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Abstract. In presence of dense mammographic parenchyma, 
microcalcifications (MCs) are obscured by anatomical structures, resulting in 
missed or/and false detections. Image analysis methods applied to improve 
visualization, detection and/or characterization of MCs, are targeted to MC 
SNR improvement and are unavoidably accompanied by MC background 
over-enhancement or false positive (FP) detections. A set of new features is 
proposed, extracted statistically with Principal Component Analysis from the 
wavelet coefficients of real subtle MCs in dense parenchyma. Candidate MCs 
are segmented and classified with the proposed features, using Linear 
Discriminant Analysis. Our method achieved 69% true positive fraction of MC 
clusters with 0.2 FPs per image in a dataset with 54 subtle MC clusters in 
extremely dense parenchyma. 

1 Introduction 

Mammography is currently the technique with the highest sensitivity available for 
early detection of breast cancer on asymptomatic women [1]. Detecting the disease 
in its early stages increases the rate of survival and improves quality of patient's life 
[2]. Detection of early signs of disease, such as microcalcifications (MCs), with 
screening mammography, is a particularly demanding task for radiologists. This is 
attributed to the high-volume of images reviewed, as well as the MC low contrast 
resolution, limited by their size, especially in case of dense breast, accounting for 
about 25% of the younger female population [3]. Although many analysis methods 
are reported [4], capable of enhancing or identifying specific image details as MCs, 
the most promising ones based on the wavelet transform, they typically produce 
disturbing background over-enhancement or false positive (FP) detections. 
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In the framework of the wavelet transform, MCs contain relatively large amounts 
of high spatial frequency information. However, a large component of the power in a 
mammogram at high spatial frequencies is also noise [5,6] (dense tissue structure 
and film artifacts). Netch et al [7], based on the circularly symmetric Gaussian 
model, used a Laplacian kernel to detect MCs as local maxima at different frequency 
bands. Strickland et al. [8] have shown that the average 2D gray level profile of MCs 
is well described by a circularly symmetric Gaussian function. Since the optimum 
detector of Gaussian functions is the Laplacian of Gaussian, they used a wavelet 
filter close to the Laplacian of Gaussian to detect significant peak responses to 
objects of similar shape and of the same size as the Gaussian filter. Soft or hard 
thresholding was used to set to zero the low amplitude wavelet coefficients, mostly 
dominated by noise. Other researchers [9-11] used globally or locally adapted linear 
enhancement functions to enhance high amplitude coefficients, corresponding to 
MCs, at various frequency bands. These methods assume statistical properties for the 
anatomical structure, which acts as structure noise in visualization (detection and/or 
characterization) of abnormalities. 

Structure noise, especially in dense parenchyma, is highly correlated with 
abnormalities, such as MCs, producing wavelet coefficients comparable with those 
corresponding to MCs [12,13]. A method to describe the correlated noise is Principal 
Component Analysis (PCA), which replaces unknown image patterns with the linear 
combination of known image patterns and it is used for compression, classification 
or noise reduction tasks [14-17]. 

An MC specific method is proposed that detects image regions with very low 
contrast and uses a local method, trained by real MCs, to separate MC regions from 
structure noise and film artifacts. 

2 Materials and Methods 

One of the most successful paradigms of medical image analysis in 
mammography is Computer-Aided Detection (CADetection) systems for MC 
clusters [18]. The typical architecture of such a system [19] consists of a 
preprocessing step to increase MC SNR and segmentation of candidate MCs. 
Following, features of candidate MC regions are extracted and a classifier is trained 
for differentiating MCs from other image components. In a last step, a criterion is 
used to find only MCs that form clusters. In our approach, new features are 
suggested based on PCA of the wavelet coefficients of real MCs, capable of 
identifying individual MCs. 

2.1 MC Eigen-Image Features in the Wavelet Domain 

PCA is a mathematical tool that can find principal components from a set of real MC 
regions. Those principal components can be thought of as a set of images [15], 
named MC eigen-images, which together characterize the variation of MC regions. 
Then, each MC region is represented by the linear combination of the MC eigen-
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images weights. For an unknown image, the segmented regions are replaced by the 
MC eigen-image weights and are classified. 

Let a MC region I(x,y) be a two-dimensional Nhy N array, considered as a one-
dimensional vector with length Â .̂ Considering a horizontal vector D={di,...,di}, of 
L images of dimension ISF and denote M={JUJ,...,JLIIJ the mean vector of the 
population D (jux is the mean of the /Ith image dx, where X=1...L). 

The covariance matrix C of D is defined by: 

C = (D-M)(D-My (1) 

where (D-M)^ is the transposed matrix of (D-M) and its size is oforderTV^xA/^. Toall 
vectors Xy={dj(v), ...,di(v)} (where v=l,...,N^) the following transform is applied: 

yv,k =(^v~^)'A (2) 

where ^ is a matrix whose columns k=l...L are formed from the eigenvectors of C 
[20], named MC eigen-images, ordered following the monotonic decreasing order of 
eigenvalues. 

The wavelet transform can be considered as a mathematical microscope that 
emphasizes on image details, where the scale defines the detail size. Wavelet 
analysis is performed with Mallat's dyadic wavelet transform [21]. When the 
wavelet filter W/(x) is selected as the second derivative of the signal smoothed at 
scale y, high amplitude wavelet coefficients correlate with high curvatures. Gaussian 
fimctions, like MCs, are high curvature components at both vertical and horizontal 
direction and they can be differentiated from line-like structures. MCs have been 
highly correlated with the wavelet coefficients at scales 2 and 3 [10,22]. Thus, each 
MC region is replaced by four representations, which are the horizontal and vertical 
wavelet coefficients at the 2"^ and 3''̂  scale (figure 1). 
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Fig. 1. The original image and its four (4) representations in the wavelet domain 

When the wavelet transform is combined with PCA, the wavelet coefficients are 
used instead of using the pixel values to calculate the correlation matrix C [23]. The 
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input data set d^ at the vth pixel is replaced by the wavelet coefficients WJ^^ for each 
scale y of the wavelet transform. 

The correlation matrix C^^ is calculated relative to the horizontal vector: 

.̂=k/̂ <̂  <i (3) 

For each band y, the transform matrix ^ contains the eigenvectors of C, which 
are the wavelet-based MC eigen-images (figure 2). Applying the matrix ^ to the Ath 
image, representing by the horizontal vector x;(, the data are transformed to yl.: 

yi^{xi-M^)-Ai (4) 

where yl is the projection of the wavelet coefficients x\ to the Ath principal 
component. 

(a) (b) 

(c) (cl) 

Fig. 2. Principal components (MC eigen-images) of the 2nd scale in the (a) horizontal and (b) 
vertical directions; and of the 3rd scale in the (c) horizontal and (d) vertical directions, 
respectively 

Each MC eigen-image explains an amount of the variability of the MC regions, 
by the variance. The variability Vk is the variance of the kth MC eigen-image [24]: 

v,=Myi) (5) 
and can be measured as a percentage of the total variability. Nine (9) MC eigen-
images are selected at each scale and direction, which accounts about 98% of MC 
regions variability. 
The processing steps for MC eigen-images extraction are the following: 
• 41 MC regions with sizes below 0.5mm, random shapes and contrasts were 

selected from an experienced radiologist specialized in mammography, as the 
training dataset. 
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• The MC regions are represented at the wavelet domain by the vertical and 
horizontal wavelet coefficients. At the 2nd scale, the MC region has 5x5 pixels 
size and at the 3rd scale, the MC region has 9x9 pixels size. 

• From each scale and direction, 9 eigen-images are selected to describe 98% of 
MC regions variation. A total of 36 eigen-images are used as features to 
recognize MC regions from other image components. 

2.2 CADetection for MCs 

2.2.1 Segmentation of Candidate MC Regions 
MCs are very small structures, visible as small bright spots in the mammogram, 
because their mass attenuation coefficient is higher than any other structure in the 
breast. However, due to the growth of the MCs, there is no absolute lower bound to 
their contrast. Very small MCs have low contrast relative to the background, which 
is sometimes close to the noise caused by either the film granularity or the 
inhomogeneous tissue background. Morrow [25] used the Weber ratio (2%) to 
segment MC regions. In our approach, an even lower contrast threshold criterion 
(0.5%) is proposed pointing at very low contrast MCs. The size criterion excludes 
signals below 3 pixels, which are likely to be noise, and signals above 100 pixels, 
which are likely to be macro-calcifications or line structures. 

2.2.2 Feature Extraction 
Candidate MC regions are analyzed at the 2nd and 3rd scale, at the vertical and 
horizontal direction. Those regions are centered at the local maxima positions of the 
wavelet coefficients. Then, they are projected at the MC eigen-images and the 
resulting weights form a vector with 36 features. 

2.2.3 Classification 
Linear Discriminant Analysis was used to classify candidate MC feature vectors in 
three classes - individual MCs, film artifacts and structure noise. The training set 
consisted of the dataset used in MC eigen-image extraction, as well as 20 verified 
film artifact regions and a large number of noisy structures. 

2.2.4 Clustering 
Because isolated MCs are not clinically significant, the detection of clustered MCs is 
of paramount importance. Typically, at least 5 MCs per square centimeter are 
required to be considered a cluster, but three suspicious MCs could be enough to 
prompt a biopsy [26]. In our method, a cluster is defined and considered as a true 
positive (TP) when at least three candidate MCs have Euclidean distance less than 
5mm. 
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3 Results 

The method was tested on a dataset of 53 images. Specifically, 16 images were 
normal and 37 images contained 54 subtle MC clusters (46 malignant, 8 benign) in 
extremely dense parenchyma (density 4 of ACR BIRADS) with 12-bit pixel depth 
originating from Digital Database for Screen Mammography (DDSM) [27]. TP and 
FP clusters were counted for each mammogram and the number of FP clusters per 
image and the corresponding number of TP clusters are determined from an expert 
radiologist specialized in mammography. Our method achieved 69% TP fraction 
from 54 MC clusters with 0.2 FPs per image. 

ROI 1 

ROI 2 

Fig. 3. (a) Mammographic image (A-1220_1.RCC) with three TP detected ROIs. (b) 
Magnified ROIs (176x178 pixels size) with an intensity windowing function applied. 

A representative example with the detected MC clusters is presented in figure 3 
(a). Figure 3 (b) provides the magnified image regions (176x178 pixels size), where 
a window intensity function has been applied to better visualize the detected MC 
clusters. 
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4 Discussion and Conclusion 

New features for the detection of individual MCs, based on PCA in the wavelet 
domain, are proposed. PCA analyses the region statistics of real MCs to produce a 
new feature set, named MC eigen-images. Candidate MC regions are represented as 
weights of the MC eigen-images. The wavelet transform focuses on the analysis at 
scales 2 and 3, where the SNR of the MCs is increased. 

The sensitivity of the detection algorithm is controlled by the dataset of real MC 
regions, used for principal component eigen images extraction. Compared to other 
studies [7,8], the achieved FP rate is extremely low, lending itself for further 
processing for detection or classification. A feature step is to add more subtle MCs in 
the training set to improve sensitivity as well as FROC analysis to estimate the 
performance optimization. 
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