ASVs were higher in those patients. For ex-

ample, the median relative abundance of ASV 500 (Pseu-

dopropionibacterium propionicum) on the day of HSCT

was 10 times higher in grades II–IV versus in grades 0–I

patients (Fig. 5D). Temporal trajectories of oral Actino-

mycetaceae and Prevotellaceae, identified also in the

LDA, showed that the abundances of ASV 226 (Prevo-

tella melaninogenica) and ASV 568 (Actinomyces sp.)

were higher at time points up to the transplantation in

patients with grades II–IV versus those with grades 0–I

(Fig. 5E).

Acute GvHD severity can be predicted from nasal

microbiota composition prior to HSCT

The proportion of nasal Neisseriaceae prior to HSCT

was higher in patients with aGvHD grades 0–I as com-

pared with grades II–IV (Additional File 2: Figure S4A).

In contrast, Actinomycetaceae and Corynebacteriaceae

exhibited a higher abundance in aGvHD grades II–IV

patients prior to HSCT compared with those with grades

0–I (Additional File 2: Figure S4A). We found two ASVs

significantly predicting aGvHD grade with opposite ef-

fects, ASV 66 and ASV 47. A high pre-HSCT abundance

of ASV 66 (Actinomyces sp., Actinomycetaceae, P = 0.03)

(See figure on previous page.)

Fig. 3 Temporal microbial community dynamics in the oral cavity. A Relative abundances over time of the 12 most abundant families in the oral

cavity. B Tree-based sparse linear discriminant analysis (LDA). Coefficients of discriminating clades of ASVs on the first LDA axis, colored by

taxonomic family, and plotted along the phylogenetic tree. C Trajectories of ASVs affiliated with the families Actinomycetaceae, Streptococcaceae,

Prevotellaceae, and Family XI (Class Bacillales), with decreasing abundances after HSCT and recovery at late follow-up time points. The most

abundant discriminating ASV for each family is indicated. Detailed taxonomic information and LDA coefficients of the displayed ASVs are listed in

Additional File 1: Table S2. D PCA biplots with the top 100 predictors (ASVs) identified by PCA (left) and the top predictors (ASVs) identified by

sparse LDA (right). The time points are indicated in the same color as in Fig. 1C (phase I: yellow colors; phase II: red colors; phase III: blue colors).

The PCA plots with dimensions 1 and 2 are displayed here, and additional PCA plots are available

from https://doi.org/10.6084/m9.figshare.14510661
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predicted development of aGvHD grades II–IV. The par-

tial 16S rRNA gene sequence of ASV 66 exhibited a high

sequence similarity to Actinomyces viscosus. A total of

94% of samples with a variance stabilized abundance >

6.4 of ASV 66 originated from patients with subsequent

development of aGvHD grades II–IV (Additional File 2:

Figures S4B and S4C). In support, pre-HSCT log-

transformed relative abundances of ASV 66 (Actinomy-

ces sp.) were 2.3 times higher in patients with aGvHD

grades II–IV compared with those with grades 0–I

(Additional File 2: Figure S4C). In contrast, high pre-

HSCT abundance of ASV 47 (Rothia sp., P = 0.03) pre-

dicted that patients would be spared from aGvHD. The

partial 16S rRNA gene sequence of ASV 47 exhibited a

high sequence similarity to Rothia aeria. All nasal sam-

ples with a variance stabilized pre-HSCT abundance > −

3.05 of ASV 47 (Rothia sp.) originated from patients

who subsequently developed no or mild aGvHD (grades

0–I) (Additional File 2: Figure S4B and S3C).

Acute GvHD severity can be predicted from microbiota at

all three body sites simultaneously prior to HSCT

Although we identified specific bacterial taxa from all

three body sites (gut, mouth, nose) separately that pre-

dicted aGvHD severity from samples prior to HSCT, we

assessed whether there could be a preference for bacter-

ial taxa from a specific body site by analyzing all taxa

from all body sites together in one machine learning

model. We found that this was not the case and that

taxa from all three body sites could predict aGvHD se-

verity from samples prior to HSCT in a combined model

(Fig. 6). We identified seven predictive ASVs, of which

two were from the gut, one from the mouth, one from

the nose, two were found predominantly in the mouth

but also in the nose, and one was found predominantly

in the mouth but also in the nose and gut (Fig. 6A).

Three taxa (Parabacteroides distasonis ASV_131, Acti-

nomyces sp. ASV_568, and Fusobacterium sp. ASV_166)

originated from patients who later developed aGvHD

grades II–IV. In agreement, log-transformed relative

abundances of these ASVs were mostly higher at preexa-

mination, conditioning start, and the day of HSCT in

patients who later developed aGvHD grades II–IV com-

pared with those exhibiting grades 0–I (Fig. 6B). Four

taxa (Veillonella sp. ASV_270, Escherichia/Shigella sp.

ASV_8, Lawsonella sp. ASV_2694 and Corynebacterium

sp. ASV_360) originated from patients who later devel-

oped no or only mild aGvHD (grades 0–I) (Fig. 6A). In

agreement, log-transformed relative abundances of these

ASVs were mostly higher at preexamination, condition-

ing start, and the day of HSCT in patients who later de-

veloped aGvHD grades 0–I compared with those

exhibiting grades II–IV (Fig. 6B).

When comparing the results from this combined

model with the results from the body site-specific

models, we found that all seven taxa identified in the re-

gression framework with CTREE from all body sites,

were also detected in the body site-specific support vec-

tor machines with linear kernel (svmLinear) model and/

or Boruta feature selection and/or regression framework

with CTREE (Fig. 6C).

Reconstitution of CD4+ T cells and the TH17

subpopulation is associated with gut, oral, and nasal

microbiota

In order to characterize associations between the micro-

biota and immune cell counts, immune markers, and

clinical outcomes in HSCT that potentially might impact

our predictions of aGvHD, we implemented two multi-

variate multi-table approaches, namely sparse partial

least squares (sPLS) regression and canonical corres-

pondence analyses (CCpnA). Using sPLS regression, we

identified three clusters of ASVs for each body site, re-

spectively (Fig. 6A and Additional File 2: S5A and S6A),

which was supported by the CCpnA (Fig. 7B and Add-

itional File 2: S5B and S6B). Several cell populations of

the adaptive immune response were associated with one

cluster each at all three body sites according to the sPLS

analysis. These included T cell counts at late follow-up

time points, particularly CD4+ T cells in months +3 and

+6 and the subpopulation of TH17 cells in months +1

and +3. In the gut, high numbers of these adaptive im-

mune cell populations were associated with high abun-

dances of mainly Lachnospiraceae, Ruminococcaceae,

(See figure on previous page.)

Fig. 4 Machine learning-based prediction of aGvHD severity from the pre-HSCT gut microbiota composition. A Relative abundances of the 12

most abundant families over time in the gut in patients with aGvHD grades 0–I versus II–IV. B Importance plot of top 20 predictive gut ASVs

identified by the svmLinear model with importance scores indicating the mean decrease in prediction accuracy in case the respective ASV would

be excluded from the model. The final cross-validated svmLinear model predicted aGvHD (0–I versus II–IV) from the abundances of gut ASVs pre-

HSCT with 86% accuracy (95% CI: 65 to 97%). The ASVs that were also confirmed by Boruta feature selection are indicated with asterisk. C

Conditional inference tree (CTREE) displaying ASVs identified as significant split nodes by nonparametric regression for prediction of aGvHD.

Numbers along the branches indicate split values of variance stabilized bacterial abundances. The terminal nodes show the proportion of

samples originating from patients (n = number of samples) with aGvHD grade 0–I vs II–IV. D Boxplots depicting the log transformed relative

abundances of the predictive ASVs at time points up to the transplantation in aGvHD grades 0–I compared with grades II–IV patients. E

Trajectories of Lactobacillaceae and Tannerellaceae ASVs that were identified by tree-based sparse LDA, including ASV 3 and ASV 128 that were

predictive for aGvHD (bold lines), in patients with aGvHD grades 0–I vs II–IV
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and Lactobacillaceae ASVs (gut cluster 1, Fig. 7A). Of

note, two of the Lactobacillus spp. ASVs in gut cluster 1

(ASV 31 and ASV 586) were also observed as members

of the group of Lactobacillaceae that discriminated sam-

ples from different time points in the LDA (Fig. 2C). In

the oral cavity, the same lymphocyte subsets were posi-

tively correlated with specific Flavobacteriaceae, Prevo-

tellaceae, Veillonellaceae, and Neisseriaceae ASVs (oral

cluster 3, Additional File 2: Figure S5A). The nasal clus-

ter 1 that was affiliated with high T cell counts com-

prised predominantly Veillonellaceae (Additional File 2:

Figure S5A). The nasal cluster 3 was characterized by

high T cell counts at preexamination and exhibited a

high abundance of ASV 47 (Rothia sp.) and other taxa

that were associated with no to mild aGvHD (grades 0–

I) (Additional File 2: Figure S4).

In the CCpnA, we observed that samples in gut cluster

1 (mainly from months +3 and +6) belonged to patients

with benign primary diseases, who received conditioning

regimens involving fludarabine (Fig. 7B). Moreover,

these patients had a high number of bacterial and viral

infections and were treated often with phenoxymethyl-

penicillin compared with the overall patient population.

In the oral cavity, samples associated with CD4+ T cell

reconstitution similarly stemmed from late follow-up

time points and from preexamination. Patients in oral

cluster 3 were generally treated with few antibiotics. The

CCpnA of the nasal data set indicated that patients with

high CD4+ T cell and TH17 cell counts at late follow-up

time points exhibited moderate to severe aGvHD (grades

II–IV). Furthermore, these patients were treated with

meropenem, ciprofloxacin, and vancomycin more often

compared with the remaining patient population (Figure

S6B Additional File 2). Most samples in the nasal cluster

1 were collected in weeks +2 and +3.

Reconstitution of B cells is associated with gut, oral, and

nasal microbiota

At all three body sites, B cell counts at several late

follow-up time points exhibited associations with micro-

bial abundances. High B cell counts were positively cor-

related with high abundances of Ruminococcaceae,

Lachnospiraceae, and Rikenellaceae, as well as few Veil-

lonellaceae and Lactobacillaceae in the gut (cluster 2,

Fig. 7A). In addition, the gut cluster 2 was associated

with high NK cell counts in month +1. In the oral cavity,

ASVs within the small cluster 1, particularly ASV 422

(Actinomyces odontolyticus) and ASV 546 (Veillonella

parvula), were positively correlated with these cell

counts, whereas ASVs affiliated with Staphylococcaceae

and Lactobacillaceae (oral cluster 2) exhibited negative

correlations (Additional File 2: Figure S5A). ASV 422

(Actinomyces odontolyticus) was also observed within the

group of Actinomycetaceae ASVs in the LDA of the oral

microbiota. In the nasal cavity, abundances of Strepto-

coccaceae, Moraxellaceae, and Corynebacteriaceae

within nasal cluster 3 were positively correlated with

high B cell counts, particularly in month +3 (Additional

File 2: Figure S6A). The CCpnA indicated that samples

in gut cluster 2 were taken predominantly in week +2,

whereas samples in oral cluster 1 were mainly collected

in months +3 and +6 (Fig. 6B and Additional File 2: Fig-

ure S5B).

Both the gut and oral CCpnA indicated that the asso-

ciations between B cell counts and microbial abundances

predominantly occurred in patients who underwent a

conditioning regimen without TBI and without fludara-

bine (in contrast to conditioning regimens involving TBI

or fludarabine). Furthermore, these patients were treated

with ceftazidime, vancomycin, and ciprofloxacin, but

sparsely with other antimicrobial agents (Fig. 7B and

Additional File 2: Figure S5B). The CCpnA on the gut

data set revealed that samples in this cluster (gut cluster

2) originated from both patients diagnosed with malig-

nant diseases and benign diseases (Fig. 7B).

Body site-specific immune–microbial associations

In addition to immune-microbial associations shared be-

tween two or three of the examined body sites, we ob-

served a few patterns that were exclusive to individual

sites. In cluster 3 in the gut, we observed ASVs primarily

affiliated with Bacteroidaceae and Tannerellaceae whose

abundances showed positive correlations with eosinophil

counts in months +3, +6, and +12. In the oral cavity, the

(See figure on previous page.)

Fig. 5 Machine learning-based prediction of aGvHD severity from the pre-HSCT oral microbiota composition. A Relative abundances the 12 most

abundant families over time in the oral cavity in patients with aGvHD grades 0–I versus II–IV. B Importance plot of top 20 predictive oral ASVs

identified by the svmLinear model with importance scores indicating the mean decrease in prediction accuracy in case the respective ASV would

be excluded from the model. The final cross-validated svmLinear model predicted aGvHD (0–I versus II–IV) from the abundances of oral ASVs pre-

HSCT with 92% accuracy (95% CI: 73 to 99%). The ASVs that were also confirmed by Boruta feature selection are indicated with asterisk. C

Conditional inference tree (CTREE) displaying ASVs identified as significant split nodes by nonparametric regression for prediction of aGvHD.

Numbers along the branches indicate split values of variance stabilized bacterial abundances. The terminal nodes show the proportion of

samples originating from patients (n = number of represented samples) with aGvHD grades 0–I vs II–IV. D Boxplots depict the log-transformed

relative abundances of the predictive ASVs at time points up to the transplantation in aGvHD grades 0–I compared with grades II–IV patients. E

Trajectories of Prevotellaceae and Actinomycetaceae ASVs that were identified by tree-based sparse LDA, including ASV 226 and ASV 568 that were

predictive for aGvHD (bold lines), in patients with aGvHD grades 0–I vs II–IV
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sPLS analysis revealed a sub-cluster of oral cluster 3

comprising ASVs affiliated with various families, e.g.,

ASV 1172 (Actinomyces sp.), which was also identified as

one of the discriminating Actinomycetaceae ASVs in the

LDA. In the sPLS analysis, this sub-cluster was associ-

ated with high counts of Treg and TH17 cells at late

follow-up time points (Additional File 2: Figure S6A).

Discussion
Both the microbiota and the immune system are subject

to major changes during allogeneic HSCT. Failure to re-

establish host–microbial homeostasis might have adverse

consequences for the patients, such as prolonged im-

mune deficiency. Long-term surveillance of microbial

dynamics is required to understand (i) the shifts in the

microbial community structure induced by HSCT and

its accompanying treatments and (ii) at which time

points and under which conditions re-establishment of

immunological and microbial homeostasis occurs. Such

knowledge may be of great prognostic value and may as-

sist in guiding personalized treatment strategies. Here,

we present a comprehensive assessment of temporal mi-

crobial abundance trajectories from before, at the time

of, and after HSCT, to late follow-up time points up to 1

year.

We have identified a group of Ruminococcaceae, and a

clade of Blautia spp. (Lachnospiraceae), temporally dis-

criminating microbial community structure in the gut in

relation to HSCT. We show a clear pattern of depletion

of fecal Blautia spp. immediately post HSCT, as well as

their recovery from month +3 post HSCT onwards. One

could describe the trajectories of these potentially bene-

ficial taxa as a “smile”-shape. Previous studies have asso-

ciated the taxonomic families of Ruminococcaceae and

Lachnospiraceae (both class Clostridia), and especially

the genus Blautia (family Lachnospiraceae), with lower

mortality, lower GvHD, and higher bacterial diversity in

adult allo-HSCT recipients [4, 9, 20–22]. In turn, a loss

of those taxa after HSCT was associated with subsequent

adverse outcomes. Our findings extend the potential of

Blautia spp. abundances as an indicator of favorable

clinical outcomes, as we characterize abundance dynam-

ics in children and provide important insight into the

time point for the expected return to abundances com-

parable to pre-HSCT time points (i.e., between months

+1 and +3).

Adverse effects, like bacteremia and GvHD, have been

found to accompany an expansion of the genus Entero-

coccus post transplantation [2, 3, 6, 23]. We have found

a characteristic expansion of this genus, as well as of cer-

tain Lactobacillaceae after HSCT, in agreement with

other recent studies [4, 6, 11]. In addition, we were able

to show a decrease of Enterococcus spp. and Lactobacil-

laceae from month +3 to abundances comparable to

pre-HSCT levels. The abundance of these taxa over the

course of 1 year might be described as a “frown”-shaped

trajectory. As for the “smile” trajectory of potentially

beneficial taxa, the “frown” trajectories of these taxa

could be the first step towards a novel basis to evaluate

the re-establishment of patients’ microbial homeostasis

and associated convalescence. Importantly, Enterococcus

was already higher in abundance in the patient cohort at

preexamination prior to HSCT as compared with the

healthy age-matched cohort, most likely due to prior

chemotherapy and antibiotic treatment given before re-

ferral to HSCT. Knowledge about the abundance level of

Enterococcus before HSCT could therefore provide valu-

able information about potential high-risk individuals

already prior to transplantation. It should be noted,

however, that despite the observed different abundance

levels in patients and healthy controls, and the further

expansion of Enterococcus post HSCT being in line with

previous studies, our multivariate analyses did not reveal

direct detrimental host–microbial associations of Entero-

coccus in the present cohort.

We have, to our knowledge, for the first time, deter-

mined long-term dynamics of the oral and nasal micro-

biota in allogeneic HSCT patients. Interestingly, we

identified abundance trajectories of phylogenetically

closely related groups of Actinomycetaceae,

(See figure on previous page.)

Fig. 6 Combined machine learning-based prediction of aGvHD severity from the pre-HSCT microbiota composition of all three body sites (gut,

mouth, nose). A Conditional inference tree (CTREE) displaying ASVs identified as significant split nodes by nonparametric regression for the

prediction of aGvHD from the time points before HSCT. Numbers along the branches indicate split values of variance stabilized bacterial

abundances. The terminal nodes show the proportion of samples originating from patients (n = number of represented samples) with aGvHD

grades 0–I vs II–IV. The icons indicate at which body sites the ASVs were detected. The less predominant body sites are indicated in parenthesis.

B Boxplots depict the log-transformed relative abundances of the predictive ASVs at time points up to the transplantation in aGvHD grades 0–I

compared with grades II–IV patients. The y-axis is the same for all plots and indicated once for the most upper left plot. C Comparison of the

combined machine learning model with the individual body site-specific models. The results from the three body site-specific analyses

(svmLinear model, Boruta feature selection, regression framework with CTREE) are indicated for the seven taxa identified in the combined

machine learning model. Blue color indicates agreement, and white color indicates that the ASV was not detected as being significant in the

particular analysis. While the most significant ASV_131 Parabacteroides distasonis in the combined analysis was not identified as being significant

in the CTREE for the body site-specific analysis of the gut, a closely related Parabacteroides distasonis (ASV_128) was identified as being the most

significant taxon in the gut by the body site-specific CTREE analysis
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Streptococcaceae, Prevotellaceae, and Family XI (Gemella

spp., Class Bacillales) in the oral cavity, resembling the

“smile”-shaped trajectories observed in the gut. These

taxa are part of the normal oral microbiota. Our findings

are in agreement with previous studies reporting the de-

tection of fewer Prevotella spp. and Streptococcus spp. in

the oral cavity during the first month post HSCT [24,

25]. In addition, our current study provides insight into

the time of recovery of these taxa in month +3 after

HSCT.

For the oral cavity, a post-transplant expansion of En-

terococcus spp. and Staphylococcus spp. has been re-

ported previously [25, 26]. Consistently, we observed an

increased relative abundance of Staphylococcaceae dur-

ing the first month post HSCT, but we did not identify

Enterococcus spp. or Staphylococcus spp. as significant

drivers of temporal dynamics in the oral cavity. Previ-

ously, increased Enterococcus abundances post HSCT

were found predominantly in patients who developed

oral mucositis, which was not directly assessed in our

study [25, 27]. Therefore, our findings suggest that fur-

ther investigation of taxa that exhibit “smile”-like abun-

dance trajectories could be relevant in direct relation to

oral mucositis. Especially Actinomycetaceae, Streptococ-

caceae, and Prevotellaceae, when low-abundant, might

be candidates for bacterial predictors of oral mucositis,

and furthermore might be employed to facilitate pre-

ventive management.

In the nasal cavity, the microbiota did not exhibit tem-

poral patterns as distinct as the “smile”- and “frown”-

shaped trajectories in the gut and the oral cavity. One

could speculate that nasal bacterial abundance patterns

might be more individualized, which might in turn con-

ceal pronounced patterns when looking at the patient

population as a whole. However, certain host–microbial

associations observed in the gut were reflected in the

nasal cavity. For instance, reconstitution of CD4+ T cells

and the TH17 subset were associated with distinct

groups of ASVs at all three body sites.

Together, these findings suggest that the oral and po-

tentially also the nasal cavity might constitute easily ac-

cessible microbial niches suitable for investigating host–

microbial associations in the context of HSCT, similar to

current strategies for the gut. While mucous membranes

that are in close association with distinct microbial com-

munities characterize all three niches, it is more feasible

to collect buccal and anterior nares swabs during clinical

routine as compared with collecting fecal samples. Fecal

sample collection is dependent on bowel movements,

which often are impaired in this patient group. There-

fore, our study provides valuable knowledge for possible

future applications that could include the monitoring of

oral microbial dynamics in clinical routine, which might

be easier to implement than routine fecal sampling.

We identified several ASVs from all three body sites

that appeared to have the potential to predict post-

transplant aGvHD, which might open opportunities to

improved preventive clinical management, for example

by intensified prophylactic immunosuppression for pa-

tients at increased risk. Some ASVs were significant for

both, discriminating the microbiota in long-term dy-

namics as well as in the prediction of aGVHD sever-

ity from the microbiotas prior to HSCT, such as ASV

3 (Lactobacillus sp.) in the gut, as well as ASV 568

(Actinomyces sp.) and ASV 226 (Prevotella melanino-

genica) in the oral cavity. While we do not yet under-

stand the biological mechanisms underlying this

observation, these taxa could be of particular interest

for a long-term monitoring in pediatric HSCT pa-

tients, starting prior to HSCT. Like the gut micro-

biota, the oral and nasal commensal residents might

be of systemic relevance, and a more holistic picture

of microbial influences might be drawn by examining

various niches with bacterial communities potentially

interacting across body sites. In light of intimate

host–microbiota interactions, the microbial commu-

nity patterns might also be a marker for underlying

changes occurring in the immune system.

(See figure on previous page.)

Fig. 7 Multivariate associations of the gut microbiota with immune and clinical parameters in HSCT. A Clustered image map (CIM) based on

sparse partial least squares (sPLS) regression analysis (dimensions 1, 2, and 3) displaying pairwise correlations > 0.3/< − 0.3 between ASVs

(bottom) and continuous immune and clinical parameters (right). Red indicates a positive correlation, and blue indicates a negative correlation,

respectively. Based on the sPLS regression model, hierarchical clustering (clustering method: complete linkage, distance method: Pearson’s

correlation) was performed resulting in the three depicted clusters. B Canonical correspondence analysis (CCpnA) relating gut microbial

abundances (circles) to continuous (arrows) and categorical (+) immune and clinical parameters. ASVs and variables with at least one correlation

> 0.3/< − 0.3 in the sPLS analysis were included in the CCpnA. The triplot shows variables and ASVs with a score > 0.3/< − 0.3 on at least one of

the first three CCpnA axes, displayed on axis 1 versus 2 with samples depicted as triangles. The colored ellipses (depicted with 80% confidence

interval) correspond to the clusters of ASVs identified by the sPLS-based hierarchical clustering. Antibiotics are indicated in blue font color.

Abbreviations not mentioned in text: ATGmm, anti-thymocyte globulin; B_, blood; BU, busulfan; CY, cyclophosphamide; DonorMatch6, matched

unrelated donor; FLU_other, fludarabine combinations without thiotepa; GvHD.Prophylaxis1, treatment with cyclosporine; GvHD.Prophylaxis7,

treatment with cyclosporine and methotrexate; immat_B, immature B cells; K_d100, Karnofsky score on day +100; K_pre, Karnofsky score before

HSCT; m1, month+1; m3, month +3; m6, month +6; m12, month +12; mat_B, mature B cells; MEL, melphalan; total_B, total B cells; P_, plasma;

parasitic, parasitic infection; pre_cond, before conditioning start; pre_exam, preexamination; THIO, thiotepa; viral, viral infection; VP16, etoposide
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High abundances at late follow-up time points of two

fecal Lactobacillus spp. that expanded after HSCT

showed positive correlations with T cell reconstitution.

This is in line with previous studies suggesting that the

expansion of Lactobacillus, a genus commonly associ-

ated with probiotic properties, might promote immune

homeostasis and thereby exert a protective effect to limit

Enterococcus expansion [4, 23, 28]. A potential explan-

ation indicated by our results might be that high Lacto-

bacillus abundances outlasting enterococcal dominance

promotes T cell reconstitution. However, the associated

cell populations include TH17 cells which can facilitate

inflammation, and therefore, it is difficult to determine

whether the observed Lactobacillus expansion is exclu-

sively beneficial [13]. However, Th17 cells could perhaps

add to the host defense in these patients and therefore

be beneficial for local homeostasis, although with the

unusual cost of harmful inflammation.

Furthermore, we found associations of high Lachnos-

piraceae and Ruminococcaceae in the gut with rapid B

and NK cell reconstitution, which is in support of our

previous study [4]. These two Clostridiales families play

an important role in providing the host with short-chain

fatty acids (SCFAs), such as butyrate [5, 29]. A study

demonstrated that SCFAs can facilitate the differenti-

ation of human naïve B cells to plasma cells in culture

[30]. Whether SCFAs also directly influence B cell prolif-

eration is yet unknown.

We have made several observations in which infections

and/or antibiotic treatments were associated with the

abundance of specific bacterial clusters at certain body

sites, immune cell counts, and aGvHD. For example, pa-

tients whose samples were represented by gut micro-

biota cluster 1 experienced a high number of infections

and were treated often with phenoxymethylpenicillin

compared with the overall patient population. In con-

trast, patients affiliated with gut microbiota cluster 2 ex-

perienced treatment with ceftazidime, vancomycin, and

ciprofloxacin, but sparsely with other antimicrobial

agents. Furthermore, patients affiliated with oral micro-

biota cluster 3 were generally treated with few antibi-

otics, and patients whose samples were represented by

the nasal microbiota cluster 1 were treated often with

meropenem, ciprofloxacin, and vancomycin compared

with the remaining patient population. However, it is

challenging to interpret these observations, as these pa-

tient samples were also associated with other features,

such as an increased or decreased abundance of certain

immune cells (see Additional file 3 for further discus-

sion), or the patients were exposed to other treatments

as well, such as TBI or fludarabine. Overall, however,

our observations are consistent with previous reports

that antimicrobial treatment is associated with changes

in microbiota composition in patients undergoing allo-

HSCT and might impact clinical outcomes [4, 11, 31–

33]. It will be important to gain a more mechanistic un-

derstanding of the possible effects of antimicrobial treat-

ment to disentangle the effect of antibiotics from that of

other medications and host responses. Such insight

could for example allow selecting more suitable antimi-

crobials for treatment in HSCT patients that spare the

elimination of beneficial taxa, whose decline might be

associated with more severe clinical outcomes. The

choice of antibiotic treatment might also be important

to take into consideration in patients that might poten-

tially be referred to HSCT eventually, given that we

already observed certain changes in the microbiota in

the patients at referral compared with healthy controls.

The microbiota at referral already exhibited some fea-

tures that were associated with more severe side effects.

Associations between aGvHD severity and the micro-

biota have to date merely been based on logistic regres-

sion and correlation analyses [8, 34–36]. In addition,

microbial abundances at the time of neutrophil recovery

or engraftment were assessed, i.e., at time points shortly

before, concurrent to, or potentially after aGvHD onset

[8, 16, 36]. Here, we have implemented machine learning

techniques to take the assessment of microbiota–aGvHD

relations from correlative to predictive modeling: We

presented evidence that aGvHD severity may be pre-

dicted from pre-HSCT microbial abundances in the gut,

as well as in the oral and nasal cavities. This could open

up opportunities for the future where microbial markers

guide early interventions to prevent aGvHD. This could

include a modulation of the microbiota of patients pre-

dicted to be at high risk with synthetic microbiotas con-

taining beneficial bacteria, including probiotics. Notably,

we have, to our knowledge, for the first time, revealed

microbial taxa in the oral and nasal cavities that may

predict aGvHD. A further discussion on possible con-

nections between specific microbial taxa of the gut, oral

and nasal cavities, immune responses, and aGvHD can

be found in Additional file 3.

Conclusions
With the present study, we bring forward a comprehen-

sive framework of host–microbial associations in allo-

geneic HSCT. We focused on long-term microbial

dynamics, demonstrating distinct microbial abundance

patterns of disturbance and recovery, as well as making

predictions about aGvHD from the pre-transplant

microbiota. We discovered that the microbial commu-

nity composition in patients prior to HSCT already dif-

fers somewhat from healthy controls in regard to key

microbial taxa, opening up opportunities for potential

preventive measure in the future. Moreover, we con-

firmed the depletion of Blautia spp. and expansion of

Enterococcus spp. in the gut after HSCT and expand this
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knowledge by precisely defining which phylogenetically

closely related sequence variants of these genera are

characteristic for those patterns, and when they return

to pre-HSCT levels. We identified similar patterns for

members of the oral and nasal microbiota and propose

month +3 post-transplant as a possible universally cru-

cial time point for microbiota reconstitution after HSCT.

We demonstrate that high abundances of intestinal P.

distasonis (Tannerellaceae) as well as oral Actinomyces

sp. (Actinomycetaceae) and other taxa from different

body sites pre-HSCT predict the development of moder-

ate to severe aGvHD post-transplant. When relating mi-

crobial abundances with immune cell counts, we found

rapid B and NK cell reconstitution to be associated with

high abundances of Lachnospiraceae and Ruminococca-

ceae, which also depended on antibiotics treatment. Dis-

tinct ASVs at all three body sites were associated with

TH17 cell counts, suggesting future research on a poten-

tial immunomodulatory involvement of the microbiota

in inflammation regulation, which might play a role for

aGvHD development. We have discovered host–micro-

bial associations shared between two or more of the ex-

amined body sites. This may open up opportunities for

implementing a more feasible oral and nasal swab sam-

pling into research and clinical diagnostic activities to

design more precise patient treatment strategies to re-

duce serious side effects and improve immune and

microbiota reconstitution.

Materials and methods
Patient recruitment and sample collection

We recruited 29 children (age range: 2.5–16.4 years)

who underwent their first myeloablative allogeneic

hematopoietic stem cell transplantation at Copenhagen

University Hospital Rigshospitalet (Denmark) between

November 2015 and October 2017. We provide detailed

information about the patients’ clinical characteristics in

Table S1 (Additional File 1). Every patient underwent a

myeloablative conditioning regimen starting on day − 10

for patients receiving a graft from a haploidentical donor

and on day − 7 for patients with sibling or matched un-

related donors (Additional File 1: Table S1). One patient

had a donor lymphocyte infusion on day +223 after the

first transplantation. Immune cell count date of this pa-

tient was excluded from our analysis from the time of

donor lymphocyte infusion. We grouped the patients

into four categories of conditioning regimens: (1) TBI_

CY_or_TBI_VP16 (n = 6; TBI + cyclophosphamide or

TBI + etoposide), (2) BU_CY_VP16_MEL_combos (n =

6; combinations of busulfan, cyclophosphamide, etopo-

side, and melphalan), (3) FLU_THIO (n = 12; subgroups:

fludarabine + busulfan + thiotepa (n = 6); fludarabine +

treosulfan + thiotepa (n = 4); fludarabine + thiotepa (n =

1); fludarabine + cyclophosphamide + thiotepa (n = 1)),

and (4) FLU_other (n = 5; subgroups: fludarabine + bu-

sulfan (n = 2); fludarabine + cyclophosphamide (n = 2);

fludarabine + treosulfan (n = 1)) (Additional File 1:

Table S1). The following sampling time points were de-

fined: preexamination (between day − 57 and day − 15),

around the start of conditioning (between day − 14 and

day − 3 and latest 2 days after conditioning start), at

time of HSCT (between day − 2 and day +2), and weekly

during the first 3 weeks after transplantation (week +1:

day +3 to day +10, week +2: day +11 to day +17, week

+3: day +18 to day +24) (Fig. 1A). Broader intervals ap-

plied to follow-up time points: Month +1 (between days

+25 and +45), month +3 (between days +46 and +120),

month +6 (between days +121 and +245), and month

+12 (between days +246 and +428). Acute GvHD was

graded by daily clinical assessment of skin, liver, and

gastrointestinal manifestations according to the Glucks-

berg criteria [37]. We group aGvHD severity into grades

0−I and grades II−IV, reflecting clinical practice where

grade I represents limited alloreactivity with no (or very

limited) impact on the overall clinical outcome of HSCT,

and therefore no need for medical treatment of these pa-

tients, such as the use of glucocorticoids, which is first-

line treatment for grades II−IV aGvHD.

To address certain specific questions, we also analyzed

the microbiota (from time point 0) of a cohort of 18

healthy children that were part of a previous study [19].

The median age of these children was 6.8 years (inter-

quartile range 4.6 to 9.6). A total of 30 fecal samples

were obtained (11 children provided two samples each

within an interval of 6 months). The children did not re-

ceive any antibiotics within the month prior to sample

collection. The samples were processed in the same way

as the fecal samples of the patients of this study (de-

scribed below).

Infections and antibiotics

Records of bacterial, fungal, viral, and parasitic infections

and antibiotic treatment from before HSCT (from day −

30 or at the collection time of the first microbiota sam-

ple in case this was earlier) until month +12 (day +428)

were taken into consideration (or as long as data was

available for the most recent patients; data accessed in

July 2018). This corresponds to the length of the sam-

pling period of fecal and swab samples.

Analysis of immune cell subpopulations

Leukocyte counts were recorded daily during

hospitalization starting prior to HSCT and later weekly

in the outpatient clinic by flow cytometry (Sysmex XN)

or microscopy (CellaVision DM96 microscope) in case

of very low counts. Monitored subpopulations included

lymphocytes, monocytes, neutrophils, basophils, and

eosinophils.
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Analysis of T, B, and NK cells in peripheral blood

T, B, and NK cell counts in x109/L were determined at

preexamination, and in months +1, +3, +6, and +12.

Trucount tubes (Becton Dickinson, Albertslund,

Denmark) were used to quantify these cell types in per-

ipheral blood on a FC500 flow cytometer (Beckman

Coulter, Copenhagen, Denmark). For immunofluores-

cence staining, the following conjugated monoclonal

antibodies were used for CD3+ T cells, CD3+CD4+ T

cells and CD3+CD8+ T cell quantification: CD3-PerCP,

CD3-FITC, CD4-FITC, and CD8-PE (Becton Dickinson).

CD45-PerCP, CD16/56-PE antibodies were used to de-

termine NK cells based on their CD45+CD16+CD56+

phenotype. For B cells, total B cells (CD45+CD19+), ma-

ture B cells (CD45+CD19+CD20+) and immature B cells

(CD45+CD19+CD20-) were differentiated by using

CD20-FITC and CD19-PE antibodies.

Subtyping of T cells

Peripheral blood samples were collected in months +1,

+3, and +6 for isolation of peripheral blood mono-

nuclear cells (PBMCs) by gradient centrifugation of hep-

arinized blood with Lymphoprep™ (Axis-Shield, Oslo,

Norway). PBMCs were washed in PBS (Life Technolo-

gies, Invitrogen, Paisley, UK) three times and then resus-

pended in RPMI 1640 buffer containing HEPES

(Biological Industries Israel Beit-Haemek Ltd, Kibbutz

Beit-Haemek, Israel), L-glutamine (GIBCO, Invitrogen,

Carlsbad, CA, USA) and Gentamycin (GIBCO), 30% fetal

bovine serum (Biological Industries) and 10% dimethyl

sulfoxide (VWR, Herlev, Denmark) for cryopreservation

in liquid nitrogen.

T cell subsets, i.e., TH17 cells and Treg cells, were

quantified from frozen PBMCs by flow cytometry on a

FACS Fortessa III flow cytometer (Becton Dickinson,

Albertslund, Denmark). PBMCs were thawed and

washed before incubation with Fixable viability stain 620

(Becton Dickinson) and a set of conjugated monoclonal

antibodies for 30 min on ice: CD3-APC-A750 (Beck-

mann Coulter), CD4-PE-Cy7 (Beckmann Coulter), CD8-

A700 (Becton Dickinson), CD25-PE (Becton Dickinson),

CD39-PerCP-Cy5.5 (Beckmann Coulter), CD196-BV510

(Biolegend, San Diego, USA), CD127-BV711 (Biolegend),

CD161-BV650 (Becton Dickinson), and CD45RA-BV786

(Becton Dickinson). Next, PBMCs were washed and in-

cubated with transcription factor buffer set (BD) for 45

min on ice. Afterwards, PBMCs were washed twice and

intracellular monoclonal antibodies were added and in-

cubated for 45 min on ice: RORγT-A488 (Becton Dick-

inson), FOXp3-A647 (Becton Dickinson) and Helios-PB

(Beckmann Coulter). TH17 cells were determined by the

CD4+RORγT+ phenotype, and Treg cells by the

CD4+CD25highFOXp3+ phenotype. Absolute cell counts

in x109/L were obtained by multiplying the frequency of

TH17 and Treg cells with the CD4+ T cell count from the

same time point.

Quantification of inflammation and infection markers

Markers were measured at the Department of Clinical

Biochemistry, Copenhagen University Hospital Rigshos-

pitalet, Denmark. As a marker of infection, plasma pro-

calcitonin was determined by sandwich

electrochemiluminescence immunoassays (ECLIA). As a

marker of systemic inflammation, CRP was measured by

latex immunoturbidimetric assays (LIA).

DNA isolation from fecal, oral, and nasal samples and 16S

rRNA gene sequencing

A total of 212 fecal samples for analysis of the intestinal

microbiota were collected from 29 patients at the 10

time points described above. The gut microbiota was

characterized at ≤ 6 time points in 9 patients (31%), at

7–8 time points in 13 patients (45%) and at 9–10 time

points in 7 patients (24%) (Additional File 1: Table S1).

DNA from fecal samples, one blank control per extrac-

tion round (thereof sequenced: 14), one mock commu-

nity sample (Biodefense and Emerging Infectious

Research (BEI) Resources of the American Type Culture

Collection (ATCC) (Manassas, VA, USA), Catalog No.

HM-276D) per sequencing run and two collection tube

controls was isolated using the QIAamp Fast DNA Stool

Mini kit (Qiagen, Venlo, Netherlands), following the

manufacturer’s instructions with modifications according

to [38].

We collected 248 buccal swabs (3x at ≤ 6 time points

(10%), 11x at 7–8 time points (38%), 15x at 9–10 time

points (52%)) and 249 anterior naris swabs (3x at ≤ 6

time points (10%), 9x at 7–8 time points (31%), 17x at

9–10 time points (59%)). DNA from swab samples, one

blank control per extraction round (thereof sequenced:

28), one mock community sample per run, two collec-

tion tube controls, and two sampling swab controls was

isolated using the QIAamp UCP Pathogen Mini kit (Qia-

gen, Venlo, Netherlands), with the ‘Protocol: Pretreat-

ment of Microbial DNA from Eye, Nasal, Pharyngeal, or

other Swabs (Protocol without Pre-lysis)’ and subse-

quently the ‘Protocol: Sample Prep (Spin Protocol)’, fol-

lowing the manufacturer’s instructions with the

following modifications: 550 μl instead of 500 μl Buffer

ATL was used during pretreatment; DNA was eluted

twice with 20 μl Buffer AVE into 1.5 ml DNA LoBind

tubes (Eppendorf, Hamburg, Germany) instead of the

tubes provided with the kits.

Library construction and sequencing on an Illumina

MiSeq instrument (Illumina Inc., San Diego, CA, USA)

was performed at the Multi Assay Core facility (DMAC),

Technical University of Denmark. DNA concentration of

each sample was measured using a NanoDrop
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spectrophotometer (Thermo Scientific, Waltham, MA,

USA). Library construction was performed according to

the 16S Metagenomic Sequencing Library Preparation

protocol by Illumina [39]: the V3–V4 region of the 16S

ribosomal RNA gene were amplified in a PCR in each

sample and in the controls, using the following previ-

ously evaluated primers, preceded by Illumina adapters

[40]: 341F (5’-TCGTCGGCAGCGTCAGATGTGT

ATAAGAGACAGCCTACGGGNGGCWGCAG-3’) and

805R (5’-GTCTCGTGGGCTCGGAGATGTGTATAAG

AGACAGGACTACHVGGGTATCTAATCC-3’). Ampli-

cons were then analyzed for quantity and quality in an

Agilent 2100 Bioanalyzer with the use of an Agilent

RNA 1000 Nano Kit (Agilent Technology, Santa Clara,

CA, USA). Subsequently, the amplicons were purified on

AMPure XP Beads (Beckman Culter, Copenhagen,

Denmark) according to the manufacturer’s instructions.

Illumina adapters and dual-index barcodes were then

added to the amplicon target in a PCR according to Illu-

mina [39] using the 96 sample Nextera XT Index Kit

(Illumina, FC-131–1002). A final clean-up of the librar-

ies was performed in another PCR step, using AMPure

XP Beads (Beckman Culter, Copenhagen, Denmark) ac-

cording to the manufacturer’s instructions, followed by a

confirmation of the target size in an Agilent 2100 Bioa-

nalyzer (Agilent Technologies). Before sequencing, DNA

concentration was determined with a Qubit (Life Tech-

nologies, Carlsbad, CA, USA) and libraries were pooled.

In preparation for sequencing, the pooled libraries were

denatured with NaOH, diluted with hybridization buffer,

and heat denatured. A concentration of 5% PhiX was in-

cluded as an internal control for low-diversity libraries.

Paired-end sequencing with 2 × 300 bp reads was per-

formed with a MiSeq v3 reagent kit on an Illumina

MiSeq instrument (Illumina Inc., San Diego, CA, USA).

16S rRNA gene sequence pre-processing

Raw sequence reads were demultiplexed based on

sample-specific barcodes, and ‘read 1’ and ‘read 2’ FAST

Q files for each sample were generated on the Illumina

MiSeq instrument by the MiSeq reporter software.

Primers were removed by using cutadapt (version 1.16)

[41] at a tolerated maximum error rate of 15% for

matching the primer sequence anchored in the begin-

ning of each read. In the case that at least one read of a

pair did not contain the primer, the pair was discarded.

Only pairs in which the forward read contained the for-

ward primer (341F) and the reverse read contained the

reverse primer (805R) were retained.

The resulting reads were further processed using the R

package DADA2 (version 1.8) to infer high-resolution

amplicon sequence variants (ASV) [42]. Forward and re-

verse reads were truncated at 280 bp and 200 bp, re-

spectively. This way, the majority of reads retained a

quality score > 25 according to MultiQC analysis [43].

These truncation thresholds also ensured an overlap of

480 bp (expected amplicon length of 460 bp + 20 bp),

allowing to merge forward and reverse reads. Samples

were pooled for the sample inference step (dada() func-

tion) to increase the power for detecting rare variants.

Default values were used for all other quality filtration

parameters in DADA2. DNA from samples with a read

count < 10,000 after preliminary chimera and contamin-

ant removal were re-sequenced. DNA from feces sam-

ples with a read count < 5000 were re-extracted.

Eventually, chimeras were identified by sample and re-

moved from the whole data set (over all sequencing

runs) based on a consensus decision (removeBimeraDe-

novo() function, method “consensus”). Taxonomic as-

signment on ASVs was done by using the Silva reference

data base (version 132), formatted for DADA2 [44].

Additional species assignment by exact reference strain

matching was performed using the Silva species-

assignment training database, formatted for DADA2

[44].

The resulting ASV and taxonomy tables were inte-

grated with the R package phyloseq and its dependencies

(version 1.24.0) [45]. The data was split into two data

sets, one containing feces sample data and one contain-

ing nasal and oral swab data. Subsequently, contaminant

removal was performed with the R package decontam

[46]. Potential technical batch effects by sequencing run,

96-well plate, extraction kit, extraction round, experi-

menter, and extraction date were assessed by ordination

(Principal Coordinates Analysis (PCoA)).

For both, the fecal sample data set and the swab data

set, contaminants were identified by sequencing run as a

batch effect and a subsequent calculation of a consensus

probability. For the feces sample data set, contaminants

were identified by both, increased prevalence in 14 blank

extraction controls and by relating ASV frequency to

post-PCR sample DNA concentration, assuming inverse

correlation (method “both”, frequency threshold: 0.2,

prevalence threshold: 0.075) [46]. After manual evalu-

ation of edge cases, 89 ASVs were removed from the

fecal sample data set as contaminants. In an additional

step, we identified 7 contaminants from 2 sampling tube

controls (method and thresholds as stated above). In

total, 96 ASVs were removed as contaminants from the

fecal sample data set.

For the swab sample data set, contaminants were iden-

tified by both, increased prevalence in 28 blank extrac-

tion controls and by relating ASV frequency to post-

PCR sample DNA concentration (method “both”, fre-

quency threshold: 0.1, prevalence threshold: 0.6) [46]. A

more stringent threshold for prevalence compared to

frequency was chosen here, given the low biomass of the

swab samples, accompanied by post-PCR DNA
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concentrations similar to those in blank controls. After

manual evaluation of edge cases, 1137 ASVs were re-

moved from the swab sample data set as contaminants.

In an additional step, we identified 16 contaminants

from 2 sampling tube controls and 2 swab controls

(method “both”, frequency threshold: 0.075, prevalence

threshold: 0.5). In total, 1153 ASVs were removed as

contaminants from the oral and nasal swab sample data

set.

For each subset, we created a phylogenetic tree by de

novo alignment of the inferred ASVs, following a previ-

ously described workflow [47]. First, we performed mul-

tiple alignment with the package DECIPHER [48].

Subsequently, we built a neighbor-joining tree using the

package phangorn [49], based on which we fitted a

GTR+G+I (Generalized time-reversible with Gamma

rate variation) maximum likelihood tree. The phylogen-

etic tree for each data set (fecal, oral, and nasal) was

then integrated with the respective phyloseq object.

Next, we took core subsets of the ASVs remaining

after contaminant removal using the function kOverA()

from R package genefilter [50]. In the fecal set, 2465

ASVs with ≥ 5 reads in ≥ 2 samples were retained. With

≥ 5 reads in ≥ 10 samples, 509 ASVs were retained from

the oral sample set, and 602 ASVs from the nasal sample

set. Additional manual contaminant filtering was applied

to the oral and nasal core sets. ASVs affiliated with taxo-

nomic families commonly found in both the oral or

nasal cavity and the gut were only retained in the oral

sample set in case they had ≥ 10 reads in ≥ 10 samples.

ASVs of families only expected in the gut were removed

from the oral and nasal sample sets after manually asses-

sing their abundances. Subsequently, we retained 377

ASVs in the oral sample set and 197 ASVs in the nasal

sample set.

For the comparison of the fecal microbiota in preexa-

minantion samples (n = 15) of HSCT patients and

healthy children (n = 18), these data were combined in a

phyloseq object. The same set of putative contaminants

was removed from the healthy data set as were identified

within the full fecal data set of HSCT patients. Subse-

quently, a core subset was taken as described above

(retaining ASVs with ≥ 5 reads in ≥ 2 samples).

Statistical analysis

Statistical analyses and generation of graphs was per-

formed in R (version 3.5.1, R Foundation for Statistical

Computing, Vienna, Austria) [51]. The R scripts docu-

menting the major steps of our statistical analyses are

available from figshare (https://doi.org/10.6084/m9.

figshare.12280001). Sequencing data and experimental

and clinical data (https://doi.org/10.6084/m9.figshare.

12280028 ) were integrated for analysis by using the R

package phyloseq and its dependencies [45]. We also

provide the resulting phyloseq objects through figshare

(https://doi.org/10.6084/m9.figshare.12280004). Plots

were generated with the packages ggplot2 [52], mixO-

mics [53], treeDA [54], caret [55], and partykit [56, 57].

From the core sets of ASV counts for each body site,

bacterial alpha diversity (denoted by the inverse Simpson

index) was calculated and compared between time

points by using a Friedman test with Benjamini-

Hochberg correction for multiple testing, and a post hoc

Conover test. To gain insight into changes of microbial

abundances over time in relation to HSCT, we agglom-

erated ASV counts on family levels with the function

tax_glom() in phyloseq [45]. Thereafter, we displayed the

relative abundances of the 12 most abundant families at

each body site for each time point. We also depicted

relative abundances over time on family level in patients

with aGvHD grades 0–I versus grades II–IV.

In order to determine which particular ASVs are rele-

vant in temporal microbial abundance dynamics at each

body site, we implemented tree-based sparse linear dis-

criminant analysis (LDA) with the package treeDA [54].

This supervised method implements prior information

about phylogenetic relationships between ASVs to per-

form supervised discrimination of classes, here time

points, and induces sparsity constraints to increase inter-

pretability [58]. Leaves and nodes of the phylogenetic

tree, representing log+1-transformed ASV abundances

and the sums thereof respectively, were used as predict-

ive features. The core oral and nasal sets were used as

input as described above, while the fecal set was further

reduced to 389 ASVs with > 5 reads in > 10 samples for

this analysis. Leave-one-out cross validation (LOOCV)

was performed to choose the optimal minimum number

of predictive features ensuring sparse, interpretable

models. The resulting LDA models had 9 components.

By default, this number corresponds to the number of

predicted classes (here 10 time points) less one. To iden-

tify relevant components, we plotted sample scores col-

ored by time points along each component and plotted

the components pairwise against each other (Fig. 1C).

Thereby, we revealed that the first LDA component for

each body site showed the highest sample scores and

best separated the samples by time point. Therefore, we

proceeded with displaying temporal trajectories of clades

of predictive features (ASVs) on the first component.

For selected groups of predictive ASVs we displayed tra-

jectories for patients with aGvHD grades 0–I versus with

grades II–IV.

Next, we implemented machine learning models to

predict aGvHD grade post-transplant from preceeding

ASV abundances. The strategy and R code for the ma-

chine learning approach was partially adapted from a

previous approach [59, 60]. As a preparative step for this

analysis, we variance-stabilized the ASV count data. To

Ingham et al. Microbiome           (2021) 9:148 Page 22 of 28

https://doi.org/10.6084/m9.figshare.12280001
https://doi.org/10.6084/m9.figshare.12280001
https://doi.org/10.6084/m9.figshare.12280028
https://doi.org/10.6084/m9.figshare.12280028
https://doi.org/10.6084/m9.figshare.12280004


do so, we first performed size factor estimation for zero-

inflated data on the core data sets for each body site

with the package GMPR [61]. Subsequently, we trans-

formed the data by using the function varianceStabil-

izingTransformation() in the package DESeq2 [62]. The

function implements a Gamma-Poisson mixture model

to account for both library size differences and biological

variability [63]. For the prediction of aGvHD grade, we

compared the performances of four different classifiers

(random forest (rf), boosted logistic regression (Logit-

Boost), support vector machines with linear kernel

(svmLinear), and support vector machines with radial

basis function kernel (svmRadial)) using the package

caret [55]. We took subsets of the phyloseq objects com-

prising only the time points preceding aGvHD onset:

preexamination, conditioning start, and at the time of

HSCT. Prior to fitting the models, we excluded ASVs

with near-zero variance (i.e. those that were not differen-

tially abundant between any samples) by using the func-

tion nearZeroVar() in package caret [55]. Thereby we

obtained sets of 238, 186, and 100 ASVs for the fecal,

oral, and nasal data set, respectively, which were then

assessed as potential predictors of subsequent aGvHD.

All classifiers were trained on a randomly chosen subset

of 70% of the data to build a predictive model evaluated

on a test set (30% of the data). Splitting was performed

in a way that samples from the same patient at different

time points were kept together in either the testing or

training set to ensure that the outcome of a patient can

only appear in either the testing set or the training set,

but not both. Thirty iterations of 10-fold cross-

validation were performed for each classifier, both with

and without up-sampling. Up-sampling refers to the

process of replacement-based sampling of the class with

fewer samples (here aGvHD grades II–IV) to the same

size as the class with more samples (here aGvHD grades

0–I) to achieve a balanced design. svmLinear on up-

sampled data was chosen as the best performing predict-

ive model for all three data sets (gut, oral, and nasal).

Subsequently, we performed Boruta feature selection

using the package Boruta [64]. The Boruta algorithm is a

Random Forest classification-based wrapper that com-

pares the importance of real features to that of so called

‘shadow attributes’ with randomly shuffled values. Fea-

tures that are less important than the ‘shadow attributes’

are iteratively removed. Here, we retained those ASVs in

each data set that were both, among the 50 most im-

portant predictors in the svmLinear model and con-

firmed by the Boruta algorithm (Additional File 1: Table

S3). Subsequently, we fitted a CTREE on each set of se-

lected predictors (17 gut, 26 oral, and 12 nasal ASVs) by

using the package partykit (Additional File 1: Table S3)

[56, 57]. In the CTREE analysis, the effect of the predict-

ive ASVs on aGvHD grade is evaluated in a

nonparametric regression framework. Using CTREE, we

found 3 significant ASVs each in the gut and in the oral

data set, and two significant ASVs in the nasal data set.

CTREE iteratively tests if the abundance of any ASV has

a significant effect on aGvHD grade. In the case that a

significant relation is found, the ASVs with the largest

effect is picked as a node for the tree. The procedure is

then recursively repeated until no further significant ef-

fect of any ASV on aGvHD is found. We plotted the re-

sult as a tree featuring the significant split nodes,

represented by the ASVs and the Bonferroni-corrected P

values indicating significant influence of their abundance

on aGvHD grade. The terminal nodes of the tree show

the proportion of samples stemming from patients with

aGvHD grades 0–I versus II–IV, under the condition of

the abundance split criterion described on each branch.

Since we used variance stabilized bacterial abundances

as input for the machine learning analyses, abundances

can be presented as negative values in some cases and

are therefore not easy to interpret intuitively. Therefore,

we additionally displayed the log-transformed relative

abundances of all ASVs significantly predicting aGvHD

in boxplots at the three investigated time points (preexa-

mination, conditioning start, and at the time of HSCT).

In addition, we implemented a machine learning

model for variance-stabilized count data from all three

body sites combined. The analysis was performed as de-

scribed above. A svmLinear model on up-sampled data

was used for the results to be comparable with modeling

on the individual body site data. Twenty-two ASVs were

both, among the 50 most important predictors in the

svmLinear model and confirmed by the Boruta algo-

rithm. Using CTREE, we found 7 of these ASVs to be

significant.

Subsequently, we were interested in associations be-

tween the fecal, oral, and nasal microbiota and immune

cell counts, and clinical outcomes in HSCT. Records of

immune markers, and immune cell counts contained

left- and right-censored measurements, i.e., observations

below or above the detection (or recording) limit, re-

spectively. In order to use these data in analyses that do

not tolerate censored records, we needed to impute the

censored data. Therefore, we first fitted the non-

parametric maximum likelihood estimator (NPMLE, also

called Turnbull estimator) for univariate interval cen-

sored data on each variable that contained censored re-

cords, using the function ic_np() in the R package

icenReg [65]. Subsequently, censored records were im-

puted, informed by the model that was fitted on the en-

tity of observed and censored data of each variable,

using the imputeCens() function [65]. Next, we took the

median of measurements for the time points defined

above for those immune markers, and immune cell

counts that have been measured more frequently than
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that. This way, we obtained comparable data sets. Con-

tinuous immune marker and cell count data that was

systematically missing for certain sampling time points

was split by time points, and unavailable time points

were excluded. Missing values in continuous immune

marker and cell count data were imputed for variables

with ≤ 50% missingness. Simultaneous multivariate non-

parametric imputation was performed using the R pack-

age missForest [66]. Variables with more than 50% miss-

ing values were excluded from the analysis.

Next, we implemented two multivariate multi-table

approaches to gain a detailed understanding of how the

fecal, oral, and nasal microbiota might be associated with

immune cell counts, immune markers, and clinical out-

comes in HSCT. Evaluated clinical outcomes comprised

acute GvHD (grades 0–I versus II–IV), relapse, overall

survival, and treatment-related mortality. Furthermore,

we included bacterial alpha diversity (inversed Simpson

index), antibiotic treatment, infections, Karnofsky scores

before conditioning and at day +100, and patients’ base-

line parameters (age, weight, sex, primary disease, malig-

nant versus benign primary disease, conditioning

regimen (including ATG treatment), chemotherapeutic

agents’ dosages, TBI treatment and dosage, stem cell

source, GvHD prophylactic regimen, donor type (sib-

ling/matched unrelated/haploidentical), donor HLA-

match, and donor sex).

For each body site, we performed sparse partial least

squares (sPLS) regression by using the function spls() in

the package mixOmics [53]. In sPLS regression, two

matrices are being integrated and both their structures

are being modelled. Here, we used variance stabilized

ASV abundances as explanatory variables and all con-

tinuous clinical and immune parameters as response

variables. The method allows multiple response vari-

ables. Collinear, and noisy data can be handled by this

method as well [67]. We did not limit the number of re-

sponse variables to be kept for each component (keepY)

prior to model calculation. The number of explanatory

variables (ASVs) to be kept on each component (keepX)

was set to 25 after running the sPLS regression models

for each body site with a range of values between 20 and

40 for keepX, showing results robust to keepX. The

perf() function was used to inform the choice of 3 rele-

vant components. Based on the sPLS regression models

for each body site, we then performed hierarchical clus-

tering with the cim() function, using the clustering

method “complete linkage” and the distance method

“Pearson’s correlation”. Thereby, we generated matrices

of coefficients indicating correlations between ASV

abundances and continuous clinical and immune

parameters.

Subsequently, we carried out canonical (i.e., bidirec-

tional) correspondence analysis (CCpnA), which is a

multivariate constrained ordination method. This

method allow us to assess associations of both categor-

ical and continuous clinical and immune parameters to

ASV abundances. We included ASVs and variables with

a correlation of > 0.2/< − 0.2 (oral and nasal data set) or

> 0.3/< − 0.3 (fecal data set) in the sPLS analysis into the

CCpnA, and additionally included categorical variables

that could not be included in the sPLS. The method was

implemented with the cca() function in package vegan

[68]. It implements a Chi-square transformation of the

log+1-transformed ASV count matrix and subsequent

weighted linear regression, followed by singular value

decomposition. We depicted the CCpnA results as a tri-

plot with plot dimensions corresponding in length to the

percentage of variance explained by each axis. At each

body site, we identified three clusters of ASVs through

hierarchical clustering based on the first three latent di-

mensions of each sPLS analysis (Fig. 7A and Additional

File 2: Figures S5A and S6A). The CCpnA analyses rein-

forced the cluster separations and additionally provided

insight into associations with categorical variables, in-

cluding patient baseline parameters, the occurrence of

infections, antibiotics treatment, and clinical outcomes

(Fig. 7B and Additional File 2: Figures S5B and S6B).

In addition, principal component analyses (PCA) were

performed on variance stabilized data of each body site.

The results were visualized as biplots with samples col-

ored according to time point and arrows indicating the

effect of predictors (ASVs).

We compared bacterial alpha diversity and com-

munity composition in the gut of HSCT patients at

preexamination with that of healthy children. Alpha

diversity (inverse Simpson index) between the two

groups was compared by a Kruskal-Wallis test. Com-

munity composition was visualized in a principal co-

ordinates analysis (PCoA), and analysis of similarities

(ANOSIM, package vegan) was used to assess signifi-

cant differences in the means of rank dissimilarities

between the two groups. DESeq2 was employed for

identification of differentially abundant genera

among the top 100 most abundant genera with > 10

total reads [62]. Differences in relative abundance of

genera identified as differentially abundant were vi-

sualized in a heat tree (package metacoder) [69].

Higher taxonomic level differential abundance was

assessed by linear discriminant analysis effect size

(LEfSe) on centered-log ratio (CLR) transformed data

with an LDA cutoff of 4 (package microbiomeMar-

ker) [70]. LefSe accounts for the hierarchical struc-

ture of bacterial phylogeny, thereby allowing

identification of differentially abundant taxa on sev-

eral taxonomic levels (here kingdom to genus). For

additional information see https://doi.org/10.6084/

m9.figshare.13614230).
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AML: Acute myeloid leukemia; ASV: Amplicon sequence variant; ATG: Anti-

thymocyte globulin; CCpnA: Canonical correspondence analysis;

CML: Chronic myeloid leukemia; CRP: C-reactive protein; CTREE: Conditional

inference tree; ECLIA: Electrochemiluminescence immunoassays; GvL

effect: Graft-versus-leukemia effect; (a)GvHD: (Acute) graft-versus-host disease;

HSCT: Hematopoietic stem cell transplantation; IDS: Immunodeficiency

syndromes; IEA: Inherited abnormalities of erythrocyte differentiation or

function; IMD: Inherited disorders of metabolism; LIA: Latex

immunoturbidimetric assay; LDA: Linear discriminant analysis;

LogitBoost: Boosted logistic regression; LOOCV: Leave-one-out cross

validation; MDS: Myelodysplastic or myeloproliferative disorders;

MM: Multiple myeloma; NHL: Non-Hodgkin lymphomas; NPMLE: Non-

parametric maximum likelihood estimator; OL: Other leukemia;

OTU: Operational taxonomic unit; PBMC: Peripheral blood mononuclear cell;

PCoA: Principal Coordinates Analysis; Rf: Random forest; SAA: Severe aplastic

anemia; SCFA: Short-chain fatty acid; sPLS: Sparse partial least squares

analysis; svmLinear: Support vector machines with linear kernel;

svmRadial: Support vector machines with radial basis function kernel;

TBI: Total body irradiation; TH17 cell: T helper 17 cell; Treg cell: T regulatory

cell; UCB: Umbilical cord blood

Supplementary Information
The online version contains supplementary material available at https://doi.

org/10.1186/s40168-021-01100-2.

Additional file 1. Supplementary Table S1. Patient characteristics.

Abbreviations: HLA, human leukocyte antigen; TBI, total body irradiation;

CY, Cyclophosphamide; VP16, Etoposide; BU, Busulfan; MEL, Melphalan;

GvHD, graft-versus-host disease. Supplementary Table S2. Taxonomy of a

subset of LDA clade members and corresponding LDA-coefficients in the

gut, oral cavity, and nasal cavity. Supplementary Table S3. Taxonomy of

aGvHD predictors within the fecal, oral, and nasal microbiota. ASVs that

were significantly predicting aGvHD severity according to the conditional

inference tree regression model are highlighted in bold. Of the 50 most

important gut ASVs identified by the svmLinear model, 17 were con-

firmed by Boruta feature selection and are listed here. In the oral and

nasal cavities, 26 and 12 ASVs were confirmed by Boruta selection, re-

spectively. Listed in bold are those ASVs with a significant predictive ef-

fect on aGvHD severity, tested in a regression framework with CTREE (see

Methods).

Additional file 2 Figure S1. The gut microbiota in the HSCT patients at

pre-exam differs from the gut microbiota of age-matched healthy chil-

dren. A) Fecal bacterial alpha diversity (inverse Simpson index) was 2.4-

fold higher in healthy children (n=18) compared to children at pre-

examination before HSCT (n=15). B) Fecal bacterial composition was sig-

nificantly different between the two groups (anosim, p=0.001, R=0.44),

and within-group variance was significantly greater in the HSCT group

(betadisper, p<0.001). C) The taxa which best explain differences in com-

munity structure between HSCT patients at preexamination and healthy

children were identified by analysis of LEfSe (Linear discriminant analysis

Effect Size). LefSe accounts for the hierarchical structure of bacterial phyl-

ogeny, thereby allowing identification of differentially abundant taxa on

several taxonomic levels (here: kingdom to genus). Count data was

centered-log ratio (CLR) transformed within the LEfSe analysis. The higher

the LDA score (log10), the higher the effect size of the respective taxon

in explaining group difference. Here, we show taxa with an LDA score

>4. D) Differentially abundant genera between the two groups were add-

itionally identified by DESeq2. Of the top 100 most abundant genera (of

the whole gut microbiota data set), eighteen genera were significantly

more abundant in healthy children (yellow), and 15 genera were signifi-

cantly more abundant in the patients at preexam (purple). Differences in

median proportions of these genera (and their supertaxa) are displayed

in a heat tree. See also additional information at https://doi.org/10.6084/

m9.figshare.13614230. Figure S2. Most abundant taxonomic families in

the gut, oral cavity, and nasal cavity in allo-HSCT patients. Rank abun-

dance curves displaying the proportions of the 12 most abundant taxo-

nomic families at each body site (gut, oral cavity, and nasal cavity). Figure

S3. Tree-based sparse linear discriminant analysis revealing nasal ASVs

that distinguish time points from each other in relation to HSCT. A) Rela-

tive abundances over time of the 12 most abundant families in the nasal

cavity. B) Coefficients of discriminating clades of ASVs on the first LDA

axis, colored by taxonomic family, and plotted along the phylogenetic

tree. C) Trajectories of ASVs in one discriminating group, affiliated with

the family Corynebacteriaceae, with decreasing abundances after HSCT

and recovery at late follow-up time points. The most abundant discrimin-

ating ASV is indicated. Detailed taxonomic information and LDA-

coefficients of the displayed ASVs are listed in Table S2. D) PCA-biplots

with the top 100 predictors (ASVs) identified by PCA (left) and the top

predictors (ASVs) identified by sparse LDA (right). The time points are in-

dicated in the same color as in Figure 1C (phase I: yellow colors; phase II:

red colors; phase III: blue colors). The PCA plots with dimensions 1 and 2

are displayed here and additional PCA plots are available from https://doi.

org/10.6084/m9.figshare.14510661. Figure S4. Machine learning-based

prediction of aGvHD severity from nasal microbial abundances pre-HSCT.

A) Relative abundances of the 12 most abundant families over time in

the nasal cavity in patients with aGvHD grade 0-I versus II-IV. B) Import-

ance plot of top 20 predictive nasal ASVs identified by the svmLinear

model with importance scores indicating the mean decrease in predic-

tion accuracy in case the respective ASV would be excluded from the

model. The final cross-validated svmLinear model predicted aGvHD (0-I

versus II-IV) from the abundances of nasal ASVs pre-HSCT with 76% accur-

acy (95% CI: 56% to 90%). The ASVs that were also confirmed by Boruta

feature selection are indicated with asterisk. C) Conditional inference tree

(CTREE) displaying ASVs identified as significant split nodes by nonpara-

metric regression for prediction of aGvHD. Numbers along the branches

indicate split values of variance stabilized bacterial abundances. The ter-

minal nodes show the proportion of samples originating from patients

with aGvHD grade 0-I vs II-IV (n = number of samples). D) Boxplots depict

the log transformed relative abundances of the predictive ASVs at time

points up to the transplantation in aGvHD grade 0-I compared with

grade II-IV patients. Figure S5. Multivariate associations of the oral micro-

biota with immune and clinical parameters in HSCT. A) Clustered image

map (CIM) based on sparse partial least squares (sPLS) regression analysis

dimensions 1, 2, and 3, displaying pairwise correlations >0.2/<-0.2 be-

tween oral ASVs (bottom), and continuous immune and clinical parame-

ters (right). Red indicated positive correlation, and blue indicates negative

correlation, respectively. Based on the sPLS regression model, hierarchical

clustering (clustering method: complete linkage, distance method: Pear-

son’s correlation) was performed resulting in the three depicted clusters.

B) Canonical correspondence analysis (CCpnA) relating oral microbial

abundances (circles) to continuous (arrows) and categorical (+) immune

and clinical parameters. ASVs and variables with at least one correlation

>0.2/<-0.2 in the sPLS analysis were included in the CCpnA. The triplot

shows variables and ASVs with a score >0.3/<-0.3 on at least one the first

three CCpnA axes, displayed on axis 1 versus 2 with samples depicted as

triangles. The colored ellipses (depicted with 80% confidence interval)

correspond to the clusters of ASVs identified by the sPLS-based hierarch-

ical clustering. For visualization purposes, a focused section of the CCpnA

triplot is shown. Antibiotics are indicated in blue font color. Abbreviations

are described in Figure 7. Additional abbreviations: fungal, fungal infec-

tion; haploident, haploidentical donor; hemo, hemoglobin; leuko, leuko-

cytes; lympho, lymphocytes; w1, week+1; w2, week+2; w3, week+3.

Figure S6. Multivariate associations of the nasal microbiota with immune

and clinical parameters in HSCT. A) Clustered image map (CIM) based on

sparse partial least squares (sPLS) regression analysis dimensions 1, 2, and

3, displaying pairwise correlations >0.2/<-0.2 between nasal ASVs (bot-

tom), and continuous immune and clinical parameters (right). Red indi-

cated positive correlation, and blue indicates negative correlation,

respectively. Based on the sPLS regression model, hierarchical clustering

(clustering method: complete linkage, distance method: Pearson’s correl-

ation) was performed resulting in the three depicted clusters. B) Canon-

ical correspondence analysis (CCpnA) relating nasal microbial abundances

(circles) to continuous (arrows) and categorical (+) immune and clinical

parameters. ASVs and variables with at least one correlation >0.2/<-0.2 in

the sPLS analysis were included in the CCpnA. The triplot shows variables

and ASVs with a score >0.3/<-0.3 on at least one the first three CCpnA

axes, displayed on axis 1 versus 2 with samples depicted as triangles. The

colored ellipses (depicted with 80% confidence interval) correspond to
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the clusters of ASVs identified by the sPLS-based hierarchical clustering.

For visualization purposes, a focused section of the CCpnA triplot is

shown. Antibiotics are indicated in blue font color. Abbreviations are de-

scribed in Figures 6 and S5. Additional abbreviations: DonorMatch8, unre-

lated donor with 1 HLA mismatch; PB, peripheral blood.

Additional file 3. Supplementary discussion.

Acknowledgements

We thank the patients and their families for their participation in this study.

We also thank Marlene Danner Dalgaard and Neslihan Bicen (Multi Assay

Core facility (DMAC), Technical University of Denmark) for library construction

and sequencing. Sequence preprocessing described in this paper was

performed using the DeiC National Life Science Supercomputer at DTU.

Furthermore, we would like to thank Patrick Murigu Kamau Njage (Technical

University of Denmark) for helpful discussions related to machine learning

models.

Authors’ contributions

ACI, KK, KGM, and SJP designed the research; ACI, KK, HM, MI, and SJP

performed the research; ACI and SJP contributed analytic tools; ACI, and SJP

analyzed the data; ACI and SJP wrote the manuscript; and KK, MI, FMA, and

KGM edited the manuscript. The authors read and approved the final

manuscript.

Funding

This work was supported by the European Union’s Framework program for

Research and Innovation, Horizon2020 (643476) and by the National Food

Institute, Technical University of Denmark.

Availability of data and materials

The 16S rRNA gene sequences are available through the European

Nucleotide Archive (ENA) at the European Bioinformatics Institute (EBI) under

accession number PRJEB30894. The datasets generated and/or analyzed in

this study as well as the R code used to analyze the data are available from

the figshare repository https://figshare.com/projects/Microbiota_long-term_

dynamics_and_prediction_of_acute_graft-versus-host-disease_in_allogeneic_

stem_cell_transplantation/80366 (see also individual links in the Methods

section).

Declarations

Ethics approval and consent to participate

Written informed consent was obtained from the patients and/or their legal

guardians. The study protocol was approved by the local ethics committee

(H-7-2014-016) and the Danish Data Protection Agency.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author details
1Research Group for Genomic Epidemiology, Technical University of

Denmark, Kongens Lyngby, Denmark. 2Present address: Department of

Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
3Institute for Inflammation Research, Department of Rheumatology and

Spine Disease, Copenhagen University Hospital, Rigshospitalet, Copenhagen,

Denmark. 4Department of Pediatrics and Adolescent Medicine, Copenhagen

University Hospital, Rigshospitalet, Copenhagen, Denmark. 5Institute of

Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
6Present address: Novo Nordisk Foundation Center for Biosustainability,

Technical University of Denmark, Kongens Lyngby, Denmark.

Received: 19 February 2021 Accepted: 20 May 2021

References

1. Chabannon C, Kuball J, Bondanza A, Dazzi F, Pedrazzoli P, Toubert A, et al.

Hematopoietic stem cell transplantation in its 60s: a platform for cellular

therapies. Sci Transl Med. 2018;10:eaap9630 American Association for the

Advancement of Science; [cited 2018 Aug 2] Available from: http://www.

ncbi.nlm.nih.gov/pubmed/29643233.

2. Shono Y, van den Brink MRM. Gut microbiota injury in allogeneic

haematopoietic stem cell transplantation. Nat Rev Cancer. 2018; [cited 2018

Feb 21] Available from: http://www.nature.com/doifinder/10.1038/nrc.2018.1

0.

3. Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K, et al.

Metagenomic analysis of the stool microbiome in patients receiving

allogeneic stem cell transplantation: loss of diversity is associated with use

of systemic antibiotics and more pronounced in gastrointestinal graft-

versus-host disease. Biol Blood Marrow Transplant. 2014;20:640–5 [cited

2015 Oct 22] Available from: http://www.sciencedirect.com/science/article/

pii/S1083879114000755.

4. Ingham AC, Kielsen K, Cilieborg MS, Lund O, Holmes S, Aarestrup FM, et al.

Specific gut microbiome members are associated with distinct immune

markers in pediatric allogeneic hematopoietic stem cell transplantation.

Microbiome. 2019;7:131 [cited 2019 Sep 18];Available from: https://

microbiomejournal.biomedcentral.com/articles/10.1186/s40168-019-0745-z.

5. Rivera-Chávez F, Lopez CA, Bäumler AJ. Oxygen as a driver of gut dysbiosis.

Free Radic Biol Med. 2017;105:93–101 [cited 2018 Feb 18]; Available from:

https://www.sciencedirect.com/science/article/pii/S0891584916304361

?via%3Dihub.

6. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al.

Intestinal domination and the risk of bacteremia in patients undergoing

allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55:

905–14 Available from: http://cid.oxfordjournals.org/lookup/doi/10.1093/cid/

cis580.

7. Ghimire S, Weber D, Mavin E, Nong WX, Dickinson AM, Holler E.

Pathophysiology of GvHD and other HSCT-related major complications.

Front Immunol. 2017;8:79 [cited 2018 Oct 19];Available from: http://journal.

frontiersin.org/article/10.3389/fimmu.2017.00079/full.

8. Golob JL, Pergam SA, Srinivasan S, Fiedler TL, Liu C, Garcia K, et al. Stool

microbiota at neutrophil recovery is predictive for severe acute graft vs host

disease after hematopoietic cell transplantation. Clin Infect Dis. 2017;65:

1984–91 [cited 2018 Nov 23];Available from: https://academic.oup.com/cid/a

rticle/65/12/1984/4085173.

9. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, Ahr KF, et al. Intestinal

blautia is associated with reduced death from graft-versus-host disease. Biol

Blood Marrow Transplant. 2015;21:1373–83 [cited 2016 May 9]; Available

from: http://www.sciencedirect.com/science/article/pii/S1083879115002931.

10. Han L, Zhao K, Li Y, Han H, Zhou L, Ma P, et al. A gut microbiota score

predicting acute graft-versus-host disease following myeloablative

allogeneic hematopoietic stem cell transplantation. Am J Transplant. 2020;

20(4):1014–27. https://doi.org/10.1111/ajt.15654.

11. Peled JU, Gomes ALC, Devlin SM, Littmann ER, Taur Y, Sung AD, et al.

Microbiota as predictor of mortality in allogeneic hematopoietic-cell

transplantation. N Engl J Med. 2020;382(9):822–34. https://doi.org/10.1056/

NEJMoa1900623.

12. Stein-Thoeringer CK, Nichols KB, Lazrak A, Docampo MD, Slingerland AE,

Slingerland JB, et al. Lactose drives Enterococcus expansion to promote

graft-versus-host disease. Science. 2019;366:1143–9.

13. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and

disease. Nature. 2016;535:75–84 [cited 2018 Aug 21] Available from: http://

www.nature.com/articles/nature18848.

14. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg

induction by a rationally selected mixture of Clostridia strains from the

human microbiota. Nature. 2013;500:232–6 [cited 2018 Sep 6]; Available

from: http://www.nature.com/articles/nature12331.

15. Kielsen K, Ryder LP, Lennox-Hvenekilde D, Gad M, Nielsen CH, Heilmann C,

et al. Reconstitution of Th17, Tc17 and Treg cells after paediatric

haematopoietic stem cell transplantation: impact of interleukin-7.

Immunobiology. 2018;223:220–6 [cited 2018 Feb 7]; Available from: http://

www.ncbi.nlm.nih.gov/pubmed/29033080.

16. Han L, Jin H, Zhou L, Zhang X, Fan Z, Dai M, et al. Intestinal Microbiota at

engraftment influence acute graft-versus-host disease via the Treg/Th17

Balance in Allo-HSCT Recipients. Front Immunol. 2018;9:669 [cited 2018 May

17]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/29740427.

17. Ratajczak P, Janin A, Peffault de Latour R, Leboeuf C, Desveaux A, Keyvanfar

K, et al. Th17/Treg ratio in human graft-versus-host disease. Blood. 2010;116:

Ingham et al. Microbiome           (2021) 9:148 Page 26 of 28

https://figshare.com/projects/Microbiota_long-term_dynamics_and_prediction_of_acute_graft-versus-host-disease_in_allogeneic_stem_cell_transplantation/80366
https://figshare.com/projects/Microbiota_long-term_dynamics_and_prediction_of_acute_graft-versus-host-disease_in_allogeneic_stem_cell_transplantation/80366
https://figshare.com/projects/Microbiota_long-term_dynamics_and_prediction_of_acute_graft-versus-host-disease_in_allogeneic_stem_cell_transplantation/80366
http://www.ncbi.nlm.nih.gov/pubmed/29643233
http://www.ncbi.nlm.nih.gov/pubmed/29643233
http://www.nature.com/doifinder/10.1038/nrc.2018.10
http://www.nature.com/doifinder/10.1038/nrc.2018.10
http://www.sciencedirect.com/science/article/pii/S1083879114000755
http://www.sciencedirect.com/science/article/pii/S1083879114000755
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-019-0745-z
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-019-0745-z
https://www.sciencedirect.com/science/article/pii/S0891584916304361?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0891584916304361?via%3Dihub
http://cid.oxfordjournals.org/lookup/doi/10.1093/cid/cis580
http://cid.oxfordjournals.org/lookup/doi/10.1093/cid/cis580
http://journal.frontiersin.org/article/10.3389/fimmu.2017.00079/full
http://journal.frontiersin.org/article/10.3389/fimmu.2017.00079/full
https://academic.oup.com/cid/article/65/12/1984/4085173
https://academic.oup.com/cid/article/65/12/1984/4085173
http://www.sciencedirect.com/science/article/pii/S1083879115002931
https://doi.org/10.1111/ajt.15654
https://doi.org/10.1056/NEJMoa1900623
https://doi.org/10.1056/NEJMoa1900623
http://www.nature.com/articles/nature18848
http://www.nature.com/articles/nature18848
http://www.nature.com/articles/nature12331
http://www.ncbi.nlm.nih.gov/pubmed/29033080
http://www.ncbi.nlm.nih.gov/pubmed/29033080
http://www.ncbi.nlm.nih.gov/pubmed/29740427


1165–71 [cited 2018 Nov 19]; Available from: http://www.ncbi.nlm.nih.gov/

pubmed/20484086.

18. Larsen JM. The immune response to Prevotella bacteria in chronic

inflammatory disease. Immunology. 2017;151:363–74 [cited 2018 Nov 25];

Available from: http://doi.wiley.com/10.1111/imm.12760.

19. De Pietri S, Ingham AC, Frandsen TL, Rathe M, Krych L, Castro-Mejía JL, et al.

Gastrointestinal toxicity during induction treatment for childhood acute

lymphoblastic leukemia: the impact of the gut microbiota. Int J Cancer.

2020;147:1953–62.

20. Weber D, Oefner PJ, Hiergeist A, Koestler J, Gessner A, Weber M, et al. Low

urinary indoxyl sulfate levels early after transplantation reflect a disrupted

microbiome and are associated with poor outcome. Blood. 2015;126:1723–8

[cited 2015 Oct 22]; Available from: http://www.bloodjournal.org/content/12

6/14/1723.

21. Taur Y, Jenq RR, Perales M, Littmann ER, Morjaria S, Ling L, et al. The effects

of intestinal tract bacterial diversity on mortality following allogeneic

hematopoietic stem cell transplantation. Transplantation. 2014;124:1174–82

Available from: http://www.bloodjournal.org/content/bloodjournal/124/7/11

74.full.pdf?sso-checked=true.

22. Andermann TM, Peled JU, Ho C, Reddy P, Riches M, Storb R, et al. The

microbiome and hematopoietic cell transplantation: past, present, and

future. Biol Blood Marrow Transplant. 2018; [cited 2018 May 29]; Available

from: https://www.sciencedirect.com/science/article/pii/S10838791183

00879?via%3Dihub.

23. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al.

Regulation of intestinal inflammation by microbiota following allogeneic

bone marrow transplantation. J Exp Med. 2012;209:903–11 Available from:

http://www.jem.org/cgi/doi/10.1084/jem.20112408.

24. Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome.

Arch Microbiol [Internet]. Springer. Berlin Heidelberg. 2018;200(4):525–40.

Available from:. https://doi.org/10.1007/s00203-018-1505-3.

25. Osakabe L, Utsumi A, Saito B, Okamatsu Y, Kinouchi H, Nakamaki T, et al.

Influence of oral anaerobic bacteria on hematopoietic stem cell

transplantation patients: oral mucositis and general condition. Transplant

Proc. 2017;49:2176–82 [cited 2018 Mar 12];Available from: http://www.ncbi.

nlm.nih.gov/pubmed/29149979.

26. Soga Y, Maeda Y, Ishimaru F, Tanimoto M, Maeda H, Nishimura F, et al.

Bacterial substitution of coagulase-negative staphylococci for streptococci

on the oral mucosa after hematopoietic cell transplantation. Support Care

Cancer. 2011;19(7):995–1000. https://doi.org/10.1007/s00520-010-0923-9.

27. Olczak-Kowalczyk D, Daszkiewicz M, Krasuska-Slawińska, Dembowska-

Bagińska B, Gozdowski D, Daszkiewicz P, et al. Bacteria and Candida yeasts

in inflammations of the oral mucosa in children with secondary

immunodeficiency. J Oral Pathol Med. 2012;41(7):568–76.

28. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut

immune maturation depends on colonization with a host-specific

microbiota. Cell. 2012;149:1578–93 [cited 2018 Aug 16]; Available from:

http://www.ncbi.nlm.nih.gov/pubmed/22726443.

29. Mathewson ND, Jenq R, Mathew AV, Koenigsknecht M, Hanash A, Toubai T,

et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell

damage and mitigate graft-versus-host disease. Nat Immunol. 2016;17:505–

13 [cited 2018 May 15]; Available from: http://www.ncbi.nlm.nih.gov/

pubmed/26998764.

30. Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody

responses. Cell Host Microbe. 2016;20:202–14. Available from:. https://doi.

org/10.1016/j.chom.2016.07.001.

31. Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, et al.

Increased GVHD-related mortality with broad-spectrum antibiotic use after

allogeneic hematopoietic stem cell transplantation in human patients and

mice. Sci Transl Med. 2016;8:339ra71 [cited 2016 May 23];Available from:

http://stm.sciencemag.org/content/8/339/339ra71.

32. Weber D, Jenq RR, Peled JU, Taur Y, Hiergeist A, Koestler J, et al. Microbiota

disruption induced by early use of broad spectrum antibiotics is an

independent risk factor of outcome after allogeneic stem cell

transplantation. Biol Blood Marrow Transplant. 2017; Available from: http://

linkinghub.elsevier.com/retrieve/pii/S1083879117302756.

33. Weber D, Hiergeist A, Weber M, Dettmer K, Wolff D, Hahn J, et al.

Detrimental effect of broad-spectrum antibiotics on intestinal microbiome

diversity in patients after allogeneic stem cell transplantation: lack of

commensal sparing antibiotics. Clin Infect Dis. 2018; [cited 2018 Sep 20];

Available from: http://www.ncbi.nlm.nih.gov/pubmed/30124813.

34. Liu C, Frank DN, Horch M, Chau S, Ir D, Horch EA, et al. Associations

between acute gastrointestinal GvHD and the baseline gut microbiota of

allogeneic hematopoietic stem cell transplant recipients and donors. Bone

Marrow Transplant Adv online Publ. 2017; Available from: https://www.na

ture.com/bmt/journal/vaop/ncurrent/pdf/bmt2017200a.pdf.

35. Biagi E, Zama D, Nastasi C, Consolandi C, Fiori J, Rampelli S, et al. Gut

microbiota trajectory in pediatric patients undergoing hematopoietic SCT.

Bone Marrow Transplant. 2015;50:992–8 [cited 2018 Jul 2];Available from:

http://www.nature.com/articles/bmt201516.

36. Mancini N, Greco R, Pasciuta R, Barbanti MC, Pini G, Morrow OB, et al.

Enteric microbiome markers as early predictors of clinical outcome in

allogeneic hematopoietic stem cell transplant: results of a prospective study

in adult patients. Open Forum Infect Dis. 2017;4 [cited 2018 Dec 8];Available

from: http://academic.oup.com/ofid/article/doi/10.1093/ofid/ofx215/43

67678.

37. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, et al.

Clinical manifestations of graft-versus-host disease in human recipients of

marrow from HL-A-matched sibling donors. Transplantation. 1974;18:295–

304 Available from: http://www.ncbi.nlm.nih.gov/pubmed/4153799.

38. Knudsen BE, Bergmark L, Munk P, Lukjancenko O, Prieme A, Aarestrup FM,

et al. Impact of sample type and DNA isolation pocedure on genomic

inference of microbiome composition. bioRxiv. 2016;1:064394 Available

from: http://biorxiv.org/lookup/doi/10.1101/064394.

39. 16S Metagenomic sequencing library preparation. [cited 2018 Apr 17].

Available from: https://support.illumina.com/content/dam/illumina-support/

documents/documentation/chemistry_documentation/16s/16s-meta

genomic-library-prep-guide-15044223-b.pdf

40. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al.

Evaluation of general 16S ribosomal RNA gene PCR primers for classical and

next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;

41:e1 [cited 2018 Apr 17];Available from: http://academic.oup.com/nar/a

rticle/41/1/e1/1164457/Evaluation-of-general-16S-ribosomal-RNA-gene-PCR.

41. Martin M. Cutadapt removes adapter sequences from high-throughput

sequencing reads. EMBnet.journal. 2011;17:10 [cited 2018 Jun 26];Available

from: http://journal.embnet.org/index.php/embnetjournal/article/view/200.

42. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP.

DADA2: High-resolution sample inference from Illumina amplicon data. Nat

Methods. 2016;13:581–3 [cited 2016 Jul 28];Available from: http://www.na

ture.com/nmeth/journal/v13/n7/full/nmeth.3869.html.

43. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis

results for multiple tools and samples in a single report. Bioinformatics.

2016;32:3047–8 [cited 2018 Sep 11];Available from: https://academic.oup.

com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw354.

44. Callahan B. Silva taxonomic training data formatted for DADA2 (Silva

version 132). 2018 [cited 2018 Jun 26]; Available from:. https://doi.org/10.52

81/zenodo.1172783#.WzJRh15uQOA.mendeley.

45. McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive

analysis and graphics of microbiome census data. Watson M, . PLoS One.

2013 8:e61217. [cited 2018 Jan 24];Available from: http://dx.plos.org/10.13

71/journal.pone.0061217

46. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical

identification and removal of contaminant sequences in marker-gene and

metagenomics data. Microbiome. 2018;6:226 [cited 2018 Dec 27];Available

from: https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-

018-0605-2.

47. Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP.

Bioconductor workflow for microbiome data analysis: from raw reads to

community analyses. F1000Research. 2016;5:1492 Available from: http://

www.ncbi.nlm.nih.gov/pubmed/27508062%5Cn http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC4955027.

48. Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in

R. R J. 2016;8(1):352–9. https://doi.org/10.32614/RJ-2016-025.

49. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:

592–3 [cited 2018 Nov 27];Available from: http://www.ncbi.nlm.nih.gov/

pubmed/21169378.

50. Gentleman R, Carey V, Huber W, Hahne F. genefilter: methods for filtering

genes from microarray experiments. R package version 1.58.1; 2017.

51. R Core Team. R: A language and environment for statistical computing.

Vienna, Austria: R Foundation for Statistical Computing; 2018. Available

from: https://www.r-project.org/

Ingham et al. Microbiome           (2021) 9:148 Page 27 of 28

http://www.ncbi.nlm.nih.gov/pubmed/20484086
http://www.ncbi.nlm.nih.gov/pubmed/20484086
http://doi.wiley.com/10.1111/imm.12760
http://www.bloodjournal.org/content/126/14/1723
http://www.bloodjournal.org/content/126/14/1723
http://www.bloodjournal.org/content/bloodjournal/124/7/1174.full.pdf?sso-checked=true
http://www.bloodjournal.org/content/bloodjournal/124/7/1174.full.pdf?sso-checked=true
https://www.sciencedirect.com/science/article/pii/S1083879118300879?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1083879118300879?via%3Dihub
http://www.jem.org/cgi/doi/10.1084/jem.20112408
https://doi.org/10.1007/s00203-018-1505-3
http://www.ncbi.nlm.nih.gov/pubmed/29149979
http://www.ncbi.nlm.nih.gov/pubmed/29149979
https://doi.org/10.1007/s00520-010-0923-9
http://www.ncbi.nlm.nih.gov/pubmed/22726443
http://www.ncbi.nlm.nih.gov/pubmed/26998764
http://www.ncbi.nlm.nih.gov/pubmed/26998764
https://doi.org/10.1016/j.chom.2016.07.001
https://doi.org/10.1016/j.chom.2016.07.001
http://stm.sciencemag.org/content/8/339/339ra71
http://linkinghub.elsevier.com/retrieve/pii/S1083879117302756
http://linkinghub.elsevier.com/retrieve/pii/S1083879117302756
http://www.ncbi.nlm.nih.gov/pubmed/30124813
https://www.nature.com/bmt/journal/vaop/ncurrent/pdf/bmt2017200a.pdf
https://www.nature.com/bmt/journal/vaop/ncurrent/pdf/bmt2017200a.pdf
http://www.nature.com/articles/bmt201516
http://academic.oup.com/ofid/article/doi/10.1093/ofid/ofx215/4367678
http://academic.oup.com/ofid/article/doi/10.1093/ofid/ofx215/4367678
http://www.ncbi.nlm.nih.gov/pubmed/4153799
http://biorxiv.org/lookup/doi/10.1101/064394
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
http://academic.oup.com/nar/article/41/1/e1/1164457/Evaluation-of-general-16S-ribosomal-RNA-gene-PCR
http://academic.oup.com/nar/article/41/1/e1/1164457/Evaluation-of-general-16S-ribosomal-RNA-gene-PCR
http://journal.embnet.org/index.php/embnetjournal/article/view/200
http://www.nature.com/nmeth/journal/v13/n7/full/nmeth.3869.html
http://www.nature.com/nmeth/journal/v13/n7/full/nmeth.3869.html
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw354
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw354
https://doi.org/10.5281/zenodo.1172783#.WzJRh15uQOA.mendeley
https://doi.org/10.5281/zenodo.1172783#.WzJRh15uQOA.mendeley
http://dx.plos.org/10.1371/journal.pone.0061217
http://dx.plos.org/10.1371/journal.pone.0061217
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0605-2
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0605-2
http://www.ncbi.nlm.nih.gov/pubmed/27508062/n
http://www.ncbi.nlm.nih.gov/pubmed/27508062/n
http://www.ncbi.nlm.nih.gov/pubmed/27508062/n
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4955027
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4955027
https://doi.org/10.32614/RJ-2016-025
http://www.ncbi.nlm.nih.gov/pubmed/21169378
http://www.ncbi.nlm.nih.gov/pubmed/21169378
https://www.r-project.org/


52. Wickham H. ggplot2: elegant graphics for data analysis: Springer Verlag

New York; 2016.

53. Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ‘omics

feature selection and multiple data integration. Schneidman D, editor. PLoS

Comput Biol. 2017 13:e1005752. [cited 2017 Dec 11]; Available from: http://

dx.plos.org/10.1371/journal.pcbi.1005752

54. Fukuyama J. treeDA: tree-based discriminant analysis. 2017. Available from:

https://github.com/jfukuyama/treeda

55. Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, et al. caret:

classification and regression training. R package version 6.0-80. 2018.

Available from: https://cran.r-project.org/package=caret

56. Hothorn T, Zeileis A, Cheng E, Ong S. partykit: a modular toolkit for

recursive partitioning in R. J Mach Learn Res. 2015;16:3905–9.

57. Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: a conditional

inference framework. J Comput Graph Stat. 2006;15:651–74 [cited 2018 Nov

24];Available from: http://www.tandfonline.com/doi/abs/10.1198/1061

86006X133933.

58. Fukuyama J, Rumker L, Sankaran K, Jeganathan P, Dethlefsen L, Relman DA,

et al. Multidomain analyses of a longitudinal human microbiome intestinal

cleanout perturbation experiment. PLoS Comput Biol. 2017;13:e1005706

[cited 2018 Mar 2];Available from: http://www.ncbi.nlm.nih.gov/pubmed/2

8821012.

59. Njage PMK, Henri C, Leekitcharoenphon P, Mistou M, Hendriksen RS, Hald T.

Machine learning methods as a tool for predicting risk of illness applying

next-generation sequencing data. Risk Anal. 2018:risa.13239 [cited 2018 Dec

24];Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.13239.

60. PMK N, Leekitcharoenphon P, Hald T. Improving hazard characterization in

microbial risk assessment using next generation sequencing data and

machine learning: predicting clinical outcomes in shigatoxigenic Escherichia

coli. Int J Food Microbiol. 2019;292:72–82 [cited 2018 Dec 24];Available

from: https://www.sciencedirect.com/science/article/pii/S016816051830893

6#f0005.

61. Chen J, Zhang L. GMPR: Geometric mean of pairwise ratios. R package

version 0.1.3; 2017.

62. Love MI, Huber W, Anders S. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550 [cited

2018 Jan 24];Available from: http://genomebiology.biomedcentral.com/a

rticles/10.1186/s13059-014-0550-8.

63. McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome

data is inadmissible. McHardy AC, editor. PLoS Comput Biol [Internet]. 2014

[cited 2016 Apr 13];10:e1003531. Available from: http://dx.plos.org/10.1371/

journal.pcbi.1003531

64. Kursa MB, Rudnicki WR. Feature selection with the Boruta Package. J Stat

Softw. 2010:1–13.

65. Anderson-Bergman C. icenReg: regression models for interval censored data

in R. J Stat Softw. 2017;81 Available from: http://www.jstatsoft.org/v81/i12/.

66. Stekhoven DJ, Buhlmann P. MissForest--non-parametric missing value

imputation for mixed-type data. Bioinformatics. 2012;28:112–8 [cited 2018

Sep 18];Available from: https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btr597.

67. Lee D, Lee W, Lee Y, Pawitan Y. Sparse partial least-squares regression and

its applications to high-throughput data analysis. Chemom Intell Lab Syst.

2011;109:1–8 [cited 2018 Jan 24]; Available from: https://www.sciencedirect.

com/science/article/pii/S016974391100150X.

68. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al.

vegan: Community ecology package. R package version 2.5-2. 2018.

Available from: https://cran.r-project.org/package=vegan

69. Foster ZSL, Sharpton TJ, Grünwald NJ. Metacoder: an R package for

visualization and manipulation of community taxonomic diversity data.

PLoS Comput Biol. 2017;13:1–15.

70. Cao Y. microbiomeMarker: microbiome biomarker analysis. R package

version 0.0.1.9000. https://github.com/yiluheihei/microbiomeMarker. 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Ingham et al. Microbiome           (2021) 9:148 Page 28 of 28

http://dx.plos.org/10.1371/journal.pcbi.1005752
http://dx.plos.org/10.1371/journal.pcbi.1005752
https://github.com/jfukuyama/treeda
https://cran.r-project.org/package=caret
http://www.tandfonline.com/doi/abs/10.1198/106186006X133933
http://www.tandfonline.com/doi/abs/10.1198/106186006X133933
http://www.ncbi.nlm.nih.gov/pubmed/28821012
http://www.ncbi.nlm.nih.gov/pubmed/28821012
https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.13239
https://www.sciencedirect.com/science/article/pii/S0168160518308936#f0005
https://www.sciencedirect.com/science/article/pii/S0168160518308936#f0005
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8
http://dx.plos.org/10.1371/journal.pcbi.1003531
http://dx.plos.org/10.1371/journal.pcbi.1003531
http://www.jstatsoft.org/v81/i12/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr597
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr597
https://www.sciencedirect.com/science/article/pii/S016974391100150X
https://www.sciencedirect.com/science/article/pii/S016974391100150X
https://cran.r-project.org/package=vegan
https://github.com/yiluheihei/microbiomeMarker

	Outline placeholder
	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Patient cohort and outcomes
	Bacterial alpha diversity decreases in relation to allo-HSCT at all three body sites
	Microbial community composition in patients prior to HSCT differs from healthy controls
	Temporal microbial community dynamics appear in three interlaced phases over one year
	Distinct Enterococcus, Lactobacillus, and Blautia lineages discriminate the gut microbiota temporally
	Distinct Actinomyces and Streptococcus lineages discriminate the oral microbiota temporally
	Distinct Corynebacteriaceae and Streptococcaceae lineages discriminate the nasal microbiota temporally
	Acute GvHD severity can be predicted from gut microbiota composition prior to HSCT
	Acute GvHD severity can be predicted from oral microbiota composition prior to HSCT
	Acute GvHD severity can be predicted from nasal microbiota composition prior to HSCT
	Acute GvHD severity can be predicted from microbiota at all three body sites simultaneously prior to HSCT
	Reconstitution of CD4+ T cells and the TH17 subpopulation is associated with gut, oral, and nasal microbiota
	Reconstitution of B cells is associated with gut, oral, and nasal microbiota
	Body site-specific immune–microbial associations

	Discussion
	Conclusions
	Materials and methods
	Patient recruitment and sample collection
	Infections and antibiotics
	Analysis of immune cell subpopulations
	Analysis of T, B, and NK cells in peripheral blood
	Subtyping of T cells
	Quantification of inflammation and infection markers
	DNA isolation from fecal, oral, and nasal samples and 16S rRNA gene sequencing
	16S rRNA gene sequence pre-processing
	Statistical analysis
	Abbreviations

	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

