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Abstract 

A methodology is devised to utilize the statistical mechanical entropy of an isolated, 
constrained atomistic system to define the dissipative driving-force and energetic fields in 
continuum thermomechanics. A thermodynamic model of dislocation mechanics is discussed. 
One outcome is a definition for the mesoscale back-stress tensor and the symmetric, polar 
dislocation density-dependent, Cauchy stress tensor from atomistic ingredients. 

 
Dedication: This paper is dedicated to the memory of Professor Donald E. Carlson, teacher and 
friend to me. I owe a great debt for all I learned from him, in particular continuum mechanics. 
Don was a scholar and a gentleman, with a kind heart and a tremendous sense of humor. I miss 
him. 
 
1. Introduction 
 
This work is an attempt at examining to what extent material-specific atomistic information can 
be incorporated into defining material response in continuum mechanics at ‘slow’ time scales (³
microseconds) with respect to the fast time scale of atomic vibrations (~femtoseconds). We rely 
on classical equilibrium statistical mechanics of isolated atomistic assemblies as our microscopic 
theory, e.g. (Berdichevsky 1997); the meso-/macro scale models are intended to be non-standard 
continuum mechanical models of defects in solids. The bridge is assumed to be the two laws of 
thermodynamics, as enunciated in the Classical Field Theories of Mechanics (Truesdell and 
Toupin 1960) in particular, the global form of the Clausius-Duhem Inequality as the embodiment 
of the Second law of thermodynamics. The essential idea is to give one possible operational form 
and meaning to the specific internal energy and entropy response functions of continuum 
thermomechanics, resorting to the atomistic nature of all solids and the equilibrium statistical 
mechanical microscopic theory of assemblies of such atoms. The nonstandard continuum models 
of relevant defects have to be developed based on a consideration of fundamental defect 
kinematics that give rise to balance/conservation laws for geometrically rigorous densities. The 
notion of ‘local thermodynamic equilibrium’ also has to be made operational, but this becomes 
somewhat easier, if only formally, due to a reliance on a microscopic finite dimensional 
Hamiltonian system for which the existence of a phase-space invariant measure (probability 
density function) can at least be considered plausible.  

We rely on statistical mechanics in the microcanonical ensemble primarily because continuum 
mechanics requires the notion of a meso/macro point-wise temperature that has to be defined 
without relying on the fact that it has a surrounding that has the same temperature. For a 
discussion and comparison of the microcanonical and canonical definitions of the entropy, see 
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(Berdichevsky 1997), and for an independent viewpoint on Berdichevsky’s development, 
(MacKay 1999). Moreover, it seems conceptually natural in the setting of continuum mechanics 
to have the ‘interaction with the bath’ of an atomistic subsystem to be handled by the 
macroscopic partial differential equations (PDEs) of the continuum model.  

The main contributions of this work are in 1) making precise how continuum field values at 
points in space-time can be utilized to describe well-defined local Hamiltonian systems, whose 
entropy then defines the continuum specific entropy field, and 2) application of the overall 
scheme to a field description of the mechanics of dislocations. The model makes no restrictions 
on geometric or material nonlinearities.  

The model of dislocation mechanics develops prior work (Acharya; 2001, 2004),  (Acharya and 
Roy, 2006) which in turn builds on the theory of continuously distributed dislocations pioneered 
by (Kroner 1981), (Mura 1963), (Fox 1966), and (Willis 1967) and extends it to account for 
dissipative dislocation transport and nonlinearity due to geometric and crystal elasticity effects. 
Here, the main contribution is a theoretical treatment that produces a completely defined 
constitutive equation for a (generally non-symmetric) back stress tensor and a symmetric Cauchy 
stress that includes a dependence on the polar dislocation density tensor. Temperature 
dependence of the back stress and the Cauchy stress are automatic.  

This work does not make any fundamental statement about constitutive kinetic relations beyond 
uncovering the driving forces for dissipative mechanisms. However, even with the assumption of 
linear kinetic relations, the governing nonlinear partial differential equations for dislocations 
coupled to stress are very rich, and it is reasonable to expect them to be capable of predicting 
complex microstructure. Balance of energy in standard form and the global form of the Clausius-
Duhem Inequality are assumed to be valid without question, and this may be construed as a 
major shortcoming of this work. Given the complexity of the venture as is, this may perhaps be 
considered acceptable with some justification, see e.g. (Man 1995). There are natural avenues for 
considering these extremely difficult questions of nonlinear spatio-temporal ‘homogenization,’ 
e.g., (Tartar a 2008), (Tartar 2009), (Artstein and Vigodner, 1996), but precise answers for the 
context at hand, even at a theoretical level, remain elusive despite outstanding work1, giving a 
sense of the arduous road ahead on this issue. To give an example of the thorny issues involved, 
in the conservative approach adopted here (and in all of practical equilibrium statistical 
mechanics), we declare by fiat the existence of a unique invariant measure for time-averaging an 
atomistic Hamiltonian system. Running time-averages of phase functions can be appended to the 
original ODE Hamiltonian dynamics to produce a singularly perturbed system (Acharya 2010). 
The rigorous results of (Arstein and Vigodner, 1996) then clearly indicate possibilities different 
from averaging based on a unique invariant measure for defining the theory for the dynamics of 
the time-averages, and it may be expected that such considerations would play a fundamental 
role in understanding kinetic relations from the ground-up. 

This paper is organized as follows: Section 2 defines the specific internal energy field of the 
continuum theory; Section 3 defines the notion of local thermodynamic equilibrium; Section 4 
deals with the definition of the specific entropy field; Section 5 discusses the probabilistic 
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interpretation of the microcanonical entropy; Section 6 deals with the mesoscale model of 
dislocation mechanics. There are three Appendices. In Appendix A, a Helmholtz free energy 
density is defined from the entropy field, and it is shown how thermodynamic models may be 
recast in terms of this energy and temperature. Appendix B describes the detailed geometric 
reasoning behind the conservation law for the dislocation density tensor. Appendix C shows the 
connections of the dislocation kinematics presented here with that in (Acharya 2004) and 
Acharya and Roy (2006). 

To our knowledge, the approach proposed herein to make a connection between continuum and 
atomistic dynamics is new; there is a connection in spirit, with significantly different details, 
with the finite-temperature quasicontinuum ideas of Kulkarni et al. (2008). There exists a large 
literature on thermodynamics for dissipative response of solids at finite strain, beginning with the 
pioneering works of Coleman and Gurtin (1967) and (Rice 1971). The emphasis here is on 
making the statistical mechanical connections to define some of the fundamental ingredients 
(internal energy, entropy) of any continuum thermodynamic framework. As mentioned earlier, 
resorting to a finite dimensional Hamiltonian microscopic model representing atomistic 
assemblies has a distinct advantage in making standard (nonequilibrium) thermodynamic 
formalism less abstract, especially ideas related to thermodynamic processes consisting of 
‘constrained equilibrium states.’ Thus, a primary goal of this paper is to make clear how a real 
equilibrium state of an appropriate, constrained microscopic system can be made plausible, what 
this equilibrium exactly means and how such equilibria naturally form a process at macroscopic 
time scales, and why the resulting thermodynamics can actually be applied to continuum 
dynamics with inertia in many circumstances. Rice (1971) considers a thermodynamic model of 
plasticity arising from dislocations; the model here contains a more detailed consideration of 
dislocation kinematics (that accommodates the standard model of crystalline slip as one 
ingredient) leading to the representation of dislocation transport through wave-propagative 
effects and length-scale effects in mechanical response. 

 
2. Specific internal energy of the continuum theory 

 
Let x  be a point in space occupied by a material point of a deforming body at time t . Consider a 
spatial volume  ,  x  of fixed volume V  around x .  Let the continuum mass density  , t x  

at the space-time location  , tx  be a piece of physical information available to us, for the 

moment from an unspecified source. Similarly, let us assume that the value of the continuum 
velocity  , tv x  is also known. For simplicity we consider atoms of a single species with 

individual mass m .  
The first objective is to state the physical assumptions behind defining a continuum specific 

internal energy (per unit mass) field. We now think of a collection of  

    ,
, :

t V
N t

m




x
x  

atoms indexed by I . Let IV  be the velocity of the thI  atom. Let the mean velocity and 

fluctuations be defined as 
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  
1

1
       ;         

N

I I I

I
N



  V V V V V  . 

Then 

      
1 1 1

1 1 1

2 2 2 2

N N N

I I I I I I

I I I

m m m m

N N N
  

             V V V V V V V V V V + V V    . 

This implies that the total kinetic energy of the N  atoms is given by 

 
1

2 2

N

I I

I

Nm m



 V V + V V . (1) 

As for the ‘potential’ energy, let us assume that the entire body, viewed as a atomistic system, is 
endowed with a potential for generating interatomic forces which can be characterized as a 
function of number of atoms, say M  (typically M N ), and the positions , 1 to j j Mr , of the 

M  atoms. Let this potential energy function be 

   , , 1 to jU M j Mr . 

 This prescription makes it clear that while the total potential energy of the body can be written 
down unambiguously, it is not so clear how one might define the potential energy of  a certain 
subset of the atoms only in terms of the positions of that subset of atoms. 

In the setting of continuum mechanics, we write the total energy of arbitrary subparts of the 
body, say  , as  

 
1

2
dv


   
  v v + , 

where the first term in the parenthesis represents the kinetic energy per unit mass field and the 
second, the internal energy per unit mass field. 

It seems natural then to associate 

 
1

1

2 2 2

N

I I c

I

Nm m
dv U


 



      
   v v + V V + V V , (2) 

where cU  is an atomic interaction energy term that needs to be defined. 

Motivated by the form of (2), we associate the continuum velocity field with the local mean 
atomic velocity, so that  

 
1 1

2 2
    v V v v V V . (3) 

Let the specific internal energy field (per unit mass) around  , tx , be denoted by ( ), t x . We 

postulate that it corresponds to the total energy of a local, isolated, constrained, ergodic 
Hamiltonian system consisting of  ,N tx  atoms, with the potential of the original material. 

Thus for each t t t   ,  given ( ), t x , 

 
               

 

 
,

1

, , , : , , , 1 to ,
2

                                    subject to appropriate constraints to be defined.

N t

j I I

I

m
t t V E t U N t j N t    



    
x

x x x x r x V V
(4) 
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The constraints are meant to represent the action of all the other atoms in the body on this set of 

 ,N tx  atoms beyond what can be represented through the specification of the value of the total 

energy,  ,E tx . These constraints have the following generic form: let a point of the 6N  

dimensional phase space of the Hamiltonian system be denoted by Y . The constraints are then 
written as 
    , , 1 to 2i iz t i k  Y x , k  a positive integer,  (5) 

where i  are real-valued functions of Y  and iz  are values of macroscopic fields at the point 

 , tx . We discuss the specifics of these constraints in Section 6 in the context of a concrete 

example. 
The manner in which (4) may be physically interpreted (and tested) as a definition of specific 

internal energy at  , tx  is as follows: given the mass density  , t x  consider the  ,N tx  

nearest atoms to the point x  at time t . Now assume that the positions and velocity fluctuations 
of these atoms satisfy (5) for the time interval  ,t t t  , given the values of  ,iz tx ; also, 

assume that the velocity fluctuations and the positions of these atoms are such that the extreme 
right-hand-side of (4)  evaluated for these arguments attains a constant value,  ,E tx , over the 

time interval  ,t t t  . Then  , t x  may be defined as     , ,E t t Vx x . 

Ergodicity is an abstract, but very useful, mathematical concept – for our purposes, we take it 
to be practically ‘equivalent’ to one of the most useful properties of an ergodic Hamiltonian 
system: consider a set A  on the energy surface   : H EY Y  of the system. Consider the time 

 ; ,A   Y  spent by a trajectory of the system in the set A  starting from initial condition Y , 

over a total time of evolution   . If the system has the property that 

 
   

; ,
lim

A
A



 











Y
 

independent of almost all trajectories with  energy E  used to generate it, where   is a real-

valued function on subsets A  of the common energy surface, then we call the system ergodic. 
 
3. Local equilibrium 

 
A primary assumption we make here is that the local Hamiltonian system evolves on a time scale 
(~ femtoseconds) that is much smaller than the time scale of evolution  (e.g. ~ microsecond) of 
the continuum theory; in particular, the separation is large enough such that for E  held constant, 
the local atomistic system equilibrates on the macroscopic time-scale. By this, we mean the 
following: consider the 6 2N k  dimensional set of points forming the accessible states (or 
phase space) of the constrained Hamiltonian system. Consider further the 6 2 1n k   
dimensional subset of this constrained phase space, consistent with the prescribed value of the 
energy E , and consider an arbitrary subset A  of it. Choose almost any trajectory of the 
constrained system with energy E  and consider the ratio 
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 ; A 








 

of the time   spent by the trajectory in the set A , and the total time of evolution    of the 
trajectory. Let t  be a minimum interval of time on the t  scale below which the continuum 
theory shows no appreciable evolution – this is an important conceptual ingredient, and we think 
of this as the time resolution of the continuum theory. Then, as a definition of microscopic 
equilibrium, we require that, given any A  as defined above, there exists a constant ( )A  such 

that  

 for any t          
   

; A
A

 
 








  , 

where 0 1   is a (user-specified) threshold. Of course, we keep in mind that the set A  
depends on E  by definition, so the function   really depends upon E  for its definition. 
 
4. Specific entropy field of the continuum theory 
 
In defining a continuum entropy per unit mass field, we adapt the developments in Berdichevsky 
(1997) for our purposes. For each  , tx  in the body, define 

    
 ,

1

1
:

2

N t

I I

I

H U m
x

Y X V V


   , (6) 

where Y  is the list 

 ( ) ( )( )1 2 2, ,, , , , , , ,IN t N t= x xY X X X V V V   

and we have used the shorthand 

        : , , , 1 to ,jU U N t j N tX x r x   (7) 

(cf. (4)). 
Next a phase space region  

         : , , , , 1 to 2i iH E t z t i k  Y Y x Y x  (8) 

is defined.  
Furthermore, 
      , : , ,E t t t V x x x , 

where   is the continuum internal energy per unit mass field. Let us assume that there is some 
invariant physical meaning that can be associated with volumes of regions in phase space. An 
important construct of the theory is the volume of the phase-space region defined by (8): 
       , , , ; , :E t z t N t x x x         : , , , , 1 to 2i ivol H E t z t i k  Y Y x Y x  (9) 

In writing z , we mean the entire array , 1 to 2iz i k . 

Note that volumes in the 6N  dimensional phase space of the above atomistic Hamiltonian 

system have physical units of    3 3
momentum position

N N
Energy time   . We now assume 

that our microscopic measurements can only resolve an action scale, say h ,  and above. Then, 
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following Berdichevsky (1997), and all attendant assumptions therein (nondegeneracy of 
constraints, incompressibility of phase flow of the constrained system and ergodicity of the 
constrained system being the main ones), given , ,E z N  it makes sense to define the entropy of 

the constrained Hamiltonian system as 

      
2

3 ,
1 2

1
, ; : ln , ;

k

N t
k

S E z N E z N
z zh


x

 
    

. (10) 

( ), ,S E z N  is simply a measure of the 6 2N k  dimensional volume of the constrained 

Hamiltonian system bounded by the energy surface E . 
The objective of this paper until now has been to establish a procedure for defining point-wise 

values of the quantities , ,E z N  based on evaluations of the continuum fields , , z  . Thus, we 

define the continuum entropy per unit mass field from the entropy of the constrained Hamiltonian 
system defined above as 

                  
2

3 ,
1 2

1
, , , , , : ln , , , ; ,

,

k

N t
k

C
t t z t E t z t N t

t V z zh

  


 
    

x
x x x x x x

x 
,(11) 

where C  is a constant with units of  energy/absolute temperature. This expression for the 
specific entropy is simply a measure of the 6 2N k  dimensional volume of the constrained 
Hamiltonian system bounded by the energy surface E . 

The motivation behind this definition is as follows; in the case of an unconstrained, ergodic, 
Hamiltonian system with Hamiltonian quadratic in the momenta, it is a principal result that the 
long-time average of the kinetic energy of any given particle along almost any trajectory with 
fixed energy is a constant (equipartition) and, by definition, this common value is called the 
absolute temperature, say T . This further definition is motivated from macroscopic 
thermodynamics where the result 

 
1 S

E





 (12) 

where   is the macroscopic temperature (i.e. the perceived level of hotness), S  is the entropy of 
the system, and E  is the energy. For the unconstrained Hamiltonian system, defining the phase 
space volume bounded by the E -energy surface as 
     :E vol H E  Y Y  (13) 

it can be shown (e.g. Berdichevsky, 1997) that 

    

 

E
T E

E
E








. (14) 

Therefore, defining entropy in microscopic terms (utilizing ideas going back to Boltzmann, 
Gibbs and Hertz, according to Berdichevsky, 1997) as 

    
0

ln
E

S E



 
  

 
 

where 0  is a constant required on dimensional grounds, implies  T E  . 

In our case of the constrained Hamiltonian system, equipartition is not a derived result. 
However, macroscopic thermodynamics yields a result similar to (12), as we subsequently show. 
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Moreover, in the (unconstrained) case where there is a formal proof, a natural geometric/physical 
interpretation of entropy arises as the 6N  dimensional phase space volume of the system 
bounded by the energy surface E . These three facts motivate the definition (11). 

We agree to pose the constraints in non-dimensional form by definition, so the logarithm makes 
sense. In general, a physically dimensional constraint, say z   , may be normalized arbitrarily 
so as to be stated in dimensionless form z  . Finally, it should be carefully noted that the 
dependence of the specific entropy field on the continuum mass density field goes far beyond 
what is apparent through its explicit appearance in the formula (11). 

Turning to prospects for making the theory practical, it is clear that if the function S  can be 
determined then the response function for the specific entropy of the material,  , , z   ,  is 

completely defined. There exists a great deal of expertise in the physics literature for calculating 
various energies and entropies of molecular systems, e.g. Frenkel and Smit (2002), mostly in the 
context of calculations with the canonical ensemble. It is conceivable that these strategies can be 
gainfully adapted to the specific problems mentioned herein. Practical approximation of the 
entropy function S , while an important subject in its own right,  is beyond the scope of this 
paper. In the following section we mention a probabilistic interpretation of the entropy S  that 
suggest some naïve methods for approaching the calculation of ( ),S z E  that involve data 

collection from the unconstrained Hamiltonian system to yield information on the entropy of the 
constrained system. 

 
5. Probabilistic interpretation of Entropy 
 
We review some basic assumptions of equilibrium statistical mechanics in the microcanonical 
ensemble, following Berdichevsky (1997). Consider the unconstrained Hamiltonian system (6)-
(7), assumed to be ergodic. Given phase functions   , 1 to i i P Y  and a trajectory  Y  with 

energy E  we first define the amount of time     , out of a total time of evolution   , during 

which all the following relations 
    , 1 to i i i iz z z i P    Y  

are satisfied. Let 1 2 Pz z z     . We now assume that the limit 

 
   10

1
lim lim : , , ,Pf z z E



 





 





  

exists and, as shown in the notation, depends only on the , 1 to iz i P ,  and E , and is 

independent of the trajectory used to define it. 
The function f  is called the probability density of the characteristics i , 1 to i P . 

We recall the definition (13) and define 
           , , , : : , , , , 1 to i P i iz z E vol H E t z t i P    Y Y x Y x . 

Then a fundamental result (under several strong assumptions) (Berdichevsky, 1997) is that 

      
1

1 1
1

, , , , , ,
P

P P
P

f z z E E z z E
E E z z

  


   
 


. (15) 
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Now, (15) and (10)  imply 

         3, exp , ;   ;  : , 1 to 2N
if z E E h S E z N z z i k

E E

 
  

 
, (16) 

where it is understood that the left hand side now refers to the unconstrained Hamiltonian system 
defined by (6)-(7); in particular, that the system contains N  atoms. 

Thus, if the probability density function of the 2k  characteristics can be 
evaluated/approximated by some means (e.g. experimentally), then (16) provides a method of 
determining the entropy S  of the local discrete system. 

We note here that given the number of strong assumptions that have to hold to define the 
constrained Hamiltonian system and its entropy (11), it could just as well be as effective to 
simply define the entropy of a certain set of characteristics of an isolated system by the formula 
(16), thus bringing it closer in line with some other approaches to defining the entropy based on 
purely probabilistic grounds (Swendsen 2006). This would also then get rid of what appears to be 
a somewhat artificial constraint of having to deal with only an even number of characteristics 
(arising from the fact that the constrained system has to be Hamiltonian). 

 
Molecular Dynamics (MD) based evaluation of  , ;f z E N  

 
By definition,  , ;f z E N  can, in principle, be computed by integrating along representative MD 

trajectories for different values of E . However, as this may require long-time MD evolution, it is 
not clear how promising such an approach might be for practical evaluation of the probability 
density function for further utilization in (16) to determine  , ;S E z N . 

 
Evaluation of  ;f z E  based on experimental observations in the large- N  limit 

 
Presumably, bodies with arbitrarily fixed values of energy E  and a large number of atoms 

 N   admit the possibility of being obtained. Note that even with a large number of atoms, 

such bodies can serve as the isolated Hamiltonian systems discussed earlier. Consider one such 
value of E  and let there be A  bodies forming a sample space. We now make the following 
strong assumption: observing each body in the sample over a macroscopic time interval, say t , 
is equivalent to making A  observations on a single trajectory with energy E , each observation 
consisting of a t  time interval. 

Let us index the specimens by 1 to I A . Each has a set of values ,  = 1 to iz i k  associated with 

it, say , 1 to 2 , 1 to iIz i k I A  . Suppose B  specimens were found to correspond to values of *
iz , 

1 to 2i k , for the constraints; i.e. , 1 to 2 , 1 to ,
jiI iz z i k j B*= = =  with each { }1,2, ,jI AÎ  . 

Under the stated assumptions, an approximation of the value of the probability density function 
f  at the argument  ;z E  may be written as 

  ;h B t B
f z E

A t A
 

 


. 
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The same procedure can then be repeated for all values of  ;z E  of  interest. 

 
Maximum Entropy states and most probable states 
 
In closing, we note the following associations of the probabilistic interpretation of entropy with 
Gibbs’s thermodynamic postulate about macroscopic equilibrium. Let us rewrite (16) in the form 

 
( ) ( ){ }1 3ln

exp 1

NE h S E
f S

S


-æ öé ù÷ç ¶ ¶ ¶ ¶ê ú÷ç ÷ç ê ú÷= +ç ÷ç ê ú÷ç ÷ê úç ÷÷çè øë û

. (17) 

When the fraction in the above expression is much smaller in magnitude w.r.t. unity, we obtain 
Boltzmann’s expression for the entropy 
 ( ) ( )ln , ,f z E S z E=  (18) 

which expresses the relationship of the probability of observing the macroscopic state z  with 
system energy E  to the entropy of the system. In particular, Gibbs’s postulate that for fixed 
energy, the macroscopic state (here z ) that is observed (equilibrium) corresponds to the state 
that maximizes the entropy would suggest, according to (18) that Gibbs’s maximum entropy 
equilibrium also corresponds to the most probable state(s), under the assumption leading to (18) 
from (17) (e.g. for large N , as shown by heuristic arguments in Berdichevsky (1997). 
 
6. Example: Mesoscale Dislocation Mechanics 
 
Up to the specification of constitutive equations, we assume that the following field equations 
are valid for describing the mechanics of a body containing dislocations, including resolving the 
mechanics of single dislocations (i.e. ‘microscopic theory’): 
  0 ,tdiv div       v v         (Balance of Mass) (19) 

    ,tdiv div      v T v T v v    (Balance of Linear Momentum)  (20) 

 div  0   (Dislocations cannot end in the material) (21) 
 curl  W   (Fundamental statement of elastic incompatibility and dislocations) (22) 

 
    

 

,

:

t

T

curl curl

div

       

  

   

   

V v V

v L






 (Balance of Burgers vector content) (23) 

   W WL V . (24) 
Here, as in classical continuum mechanics, we assume that mass of arbitrarily small sets of 
particles in the body is conserved for all motions. In the above,   is the mass density, v  is the 

material velocity, T  is the Cauchy stress,   is the dislocation density (Nye) tensor, W  is the 
inverse elastic distortion tensor, V  is the dislocation velocity field relative to the material, and 
L  is the material velocity gradient. A superposed dot represents a material time derivative, 
whereas a subscript comma followed by a t  represents differentiation with respect to time of the 
Eulerian representation of the field in question. All spatial derivative operators are defined on the 
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current configuration. Equations (19)-(20) are familiar from standard continuum mechanics. For 
the derivation of (21)-(24), see Appendix B of this paper and Acharya (2007). 

Our primary interest here is, of course, in mesoscale dislocation mechanics. We obtain the 
approximate governing partial differential equations for such a case, up to constitutive equations,  
by using the following simple technique. 

For a microscopic field f  given as a function on the current configuration and time, we define 

the mesoscopic space-time averaged field f  as follows: 

 ( )
( )

( )( )

( ) ( )1
, : , ,

B

I t

f t w t t f x t d dt
w t t d dt



Á
¢ ¢ ¢ ¢ ¢ ¢= - -

¢ ¢ ¢ ¢- -
ò ò

ò ò x

x x x , x
x x , x

 (25) 

where B  is the body and Á  a sufficiently large interval of time. In the above, ( ) x  is a 

bounded region within the body around the point x  with linear dimension of the order of the 
spatial resolution of the macroscopic model we seek, and ( )I t  is a bounded interval in Á  

containing t . The averaged field f  is simply a weighted, space-time, running average of the 
microscopic field f  over regions whose scale is determined by the scale of spatial and temporal 

resolution of the averaged model one seeks. The weighting function w  is non-dimensional, 
assumed to be smooth in the variables , , ,t tx x¢ ¢  and, for fixed x  and t , have support (i.e. to be 

non-zero) only in ( ) ( )I t x ´  when viewed as a function of ( ), tx¢ ¢ . We choose the volume of 

the region ( ) x  

   :vol V y y x , 

as used in defining the specific entropy and internal energy from atomistic considerations. 
We assume that 

 v v  
and that averages of products are the product of averages in all cases except 

 : p    V V L . (26) 
In (26), the first term on the left-hand-side is the mesoscopic plastic distortion rate and the 
second term may be interpreted as the  plastic distortion rate produced by the motion of the polar 
dislocation density (defined in the next section) moving with velocity V . Similarly, the term on 
the right-hand-side of (26) is the plastic distortion rate produced by the motion of the dislocation 
fluctuation density (also defined in the next section). pL  is a two point-tensor field from the 
current to the unstretched materially uniform elastic reference. 

Applying the averaging operator (25) to the Eulerian form of the equations (19)-(24) under the 
above assumptions yield the following set of mesoscopic equations: 
 div   v  (27) 

 div v T  (28) 

 p  W V + L WL


  (29) 

   :
Tpcurl         V L I L L , (30) 

where the   signs reflect the fact that these averaged equations result from having made the 
assumptions on averaging products mentioned above. 
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6.1 Definition of local constraints for dislocation mechanics and thermodynamics 

 
For the case of interest here, the  , , 1 to 8iz t i x  are defined as follows. Define 

 1:e F W . 
Let  

    , : ,
T

e e et tC x F F x  

 be the continuum elastic metric tensor at the point  , tx  corresponding to the space-time 

averaged continuum elastic distortion tensor  ,e tF x . This is a positive definite tensor resulting 

in six values of  the array  ,z tx .  We think of the , 1 to 6i i  , as some correspondence rule 

that links the atomic positions of the  ,N tx  atoms to an average squared right stretch tensor. 

For example, at any given value of ( ),E tx , let us consider an unstressed block of the N  atoms 

in a perfect infinite lattice. Consider now an homogeneous deformation of this geometric shape 
with right Cauchy Green tensor given by  ,e x tC . Now consider all possible placements of the  

 ,N tx  atoms within this deformed block (including defects in the lattice arrangement). We 

could consider all these arrangements as satisfying the constraints    , , 1 to 6i iz t i Y x  . 

The same interpretation can be useful in determining the probability density function ( ),f z E  

from configurations along a trajectory of the unconstrained system with energy E . 
For the next two values of the array z , we define 

    
as the polar dislocation density  at  , tx , also commonly referred to as the geometrically 

necessary dislocation density (GND) tensor. In terms of the polar dislocation density we also 
define the dislocation  fluctuation tensor field,  , as the difference between the microscopic 

Nye tensor field and the polar dislocation density tensor field: 
      , : , ,t t t   x x x  

We now introduce a scalar field,    , : ,t t  x x  which is the meso/macro space-time 

average of the square of the magnitude of the microscopic dislocation density tensor (Nye tensor) 
around  , tx . Notice that, by defining 

 

: :    (scalar total dislocation density),

: : (scalar polar dislocation density), and

: : (scalar dislocation fluctuation density - commonly 'statistical density' SD)

g

s






 
 

  






 (31) 

we have the exact result 

 : : : g s            . 

All of the scalar measures have physical dimensions of   2
1 Length . 
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Under the product-averaging assumptions made, the evolution of the polar dislocation density 
tensor is given by 

 
 

 

' ' ' ' ' '

,

, , , ,
'

      
'

              :

t

ij t ij k k ij t ij k k ij

T

Tp

grad

d
v v

dt

d
curl div

dt

curl

    

  

   

  

x

x' x'

x

v

V v L

V L I L L

 

    

    

      



 

   :
Tpcurl          V L I L L , (32) 

where ( ) ( ), kk x¢ ¢⋅ =¶ ⋅ ¶ . Consequently the evolution of the scalar polar dislocation density is 

     2 : 2 : :
Tp T

g curl             V L I L . (33) 

We now assume that the mesoscale specific entropy field depends on 

   , , , ,e
g s    C W . (34) 

We also assume that Balance of energy and the Second Law hold in the same form for average 
fields, regardless of the length scale of averaging; the only change with length scale of 
averaging occurs in the actual details of the specific entropy response function, as defined in 
(34). 

From here onwards, we work with average fields but drop the overhead bars for convenience. 
Balance of  energy takes the form 
 : div r   T L+ q+ , (35) 

where q  is the heat flux vector2 and r  is the volumetric heat supply, and the Second Law is 

written as 

 
     

: 0
B t B t B t

d r
dv da dv

dt


 


     q n

H . (36) 

Using (34), and defining the back-stress tensor 

    2ˆ ˆ ˆ
: 2 : 2T T

g g

curl
    
  

   
          

    B I I W  (37) 

which is in general non-symmetric due to the last term, we have 

                                                 
2 Where ⋅q n  , n  a unit vector, gives the heat flow per unit time in the direction n , through unit area 

perpendicular to n . 
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 

 

      

 

2

2

1 1

2 : :

1
   

   :

   2 : ,

     where 

T T

B g

B B t

T peT eT

B B

p

s
B Bs g

dv

grad
dv dv

dv dv

dv da

    
  

  
  

 

   
 

   

 

 

T
W I I L

W

q

F T B V F T B L

V L n

 



                   
      

    

          



 
 
 





H

  : .ijk jr rki
AB e A B 

 (38) 

Therefore, a sufficient condition for the satisfaction of the second law (36) for all processes of 
this model of dislocation mechanics is to require constitutive equations for , , , , ,p

s q V L T   to 

satisfy 
 0grad⋅ ³q  (39) 

      0
T e T B F V    (40) 

    0
peTF T B L    (41) 

  sgn sgns
s

 


 
   

  (42) 

   22 :T T

g

     
 

              
   T W I I

W
 (43) 

 
1 
 





. (44) 

Of course, an implicit assumption in the above is that the stress response function depends on the 

list  , , , ,s  W . Also, we assume 
ˆ

g






  to be small in comparison to other stresses in 

the dissipative driving forces (40) and (41) so that the boundary term can be neglected with 
respect to considerations of ensuring non-negative entropy production in the body. 

It can be shown that since   depends on W  through eC  

 2T e eT
e

  
 

 
W F F

W C
, 

so that the stress tensor (43) is symmetric. The driving force for pL  however is nonsymmetric, 
indicating that the skew-symmetric part of pL  (plastic spin) affects the dissipative cost in the 
model in contrast to the conventional theory of crystal plasticity as well as ‘isotropic’ finite 
deformation plasticity theory. 

Related to the shortcomings of the theory with regard to making fundamental suggestions on 
kinetic laws, we mention here that phenomenological models for the accumulation of scalar 
fluctuation dislocation density s , e.g. the Voce law, see Kocks et al. (2000) or Guruprasad and 
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Benzerga (2008),  and the averaged dislocation fluctuation plastic flow, pL , can be 
accommodated within the thermodynamic restrictions mentioned above with straightforward 
modifications. As for pL , thermodynamic restrictions for both ‘isotropic’ and crystal plasticity 
forms result. 

In Acharya (2004) and Acharya and Roy (2006), a natural decomposition of W  into 
compatible and incompatible parts is introduced that has practical advantages in solving for the 
state of internal stress corresponding to a given polar dislocation density distribution and in 
dealing with situations when the polar dislocation density field vanishes on the body. In 
Appendix C, the connection between what is presented above and that work is made. 
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Appendix A: Thermodynamics in terms of the Helmholtz free energy and absolute 
temperature 
 
Assume that we have the specific entropy function,  , defined as a function of  ,d , where d  

is the collection of objects  , z  interpreted as an array of numbers. Under the assumption that 

 
2

2
0









 

for all  ,d , the temperature relation 

  1
, d

 
 






 (45) 

implies that there exists a function   such that 
  ,d    . 

Then, one can define the Helmholtz free energy density as 
       , : , , ,d d d d              . (46) 

Without loss of essential generality and to underplay the relevance of the heat supply term, we 
assume 0r  . However, we proceed in the restricted case of m V 0  for the sake of simplicity. 

First, note that (45) and (46) imply 

     , , ,d d d
    



 


   . 

Consequently, we have 

 d
d

 
  

   , 

where the notation   d    implies the array of partial derivatives of the function    with 

respect to each entry of the array d .  Therefore, balance of energy 
 : div  T L q  

may be written in the alternate forms 

 
2

2
: : .d div div d d

d d d

        
 

T L q q T L
                     

     
(47) 

We now consider the following simple calculation implied by (46) and (45): 

     , , ,d d d
d d d d d d

           


                    

        , (48) 

where   , ,d d
d

  

   has the regular meaning of being a partial derivative of the function   

with respect to d  keeping   fixed, and then evaluating at the pair at   , ,d d  . Motivated by 

the second law of thermodynamics (see ( (36), (38), and (44)), we now define the mechanical 
dissipation as 

 
:

: 0d
d





   


T L D , 

to find the temperature evolution equation (47)2  equivalent with balance of energy to be 
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 c div d
d

   



   
 

q
  D ,  

2

2
:c





 



. (49) 

The temperature evolution equation may be physically interpreted as a redistribution of the 
mechanically dissipated power plus the power received from heat into a change of entropy 
content at a point. It should be noted that while the mechanically dissipated power (and its 
corresponding entropy change, D ) is necessarily non-negative, the entropy at a point can 
increase or decrease at any given instant depending on the entropy flux due to heat transfer. It 
should be noted that the Helmholtz-free energy defined here refers to an isolated constrained, 
Hamiltonian system. 
 
Appendix B: Kinematics of Burgers vector conservation 
 
We follow Fox (1966) and Acharya (2004) in this development. The dislocation density tensor is 
defined as the departure of the inverse elastic distortion from being a gradient of a vector field on 
the current configuration. So, 
 curl W =- . (50) 

Both W  and   are two-point tensor fields linking the current configuration to the, possibly 
incompatible, unstressed elastic reference (often referred to as the intermediate configuration – 
since we have no need to introduce an artificial reference configuration or the tensor field pF , 
the adjective ‘intermediate’ is superfluous). 

Consider the case of finite elasticity without dislocations when W is a gradient of a vector 
field, i.e. an object that can be integrated on curves to produce a vector. This motivates the 
definition of  W , even in the presence of defects,  to be a geometric object of the same kind. 

Furthermore, by (50), then,   is an areal density of defect lines, that represents elastic 
incompatibility. This is best appreciated at any spatial point where   can be written as a tensor 
product of two vectors, so that the defect density may be visualized as a line carrying a vectorial 
attribute (Figure 1), the Burgers vector.  

If a  is any oriented area patch with unit normal field   and bounded by the closed curve c , 
and a  has no defect lines intersecting it,  then W  can be written as a gradient on the patch. On 
the other hand, for an area patch intersected by the defect line, the integral 
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a

da   

quantifies the failure of W  to define a single-valued (inverse) elastic deformation map when 
integrated along the closed curve c . Thus 
 da  

characterizes the Burgers vector content in the oriented infinitesimal area element .da  An 
immediate consequence of the definition (50) is that   is a solenoidal field and this implies that 
the dislocation density lines either end at boundaries or are closed loops. 

It is natural to assume that these line-like dislocations move with a velocity and thus a velocity 
field, V  relative to the material, can be attributed to the dislocation density field. The density 
field may also be integrated over an area and an accounting of the Burgers vector content of a 
particular area-patch of material particles over time can be carried out. This is the basis of the 
conservation law that provides the dynamics of the dislocation density field as 

 
( ) ( )a t c t

da d  V x=- ´ò ò


, (51) 

where ( )a t  is the area patch occupied by an arbitrarily fixed set of material particles at time t  

and ( )c t  is its closed bounding curve. The corresponding local form of (51) is given by 

  curl    V


. 

The right side of (51) represents the flux of Burgers vector carried by dislocations lines entering 
the material area patch a . This is best understood by decomposing   and V  on a special 
orthonormal basis oriented with respect to an infinitesimal segment of the bounding curve c  as 
shown in Figure 2. 
 
 

       1i id dx        V x p p V p  

    1 2 3
1 1 1 2 3 1dx V V V        p p p p p p  

    1 2 3
2 2 1 2 3 1dx V V V       p p p p p p  

    1 2 3
3 3 1 2 3 1dx V V V       p p p p p p  

Figure 2. Orientation of local frame for understanding dislocation flow 
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Without loss of generality, we also assume that the basis chosen is such that   of the 
infinitesimal area element at the boundary is not parallel to 1 2´p p  or 1 3´p p .  Mathematically it 

is clear that there is no contribution to the flux from the first term on the right side above. 
Physically, this is understood as follows: the motion of any defect line along itself clearly 
produces no flux into the area element. Furthermore the motions, along directions 2p  and 3p , of 

the defect line component along 1p  produce no intersection of this line component with the area 

element. Similar reasoning gives the physical meaning of 
      3 2

2 3d dxV dxV      V x p p  

(note that the signs are consistent with  the chosen orientation of a  and c ). 
The conservation law (51)  implies a specific evolution for inverse elastic distortion as shown 

next. Arbitrarily fix an instant of time, say s , in the motion of a body and let sF  denote the time-

dependent deformation gradient field corresponding to this motion with respect to the 
configuration at the time s . Denote positions on the configuration at time s  as sx  and the image 

of the area patch  a t  as  a s . We similarly associate the closed curves  c t  and  c s . Then, 

using the definition (50) and Stokes’s theorem, (51) can be written as 

 

{ }
( )

{ }
( )

( )
[ ]

( )

[ ]
( )

a t a t

s s s
c s c s

s s
a s

s s

curl da curl da

d d

curl da



- = - ´

 = ´

æ ö÷ç ÷ - ´ =ç ÷ç ÷çè ø

é ù = ´ê úë û

ò ò

ò ò

ò

  



 



W V

WF x V F x

WF V F 0

WF V F









 (52) 

since the conservation law holds for all area patches. Without loss of generality we have made 
the assumption that a possibly additive gradient vanishes. Physically, this corresponds to the fact 
that at the ‘microscopic’ level no plastic deformation can occur at a point in the absence of 
dislocations at that location. Consequently, we have 
 [ ]s s s+ = ´WF WLF V F , 

and choosing s t , we obtain 
 W WL V+ = ´ . (53) 
 
Appendix C: An orthogonal decomposition for W  
 

Consider equations (22) and (24) or (29): 

 
,

curl  

 





W

W WL  

where we have dropped overhead bars for convenience, and   takes appropriate forms as 
described earlier. 
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Motivated by the question of determining the state of internal stress in a known body 
containing a given dislocation density distribution – which also translates to the question of 
setting up initial conditions on W consistent with that for   in (19)-(24) or (27)-(30) – it is 
natural to introduce a decomposition of W into compatible and incompatible parts, most 
immediately on the current configuration. Thus we consider 

 
 on the current configuration

    on boundary of current configuration

grad

div

  
 








W f

0

n 0





 

The goal now is to pose the theory in terms of   and grad f  instead of W . The last two 

conditions above are designed to ensure that when  0  on the body, the incompatible part of 
the inverse elastic distortion vanishes identically, since, with the decomposition in force, the 
incompatible part satisfies 
 curl    . 

Of course, for the current configuration known as well as the dislocation density field on it, the 
above specification also uniquely determines   on it. It remains now to deduce the governing 
equation for grad f . For this, we consider 

 

   

  on the current configuration.

grad grad grad

grad

div grad div

     

  

   

  

  

  

W WL f f L f L =

f = L

f L

   
  

  

 

It is natural now to impose the boundary condition necessary for existence of solutions to the 
above component-wise Poisson equation for f , i.e. 

       on the boundary of the current configuration.grad      f L n 0    

Thus, if instead of working with W one intends to work with the pair  , grad f , the 

governing equations for these fields would be 

 

 

curl

div

div grad div

 


  

 


  

0

f L




  

 on the current configuration 

and  

   grad



   



  

n 0

f L n 0


    on the boundary of the current configuration. 

These equations are the ones suggested in Acharya (2004) and Acharya and Roy (2006). 


