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Microcanonical particlization with local conservation laws

Dmytro Oliinychenko1 and Volker Koch1

1Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, US

We present a sampling method for the transition from relativistic hydrodynamics to particle
transport, commonly referred to as particlization, which preserves the local conservation of energy,
momentum, baryon number, strangeness, and electric charge microcanonically, i.e. in every sample.
The proposed method is essential for studying fluctuations and correlations by means of stochastic
hydrodynamics. It is also useful for studying small systems. The method is based on Metropolis
sampling applied to particles within distinct patches of the switching space-time surface, where
hydrodynamic and kinetic evolutions are matched.

PACS numbers:

One of the key goals of modern heavy ion collision ex-
periments is to search for a phase transition between a
hadron gas and a quark-gluon plasma (QGP), and to
locate the corresponding critical point. The vicinity of
the critical point is characterized by enhanced event-by-
event fluctuations [1, 2]. Therefore, considerable atten-
tion is devoted to correlation and fluctuation observables,
such as proton, net-proton, net-charge, and kaon cumu-
lants [3, 4], fluctuations of various particle ratios [5],
transverse momentum correlations [6], and charge bal-
ance functions [7]. Since a heavy ion reaction is a dy-
namical process, it is essential to study these observables
within a dynamical framework. A very successful dynam-
ical treatment is a hybrid approach [8] which combines
the relativistic hydrodynamic evolution of the high (en-
ergy) density QGP phase with the kinetic transport for a
more dilute hadronic phase. This approach successfully
reproduces bulk observables such as particle spectra and
flow (see e.g. [9]). Switching from the continuous rela-
tivistic hydrodynamics to the discrete particle transport,
often referred to as “particlization”, is usually performed
on a hypersurface characterized by constant energy den-
sity, temperature, or Knudsen number [10]. In the exist-
ing relativistic models the switching only occurs in one
direction: from hydrodynamics to particles, but not vice
versa. This is in contrast to non-relativistic hybrid ap-
proaches, where dynamical domain decomposition meth-
ods are routinely applied and the switching is performed
in both directions (see e.g. [11]). To study correlations
and fluctuations within the hybrid approach, hydrody-
namics has to be either extended by stochastic terms di-
rectly [12–15] or coupled to a non-equilibrium field with
a stochastic noise [16, 17]. In both cases, it is essential
that the particlization preserves the fluctuations gener-
ated by such models. This is a non-trivial task, which
so far has not been done in the context of relativistic hy-
drodynamics. In the non-relativistic case, this problem is
addressed in several ways [11]. One of them is to exactly
match the fluxes at the interface, which in the relativis-
tic case corresponds to local event-by-event conservation
laws, or in other words, microcanonical sampling. The
standard Cooper-Frye sampling used in relativistic mod-

els (for a detailed description see e.g. [20]), on the other
hand, is grand-canonical. It combines the Cooper-Frye
formula for the momentum distribution in a hypersur-
face cell [18] with Poissonian sampling of the multiplicity
distributions. Together they result in total energy, mo-
mentum, and charges fluctuating around correct means,
as it is illustrated in Fig. 5 of [21]. Additionally, in the
standard procedure particles in different cells are sam-
pled independently, and thus are uncorrelated, although
their velocities may still be correlated via a common flow
velocity profile. The scaled variances of multiplicitites

are ω ≡ 〈N2〉−〈N〉2
〈N〉 = 1 by construction. In contrast,

in the microcanonical case ω < 1 and particles should
be correlated due to the conservation laws. Moreover,
event-by-event conservation laws are important not only
for correlations and fluctuations. For example, in small
systems they can also affect mean values. Therefore, con-
structing and realizing a microcanonical sampling algo-
rithm is the purpose of this work.

Attempts to introduce (micro)canonical particlization
have been undertaken previously, but they rely on
intuition-based ad hoc modifications to the standard
sampling algorithm such as: introducing local charge
conservation by sampling particle-antiparticle pairs [19],
trying to satisfy conservation laws one by one in a “mode
sampling” algorithm [20], and rejecting particles that in-
crease the deviation from the desired conserved charges
in the SPREW algorithm [21]. The multiplicity distribu-
tion sampled by these algorithms is not known precisely
and does not correspond to a canonical or microcanon-
ical ensemble. The SER algorithm [21, 22] samples the
correct canonical distribution, but extending it to the
microcanonical ensemble is impossible. Note that energy
and momentum conservation, which distinguish the mi-
crocanonical from the canonical ensemble, influence not
only pT fluctuations, but also the fluctuations of multi-
plicities. This is why we propose a method to conserve
all charges, energy, and momentum simultaneously.

First of all, we define regions over which conservation
laws should be applied; we call these regions “patches”.
There are two requirements for the patch size b. First,
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it should be comparable to the hydrodynamics scale dis-
cussed in the context of fluctuating hydrodynamics [23],
therefore it should be much larger then the mean free
path in a weakly-coupled system or a thermal length in
a strongly coupled system: b � 1/T , where T is tem-
perature. Second, one patch should contain many par-
ticles, therefore b3n � 1, where n is particle density. A
patch should not necessarily be much smaller than the
system size. If a system is small, then conservation laws
should be applied over the whole system and by defini-
tion the whole system is one patch. However, if a patch
is comparable to the system size, then the applicability
of hydrodynamics may be questionable. In the usual ap-
plications of hydrodynamics it is reasonable to use every
computational grid cell as a patch. Indeed, even in sim-
ulations of micro- and nanofluids the number of particles
per computational cell is of the order of 100 [11]. How-
ever, in typical simulations of relativistic ion collisions
the average number of particles per computational cell is
of order 10−3−10−1, given a typical cell size between (0.2
fm)3 and (0.5 fm)3. While the strategy of sampling “frac-
tional” particles is possible [24], it leads to complications
in the treatment of the fluctuations in the subsequent
transport evolution. Our strategy is to split the hyper-
surface into independent patches of similar size, and to
require conservation laws in every patch. In practice this
implies that a patch consists of roughly 50−1000 compu-
tational cells. A typical hypersurface consists of the order
of 106 cells, resulting in about 103 − 104 patches. The
exact number of patches, and therefore the “localness”
of the conservation laws, can be treated as a parameter.
For a given patch, the quantities to be conserved are
Pµtot
Btot
Stot
Qtot

 =
∑
cells
i

∫ 
pµi
Bi
Si
Qi

 pνdσν
p0

fi(p
αuα, T, µi)

gid
3p

(2π~)3
(1)

where the sum runs over all hadron species i including
resonances, and over all cells of the patch. Here dσµ is
a normal four-vector of the cell (see definition in [20]),
uµ is the collective velocity of the cell, T is temper-
ature of the cell, and µB,S,Q(x) are the chemical po-
tentials of the cell, responsible for the conservation of
baryon number B, strangeness S, and electric charge
Q. The chemical potential of the species i is defined
as µi = µBBi + µSSi + µQQi, while gi is the degener-
acy of the species. It may seem surprising to consider
a local temperature and chemical potentials in a micro-
canonical sampling. However, there is no contradiction
here. Conservation laws are imposed only over the whole
patch. Variations in energy density, quantum number
densities, and collective velocities from cell to cell within
a patch are allowed and characterized by local values of
T and µ. Preserving these local variations is important
to ensure a faithful description of higher order azimuthal
anisotropies [30], which otherwise would be smeared. The

probability P of a given particle configuration in a patch
is a product of the usual Cooper-Frye formulas and global
delta-functions which guarantee conservation laws over
the patch:

P (N, {Ns}species, {xi}Ni=1, {pi}Ni=1) = N(∏
s

1

Ns!

)
N∏
i=1

gi
(2π~)3

d3pi
p0i

pµi dσµ fi(p
ν
i uν , T, µi)×

δ(4)(
∑
i

pµ − Pµtot) δ
Btot∑

i Bi
δStot∑

i Si
δQtot∑

iQi
(2)

Note that here the number of particles of each hadron
species Ns is not fixed, and neither is the total num-
ber of particles N =

∑
sNs. Instead, both are dis-

tributed according to Eq. (2). The quantities dσµ, uµ,
T , and µB,S,Q depend on the spatial position of a par-
ticle xi. The charges Btot, Stot and Qtot are computed
using Eq. (1). In practice these charges are real num-
bers, not integers. To address this problem, we suggest
to either round Btot, Stot, and Qtot to nearest integers or
distribute the non-integer parts according to a multino-
mial distribution, which is guaranteed not to obfuscate
total charges on the hypersurface [33].

Direct sampling of the N -particle probability distribu-
tion expressed by Eq. (2) is difficult due to the unknown
normalization factor N and the δ-functions. To sam-
ple it we apply a Metropolis algorithm, a Markov chain
Monte Carlo method, which in our case is closely related
to solving the Boltzmann equation with the stochastic
rate method [27]. The state of our Markov chain ξ de-
pends on multiplicities, coordinates and momenta of all
particles: ξ = ξ(N, {Ns}species, {xi}Ni=1, {pi}Ni=1). The
initial state is an arbitrary set of particles that satisfy
the required conservation laws (Eq. 1). Charge conser-
vation for initial state is fulfilled by an ad hoc heuristic
algorithm picking lightest particles of necessary charges,
while the energy-momentum conservation is achieved by
rescaling momenta as in [21]. Given a state ξ we propose
a state ξ′ with probability T (ξ → ξ′) and then decide, if
this state should be accepted, with probability A(ξ → ξ′).
Therefore, the probability to obtain a state ξ′ from ξ is
w(ξ → ξ′) = T (ξ → ξ′)A(ξ → ξ′). The master equation,
connecting the probability to obtain the state ξ at steps
t and t+ 1 is

P t+1(ξ)− P t(ξ) =
∑
ξ′

w(ξ′ → ξ)P t(ξ′)−

w(ξ → ξ′)P t(ξ) . (3)

After many steps the probability P t→∞(ξ) should con-
verge to P (ξ) given by Eq. (2). A sufficient condition for
this is known as the detailed balance condition:

P (ξ′)

P (ξ)
=
w(ξ → ξ′)

w(ξ′ → ξ)
=
T (ξ → ξ′)A(ξ → ξ′)

T (ξ′ → ξ)A(ξ → ξ′)
. (4)
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This condition is satisfied if

a ≡ A(ξ → ξ′) = min

(
1,
P (ξ′)T (ξ′ → ξ)

P (ξ)T (ξ → ξ′)

)
. (5)

There is some freedom to select the proposal matrix
T (ξ → ξ′). We choose it such that it conserves energy,
momentum, and quantum numbers. Consequently, our
Markov chain never leaves the desired subspace where
conservation laws are fulfilled. Our proposal matrix may
be viewed as 2→ 3 and 3→ 2 stochastic “collisions” [27]
on the hypersurface. However, we note, that there is
no real time involved and “collisions” are not related to
any physical process. They are simply a mathematical
method to sample the distribution of Eq. (2). The pro-
posal procedure is the following:

1. With 50% probability choose a 2 → 3 or 3 → 2
transition.

2. Select the “incoming” particles by uniformly pick-
ing one of all possible pairs or triples.

3. Select the outgoing channel democratically with
probability 1/N ch, where N ch is the number of
possible channels, satisfying both quantum number
and energy-momentum conservation.

4. For the selected channel sample the “collision”
kinematics uniformly from the available phase
space with probability dRn

Rn
, n = 2 or 3.

5. Choose a cell for each of the outgoing particles
uniformly from all cells in the patch. Note that
this choice matters for the acceptance probability,
because the corresponding temperatures, chemical
potentials, velocities uµ, and normal 4-vectors dσµ
in the Eq. (9) will be taken at the cells, where the
outgoing particles are thrown.

Here Rn is a phase-space integral for outgoing particles
defined as the integral over dRn:

dRn(
√
s,m1,m2, . . . ,mn) =

(2π)4

(2π)3n

d3p1
2E1

d3p2
2E2

. . .
d3pn
2En

δ(4)(Pµtot −
∑

Pµi ) , (6)

where
√
s = (PµtotP

tot
µ )1/2. The integration of dR2 and

dR3 is possible analytically [27, 28]. Our proposal proce-
dure generates the following probabilities for 2 → 3 and
3→ 2 proposals:

T (2→ 3) =
1

2

Gch2
G2

1

N ch
3

dRch3
Rch3

1

N3
cells

(7)

T (3→ 2) =
1

2

Gch3
G3

1

N ch
2

dRch2
Rch2

1

N2
cells

, (8)

where G2 = N(N−1)
2! and G3 = N(N−1)(N−2)

3! denote to-
tal numbers of incoming pairs and triplets of any species,
while Gch2 and Gch3 are the numbers of ways to select

a given incoming particle species. Consequently,
Gch

2

G2

and
Gch

3

G3
represent the probabilities to obtain pairs and

triplets of a given incoming species. The number of pos-
sible triplets and pairs of outgoing species with appro-
priate quantum numbers are denoted by N ch

3 and N ch
2 .

Inserting the proposal probabilities, Eqs. (7) and (8), as
well as the desired probability distribution, Eq. (2), into
the expression for the acceptance probability, Eq. (5), we
arrive, after some algebra, at

an→m =
N ch
m Rm

N ch
n Rn

N !

(N +m− n)!

m!

n!

kidm!

kidn !
×

(
2Ncells
~3

)m−n m∏
i=1

gi fi(µi − pαi uα, T ) pµi dσµ

n∏
j=1

gj fj(µj − pαj uα, T ) pµj dσµ

(9)

where we made use of the relation
∏ d3pi

(2π~)3p0i
δ(4)(Pµtot −∑

Pµi ) = 2n dRn

(2π)4 . Here n = 2, 3 and m = 3, 2 are the

numbers of incoming and outgoing particles, and N is the
total number of particles before proposing the Markov
chain step. The product in the numerator is taken over
the outgoing particles and the one in the denominator is
taken over the incoming particles. The quantities dσ, u,
T , µ should be evaluated in the cell where the particles
are proposed to be, or coming from. The total num-
ber of particles in the entire patch is given by N , and
kidm and kidn are the numbers of outgoing and incoming
identical species in the reaction. Note that the sampling
accounts for the variations in temperature and chemical
potential within the patch. Also, and equally important,
the distribution function f may contain viscous correc-
tions. To summarize, the algorithm consists of multiple
Markov chain steps, where the step is proposed according
to Eqs. (7) and (8) and accepted with probability given
by Eq. (9).

We have tested the above sampling algorithm both in
a simplified and a somewhat more realistic setup. First,
we consider a patch consisting of one cell with uµ =
(1, 0, 0, 0), dσµ = (V, 0, 0, 0), and f(p) = exp(−p0/T ). In
this case Eq. (2) represents a well-known microcanonical
distribution, which has been sampled before [25, 26]. Ad-
ditionally, analytical expectations of scaled variances of
hadron multiplicities in the large volume limit are avail-
able in this case [29]. Our algorithm reproduces the an-
alytical results for both means and scaled variances well.
The resulting momentum distributions are very close to
Boltzmann, as expected. This is a non-trivial result, be-
cause multiplicity and momentum distributions are a not
a direct input to the sampling; the only input is volume
V , total energy, momentum and conserved charges.
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FIG. 1: Demonstration of the sampling with conservation laws over the patch, where total baryon number, strangeness,
and charge are enforced to be 0, while total energy and momentum are fixed and given by Eq. (1). The patch con-
sists of 3 cells with arbitrarily selected normals dσµ1 = (500.0, 50.0, 20.0, 30.0) fm3, dσµ2 = (500.0, 40.0, 80.0, 30.0) fm3,
dσµ3 = (500.0, 20.0, 20.0, 20.0) fm3; collective velocities ~v1 = (0.2, 0.3, 0.4), ~v2 = (0.1, 0.5, 0.5), ~v3 = (0.3, 0.4, 0.2); and tem-
peratures T1 = 0.155 GeV, T2 = 0.165 GeV, T3 = 0.175 GeV. Mean multiplicities of selected hadrons in the cells are shown
in panel (a): they are unchanged compared to standard grand-canonical Cooper-Frye sampling. However, the scaled variances
of multiplicities in the whole patch, shown in panel (b), differ from the standard Cooper-Frye result and coincide within 0.5%
with the microcanonical expectation in the thermodynamic limit, computed using analytic formulas from [29]. In panel (c), the
non-trivial correlations, generated by conservation laws, are shown in contrast to no correlations in the standard Cooper-Frye
sampling. Correlations are defined as (A,B) ≡ 〈(A− 〈A〉)(B − 〈B〉)〉, where 〈〉 denotes average over samples; σ2

A ≡ (A,A).

Next, we demonstrate our sampling for a more realistic
scenario, where we consider a patch consisting of three
cells with non-trivial values for uµ, dσµ, and T , which
also vary from cell to cell [34] . Conservation laws are
imposed over the entire patch, while the local energy den-
sity and charge densities vary from cell to cell. As shown
in Fig. 1(a), we obtain the expected means in each cell,
agreeing with the grand-canonical standard Cooper-Frye
sampling. This is a demonstration that we correctly re-
produce the temperature variation from cell to cell. The
scaled variances, ω, of multiplicities in the patch, shown
in Fig. 1(b), are already drastically different from the
standard grand-canonical Cooper-Frye sampling, where
ω = 1 by construction. In our case the variances agree
with the microcanonical analytical expectation from [29].
Finally, in Fig. 1(c) we demonstrate the non-trivial cor-
relations emerging from conservation laws. Unlike for
variances, to our knowledge, there is no analytical cal-
culation of correlations in a microcanonical ensemble, al-
though in principle such calculations are possible using
techniques developed in [29]. Beside testing the sampler
implementation, Fig.1 1(b,c) also shows the expected ef-
fect of conservation laws on fluctuations and correlations
in heavy ion collisions.

In summary, we have proposed, implemented and
tested a particlization method which takes into account
local event-by-event conservation laws in a systematic
fashion. Localness is achieved by splitting the hyper-
surface into patches and enforcing conservation laws in
every patch. Event-by-event conservation of total en-

ergy, momentum, baryon number, strangeness, and elec-
tric charge over the patch is guaranteed by the algorithm.
At the same time local cell-by-cell variations of energy
and charge densities within a patch are preserved, ensur-
ing that observables sensitive to these variations, such as
higher order azimuthal asymmetries [30], are not smeared
out. The proposed method is essential for studies of cor-
relations and fluctuations, especially in combination with
stochastic hydrodynamics, since it will not obfuscate its
correlations and fluctuations. It may also be applied to
exploring small systems, where the impact of event-by-
event conservation laws is large, as well as charge de-
pendent correlations relevant for the the chiral magnetic
effect [31]. The code used for sampling is publicly avail-
able [32]. We have checked that its execution time for
realistic hypersurfaces is not impractical [35] As a next
step, we will apply it to search for observable effects of
critical fluctuations in heavy ion collisions. Through ac-
counting for local conservation laws we might be able to
detect critical fluctuations in coordinate space via cor-
relations in momentum space which were previously not
visible when using standard particlization.

We would like to thank members of the BEST collab-
oration for fruitful discussions, and A. Wergieluk for a
critical reading of the manuscript. This work was sup-
ported by the U.S. Department of Energy, Office of Sci-
ence, Office of Nuclear Physics, under contract number
DE-AC02-05CH11231 and received support within the
framework of the Beam Energy Scan Theory (BEST)
Topical Collaboration.
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