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Compressive properties of elastic cellular solids are studied via experiments upon foam and 

upon single-cell models. Open-cell foam exhibits a monotonic stress-strain relation with a 

plateau region; deformation is localized in transverse bands. Single-cell models exhibit a 

force-deformation relation which is not monotonic. In view of recent concepts of the con- 

tinuum theory of elasticity, the banding instability of the foam in compression is considered to 

be a consequence of the non-monotonic relation between force and deformation of the single 

cell. 

1. I n t r o d u c t i o n  

Cellular solids are currently used in many structural 

applications. It is therefore of interest to understand as 

fully as possible the physical mechanisms for deforma- 

tion and damage formation. With sufficient under- 

standing it will be possible to develop new cellular 

solids with superior resistance to damage. 

Elastomeric foams are known to exhibit several 

regions of behaviour in simple uniaxial compression: 

(i) an approximately linear behaviour for strains less 

than about 0.05, (ii) a plateau region in which strain 

increases at constant or nearly constant stress, and 

(iii) a densification region of the stress-strain curve in 

which its slope increases markedly with strain. Linear 

elasticity arises from bending of the cell ribs, the 

plateau arises from their elastic buckling, and den- 

sification arises from contact between ribs [1]. Simple 

analytical models based on elastic buckling of the ribs 

have been used in an effort to predict the behaviour of 

foams. They indicate a value of strain at which the 

transition between linear elasticity and plateau re- 

gions occurs at about 0.05, which corresponds closely 

with experiment [1]. 

Ductile foams such as those made of metals also 

exhibit regions of linear elasticity, plateau, and den- 

sification. In ductile foams, the plateau region is asso- 

ciated with plastic buckling of cell ribs rather than 

elastic buckling. Moreover, in elastomeric foams, rib 

buckling is fully reversible (though accompanied by 

hysteresis), in ductile foams, rib buckling is associated 

with permanent microdamage. 

The purpose of this paper is to advance understand- 

ing of compressive collapse in cellular solids with the 

aid of the theory of stability of elastic continua. Since 

elastomeric foams are more representative of elastic 

continua than ductile foams, consideration is given to 

rib microbuckling of elastomeric foams and its 

relation to elastic-stability considerations of the foam 

as a whole. Ductile foams, which are more important 

in applications requiring the support of relatively large 

stresses, will be considered in a later study. 

2. Mater ia l s  and m e t h o d s  

Scott Industrial Foam, which is a reticulated, open- 

cell polyurethane foam, was examined experimentally 

to determine its mechanical properties. The pore size 

was 1.3 mm (20 pores per inch). Macroscopic models 

of individual cells were also prepared from rods of 

polyurethane rubber, 6.1 mm in diameter. Open-cell 

models in the shape of a tetrakaidecahedron (with ribs 

25 mm long) and a regular octahedron (with ribs 

50 mm long) were made. The tetrakaidecahedron has 

six square faces and eight regular hexagonal faces 

(Fig. 1); it is considered representative of typical cells 

in foams. 

Mechanical testing was conducted using a servohy- 

draulic testing machine (Instron, Canton, MA, model 

1321) at room temperature (22~ 55% relative 

humidity). The specimens were mounted between rigid 

platens and held by friction in compression tests. 

Some tests of compression and tension were done with 

the specimen cemented to the platens with cyanoacryl- 

ate adhesive. Several trials were also conducted in 

which compression specimens were lubricated with a 

silicone-spray lubricant. Long blocks of foam in com- 

pression tests were restrained laterally on one or two 

surfaces to prevent macroscopic buckling. Some tor- 

sion tests were made upon square-cross-section bars 

as well; however, the interpretation of such tests is less 

simple than for compression as a result of the in- 

homogeneous strain field in torsion of a bar. The foam 

was examined visually and under low-power magnific- 

ation during deformation. The tetrakaidecahedron 
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Figure 1 Tetrakaidecahedron cell model. 

model was loaded in compression upon a pair of 

square faces and a pair of hexagonal faces in separate 

tests. The octahedron model was loaded upon a pair 

of triangular faces and a pair of vertices in separate 

tests. Triangular waveforms at slow deformation rates 

(0.033 to 0.0033 cycle sec-1) in displacement control 

were used. The strains presented in the graphs were 

calculated from the platen-displacement signal. 

3. Exper imenta l  results 
Uniaxial compression of blocks of Scott Industrial 

Foam of different size and shape resulted in the 

stress-strain curves shown in Fig. 2. Observe that the 

curves are monotonic. The results for a large block 

longer than its width agree with those of Choi and 

Lakes [2]. Further experiments upon compression 

specimens which were lubricated or cemented to the 

platens disclosed similar behaviour. The overall shape 

of the curves was insensitive to changes in strain rate. 

A small block, also longer than its width behaved 

similarly to the large block, as shown in Fig. 2. 

Bands of localized deformation were observed visu- 

ally, and they were transverse to the direction of 

compression. The bands contained cells which were 

highly compressed to the point of contact between 

adjacent ribs. The bands were of low contrast. The 

bands began to form when the gauge length of the 

specimen reached a strain of about 0.1, and they were 

very evident at a strain of 0.2. Further compression 

within the plateau region of strain resulted in an 

increase in the number of bands, until they occupied 

most of the specimen; macroscopic densification then 

occurred. The band thickness depended on the cell 

size; the bands were several cells thick in foam of cell 

size 0.4 mm and in foam of cell size 1.2 mm. Banding 

localization is known to occur in the tensile loading of 

polymers and metals beyond the yield point, and 

in plastic deformation of ductile honeycombs [3]. In 

the case of the present polymer foam, the banding 

localization was completely reversible, i.e. the bands 

disappeared upon the removal of the load. 

The foams exhibited considerable hysteresis, both in 

loading from zero into the densification region and in 

loading over a restricted range of deformation. In the 

latter case, a measure, A, of hysteresis loss was defined 

as the ratio of the hysteresis-loop width in load to the 

total excursion in load. In linear viscoelasticity the 

hysteresis-loop is elliptical and the above ratio is sin 8 

in which 8 is the loss angle. For strain excursions of 

0.09 peak-to-peak, A = 0.11 for excursions about zero, 
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Figure 2 Experimental engineering stress versus engineering strain for monotonic loading in compression for Scott Industrial Foam 

(20 pore inch - 1): (  9  a block 52 by 53 by 121 m m  long, (+)  a block 15 by 15 by 19 mm long, and (x) a stubby block 52 by 53 by 19 mm long. 

The inset shows the stress-strain curves on a wider strain scale and includes hysteresis during loading and unloading; the same symbols are 

used as in the large graph. 
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Figure 3 Experimental axial force versus deformation (calculated as the change in cell width divided by the original cell width) for a 
tetrakaidecahedral cell model with ribs 25 mm long and 6 mm in diameter. The inset shows an engineering stress versus strain (AL/L) curve 
for a single rib. The plateau in compression corresponds to buckling and postbuckling. 

A = 0.24 in the plateau region (a = 0.2 to 0.43), and 

A = 0.19 in the densification region (~ = 0.73). 

The compressive behaviour of a stubby block, shor- 

ter in the load direction than its width, differed from 

the above in that there was essentially no plateau 

region, as shown in Fig. 2. The behaviour of a thin 

layer of foam, about two cells thick, cemented to rigid 

platens was similar to that of the stubby block. 

The compressive behaviour of the tetrakaidecahe- 

dron cell model was not monotonic, as shown in 

Fig. 3, in contrast to the behaviour of the foam as a 

whole. The load-deformat ion curve displayed a nega- 

tive slope over a range of strain; outside this range the 

slope was positive. The curve had this shape regardless 

of whether the compression load was applied to the 

square faces or to the hexagonal faces. An octahedron 

cell model also exhibited a non-monotonic load-  

deformation curve of similar shape to the above. The 

tetrakaidecahedron-single-cell model behaved sim- 

ilarly to the foam in that the region of approximately 

linear behaviour was of similar extent; densification 

began to occur at about  the same strain, and rib 

alignment in tension caused a similar nonlinearity. 

The principal difference is the presence or failure of 

monotonicity in the plateau region. During compres- 

sion, the tetrakaidecahedron cell model first bulged 

outward in the transverse directions, then assumed a 

biconcave shape, then the ribs came in contact 

resulting in a rapid increase in stress. 

Torsion tests upon a square-cross-section-foam spe- 

cimen disclosed load-deformat ion curves with slopes 

which varied smoothly by a small amount. There were 

no abrupt changes in slope nor were there plateau 

regions. Torsion of a specimen under precompression 

of 24 % or tension of 37 % axial strain had no dramatic 

effect on the shape of the load-deformat ion curve. No 

localization in the form of bands was observed in any 

torsion test. 

As for foam materials with negative Poisson's ratios 

[4, 5], prior study disclosed the absence of a plateau 

region in the stress-strain curves. In the present study 

compressed specimens were examined for a banding 

instability, but none was found. 

4. Considerations of stabil i ty in elastic 
continua 

The experimental observation of band formation in 

the compression of foams is considered to be a mani- 

festation of elastic instability. To aid in the interpreta- 

tion of the results, salient aspects of the theory of 

stability in elastic continua are presented. 

4.1.  Linear  e las t ic i ty  

There are several ranges of elastic constants which are 

associated with stability on various levels. Consider 

first the case of linear isotropic elasticity. The strain 

energy is positive definite if and only if the shear 

modulus, G, and Poisson's ratio, v, satisfy 

G > 0 ,  - l < v < 0 . 5  (1) 

or equivalently, G > 0 and 3~, + 2G > 0 in which )~ 

and G are the Lam6 constants. 

Materials which obey these relations give rise to 

unique solutions of boundary-value problems in 

which either surface traction or surface displacements 

are specified. Moreover, such materials are stable to 

small macroscopic perturbations. 

Displacement-type boundary-value problems have 

unique solutions if [6] 

G > 0 ,  - oo < v < 0 . 5  and 1 < v <  oo (2) 

This range is considerably less restrictive than Equa- 

tion 1. Moreover, other ranges for uniqueness can be 

obtained for specific boundary shapes. 
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The conditions for strong ellipticity are [7] 

G > 0, 2 + 2G > 0 (3) 

If strong ellipticity is violated, the material may ex- 

hibit an instability associated with the formation of 

bands of inhomogeneous deformation [7]. The phys- 

ical significance of the ;', + 2G > 0 condition of strong 

ellipticity is that the stiffness is positive for axial 

compression or extension under lateral constraint, as 

is the speed of longitudinal waves. Equation 3 is equi- 

valent [8] to 

E(I - v) (1 _-;~_ 
G > 0 ,  (1 + v ) ( 1 - 2 v )  - 2G( _ ) > 0  (4) 

in which E is Young's modulus, or 

G > 0 a n d v < 0 . 5 o r v >  1 (5) 

Since E = 2G(I + v), the range of E for strong ellip- 

t icity is - :c < E < 3c. As for the bulk modulus, 

2G(I + v) 
B = - -  (6) 

3(1 - 2v) 

or equivalently B = 2 + 2G/3, so that for strong ellip- 

ticity - 4 G / 3  < B < ,~. However, as implied by 

Equation 1, E, G; and B must be positive for positive 

definiteness and for the material to be globally stable 

under small deformation. 

In summary, the conditions for global stability of an 

elastic solid and local stability (with respect to the 

formation of bands) are not identical. 

4.2. Non l inea r  e las t ic i ty  

In a one-dimensional nonlinearly elastic bar the con- 

dition for strong ellipticity is that 

d2W 

-d.2~- > 0 (7) 

in which the material in question has a strain-energy 

density, W(2), where ~, is the stretch ratio (equal to 

1 + ~:, with e the engineering strain). This relation is 

equivalent to da/d2 > 0 with a as the Piola (engineer- 

ing) stress; that is, the stress- strain curve is 

monotonically increasing. 

Failure of ellipticity may occur in the form of a 

change of sign in the slope of the stress-strain curve; 

the slope may become negative over an interval of 

strain. This was predicted [9] to result in localized 

deformation in the form of bands of material under 

high strain. Another prediction of the theory is that 

while the local (microscopic) stress strain curve has 

regions of negative slope, the macroscopic 

load -elongation response observed will always have a 

non-negative slope. 

In three dimensions, the strain-energy density, 

W(2~, ;L z, 23), depends nonlinearly on the three princi- 

pal stretch ratios ;L 1, 22, 23. The necessary and suffic- 

ient conditions of strong ellipticity (hence stability 

with respect to localized-strain band formation) are 

rather complicated [10]; see also [7] for a two-dimen- 

sional analysis. For the special case of uniaxial stress, 

along the Z 1 direction, the lateral stretches are equal: 
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22(Z~) = 230- a). The three-dimensional conditions for 

strong elliptici~ reduce to 

> 0 (8) (2,2 --z~) 

~2W O,2W 

- -  > o, ~2~ > o, ~2-~ > 0 (9) 

O2W 

~2 2 

(10) 

in which a I = ~W/~c21 is the stress in the axial direc- 

tion. We remark that Equations 9 are analogous to 

Equation 7 in one dimension. Experimentally, Equa- 

tions 9 correspond to a condition of compression under 

a restriction of lateral movement as can be achieved by 

compression within a lubricated tube, or compression 

of a short block between rough platens. 

5. Analysis of the experiment 
The bands which develop in compressed foam are 

evidence of failure of ellipticity of the material viewed 

as a continuum. The non-monotonic, compressive- 

load-deformation behaviour of single-cell models is 

regarded as a causal mechanism for the macroscopic 

behaviour of the foam in the plateau region and for the 

banding instability. 

5.1. Deta i led  ana lys is  for  one  d i m e n s i o n  

To understand the formation of bands, consider a one- 

dimensional nonlinear elastic bar with strain-energy 

density, W(2), in which 2 is the stretch ratio, k = 1 + c 

with c the engineering strain. The stress in the bar is 

a = d W(2)/d2. Suppose that on the continuum level, 

the stress strain curve (equivalent to a stress- stretch 

curve following a shift on the abscissa) is as shown in 

Fig. 4. Equilibrium requires a = constant along the 

bar. It can be shown [9] that the values of the stretch 

in an interval 2 M < 2 < k m (where d z W / d 2  2 < 0) are 

unstable, hence they are physically unobservable. For 

values of applied stress in the range a~ < a < am 

(between the local minimum and maximum of the 

stress-stretch curve in Fig. 4), there are two possible 

values o fk  corresponding to the same a, excluding the 

Stress 

L /  t,et h 
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Figure 4 Schemat ic  d i ag ram of a non-monotoni t ; ,  stress s t ra in  

response. The symbols  are explained in the text. 



unstable middle region; these may be called X+ and 

X . For  values of stress outside that interval there is a 

unique stretch corresponding to a uniform-strain solu- 

tion~ In the theory of nonlinear elasticity one can 

model phase changes by allowing strain discontinui- 

ties while maintaining continuous displacements 

[7, 9, 11, 12]. In the present setting it is possible to 

have a discontinuity in strain. The regions of different 

strain (or stretch) correspond to the bands of localized 

compression observed in the experiments. The stretch 

is discontinuous along the bar, alternating between 

the values )~+ and X_. The average stretch ;L.vg must 

obey the relation Z_ < Zavg < X+ SO there is a con- 

straint on the amount of material in each kind of 

region. 

Now consider the shape of the macroscopic response 

curve. Under the above assumptions, the macroscopic 

response (in which stress versus average stretch is 

observed) is not unique but can take the form of any 

curve within CBDE in Fig. 4 [12]. This non-unique- 

ness may be removed by making additional assum p - 

tions. For example, assume that the bar undergoes 

deformations which minimize its total potential en- 

ergy [9, 11] while satisfying the boundary conditions; 

then the macroscopic response exhibits a flat plateau 
region, line q -q  in Fig. 4, at the Maxwell stress [9]. 

This stress is determined by requiring that the areas 

between the macroscopic and microscopic response 

are equal. This response is reversible, and there is no 

hysteresis. The macroscopic response coincides with 

the microscopic stress-stretch curve over the mono- 

tonically increasing portions FEq and qBA in Fig. 4. 

In the context of the cellular solids examined here, 

the theory predicts that a non-monotonic microscopic 

response (or a single-cell response since there is 

not a continuum) gives rise to a monotonically 

nondecreasing macroscopic response with a plateau. 
A nonzero slope in the plateau region (such as is 

observed experimentally) is predicted theoretically 

under the assumption of inhomogeneity in the bar 

[11], so that the microscopic response shown in Fig. 4 

differs in its details from point to point in the bar but 

the curve always has the same shape. In the foams this 

inhomogeneity is associated with small density vari- 

ations throughout the foam, and variations in the 

buckling loads of cells depending on their geometry 

and orientation. 

The hysteresis observed in the experiments may be 

explained in part by assuming an energy cost associ- 

ated with movement of the edges of bands [12]. 

Physically, a portion of this energy dissipation can be 

considered to arise from the friction between cell ribs 

during collapse of the cells. Such analysis does not 

account for the hysteresis which is observed in regions 

other than the plateau region. A more complete ana- 

lysis would incorporate the viscoelasticity of the foam 

material. 

The width of the bands was observed to depend on 

the cell size. However, the classical theory of elasticity 

has no characteristic length scale and so cannot ac- 

count for such effects. Length scales can be incorpor- 

ated via Cosserat elasticity or via theories which 

incorporate strain gradients [ 13-15]. 

It is noteworthy that this analysis predicts a macro- 

scopic response to be caused by a markedly different 

microscopic response (in a continuum sense) which 

corresponds to the experimentally observed behaviour 

of a physical single-foam-cell model. 

5.2. Analysis for three dimensions 

The experiments were made on three-dimensional 

specimens. Analysis of the three-dimensional situa{ion 

is therefore called for. In the uniaxial-stress com- 

pression test of an isotropic material with a positive 

Poisson's ratio X= = X3 > X~ and the applied , com- 

pressive stress cr I < 0 so that Equation 10 is always 

true. Since the lateral surfaces in this experiment were 

free, ~2 = ~W(X1, X/(X0, X3(Z1))/~Z2 = 0, and sim- 

ilarly for cy 3. Differentiating with respect to ~1 

~Z w (~2 W ~2 W ~ OX2 

axial ,  - \ + e .,az3/  (11) 

We also have c~ 1 = a W(Za, X2(XO, X3(XI))/OX~. Differ- 
entiating with respect to Z 1 

8o-2(X,) 82W 2/~2W ~2W_~ ( 9 2 

ex ,  - \ axl + ax2ax3/ \ax, )  

(12) 

We used the experimental results of Choi and Lakes 

[2] for Poisson's ratio versus strain to generate a plot 

of Xz(Z1) against X1. The curve attained a relative 

maximum at Z 1 ~ 0.85, at which X 2 ~ 1.03 and 

8 ~ , 2 / ~ X  1 = 0. At this point in (X1, X2, Z3) space, assum- 

ing 82 m / o x  2 ~, 0 (otherwise Equation 9 fails), Equa- 

tion 11 gives ~2W/aXtaX2 = 0 and dcyl(X1)/dX ~ > 0. 

Then Equation 10 reduces to 

(~1 dcy 1 8 2 W 
+ > o (13) 

(Z1 - -  )~2) dZ1 ~X~ 

The first term is negative. A perfectly flat plateau 

corresponds to dol /dX 1 = 0 and therefore to failure of 

ellipticity. Ellipticity may also fail in the presence of a 

sufficiently small but positive slope in the plateau 

region, depending on the value of ~2 W/~X~ in contrast 

to the conclusions from the one-dimensional analysis; 

however, we do not have an experimental value for 

this derivative. 

5.3. Discussion 

Open-cell foam exhibits a monotonic stress-strain 

relation with a plateau region; deformation is local- 

ized in transverse bands. Single-cell models exhibit a 

force-deformation relation which is not monotonic. 

The difference between the single-cell response and the 

continuum response of foam is understood in terms of 

a stability analysis of the foam considered as an elastic 

continuum. A related analysis of the localization of 

strain in porous media has been conducted [16]. The 

present study, however, presents a non-monotonic 

force-deformation relation for the single cell as an 

experimentally evaluated causal mechanism for the 

overall foam behaviour. 
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6. Conclusions 
1. Open-cell foam exhibits a monotonic 

stress-strain relation with a plateau region; deforma- 

tion is localized in transverse bands of material under 

higher compressive strain. 

2. Single-cell models exhibit a force-deformation 

relation which is not monotonic in compression. 

3. The behaviour of the single-cell models is viewed 

as the cause of the banding localization and the 

plateau effect. 
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