
Cell-to-cell variation and single-cell functional 
proteomics analysis
Non-genetic cellular heterogeneity is a universal feature 

of any cell population [1,2]. Although this heterogeneity 

is often ascribed to some process (such as stochastic gene 

expression), it is also intrinsic to the fi nite nature of a 

single cell [3]. � is heterogeneity is not without conse-

quences; for example, it can contribute to the diversity of 

an immune response or to the emergence of therapeutic 

resistance in cancers. However, the detailed role of 

cellular heterogeneity in such processes is not always 

easy to capture. If some parameter is measured on a 

statistical number of ‘identical’ single cells, that 

para meter can almost always be used to stratify those 

cells into multiple populations. Whether the variance in 

the assayed parameter is biologically relevant may be 

debatable. Parameters for which the variance is thought 

to have high biological relevance are the levels of 

functional proteins. � ese include the signaling proteins 

(such as cytokines) that are secreted by immune cells, or 

the phosphorylated kinases and related eff ector proteins 

that comprise the heart of growth factor signaling 

networks within cells.

A single-cell functional proteomics assay is one that 

measures the quantity and functional state (such as 

phosphorylation) of a given protein or panel of proteins 

across many otherwise identical cells. A measurement of 

the average level of a protein requires many single-cell 

measurements. Such measurements, if compiled as a 

histogram of the frequency of observation versus the 

measured levels, refl ect the fl uctuations of that protein. 

Functional protein fl uctuations can refl ect changes in 

cellular activity, such as immune-cell activation or the 

activation or inhibition of protein signaling networks 

within, for example, tumor cells. However, the usefulness 

of fl uctuations signifi cantly expands with absolute 

quantifi cation and increased numbers of proteins assayed 

per cell (multiplexing).

When multiple proteins are assayed from single cells, 

protein-protein correlations and anti-correlations are 

directly recorded. For cell-surface markers, such measure-

ments provide a way to enumerate and sort highly 

defi ned cellular phenotypes. A multiplex analysis of 

secreted eff ector proteins from immune-cell pheno types 

can provide a powerful view of immune-system function. 

For intracellular signaling networks, such as those 

associated with growth factor signaling, correla tions and 

anti-correlations between phosphoproteins can indicate 

activating and inhibitory interactions, respec tively. With 

increased multiplexing, such measurements increasingly 

resolve the structure of signaling networks. If the 

measurements are truly quantitative, it becomes possible 

to assess how perturbations to cells infl uence changes in 

the chemical potential of the measured proteins. � is, in 
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turn, allows the introduction of predictive models 

derived from physicochemical principles.

Single-cell functional proteomics can connect genomic 

information with biological context and biological func-

tion. For example, certain classes of genetically engi-

neered immune cells are increasingly used for certain 

anti-cancer therapies. �is clonal population of cells can 

show great functional heterogeneity [4,5]. �at hetero-

geneity, which can be characterized by single-cell proteo-

mics, arises from many epigenetic factors (biological 

context), such as exposure to specific cell types or to 

signaling proteins. �is and other examples are discussed 

in detail below.

Here, we describe emerging technologies and their 

associated applications that are designed to characterize 

cellular heterogeneity by single-cell functional proteo-

mics. We first provide an overview of the rapid develop-

ment of single-cell proteomics tools that has occurred 

over the past half decade. We then discuss specific 

biological or clinical challenges that are either uniquely 

or most easily addressed by single-cell functional proteo-

mics. �ese challenges include basic biology studies, such 

as the kinetics of T-cell activation, or the identification of 

effector proteins associated with cellular motility. Clinical 

applications include advanced immune monitoring of 

patients with a variety of disease conditions, ranging 

from HIV to cancer. Cancer biology applications include 

experiments aimed at resolving how targeted therapeu-

tics alter the phosphoprotein signaling networks that 

are hyperactivated in many tumors. Each problem pro-

vides a venue for discussing platform advantages and 

limitations. We focus on multiplex microfluidics/nano-

technology-based platforms as these tools are proving 

uniquely suited for quantitative, single-cell functional 

proteomics.

Single-cell functional proteomics technologies
Single-cell functional proteomics tools range from flow 

cytometry to microfluidics-based platforms, many of 

which are listed and briefly characterized in Table 1. An 

ideal tool reports on the level of a given protein in copy 

numbers per cell, with a small uncertainty, a high level of 

sensitivity, and the capacity to analyze large numbers of 

cells quickly. �e value of absolute quantification is that it 

enables direct comparisons across platforms, cell types, 

time points, clinical samples, and so on. However, many 

platforms enable quantification only in relative units, or 

allow for the identification of only the fraction of the cells 

that express a given protein. Other characteristics, such 

as the level of multiplexing, the types of proteins that can 

be assayed (such as cytoplasmic, membrane, or secreted), 

or the ability to integrate functional assays (such as cell 

motility) with proteomics assays, are also important 

attributes.

Single-cell functional proteomics tools may be 

classified into three classes (Table 1). �e first class com-

prises cytometry methods (Figure  1b illustrates flow 

cytometry), which have evolved over 40 years. �e basic 

idea is to label specific cellular proteins. �e cells are then 

suspended in bulk, and then analyzed, one by one, for the 

presence of the label. For fluorescence flow cytometry 

(FFC) (or fluorescence activated cell sorting (FACS)), 

cellular proteins are labeled with fluorescent antibodies 

[6,7]. �e degree of multiplexing is limited to around 15 

by the availability of spectrally distinct fluorophores. �e 

recently developed mass cytometry [8] expands multi-

plexing to more than 30 by using transition metal mass 

labels, instead of fluorophores, followed by mass spectro-

metric analysis of individual cells. For these tools, most 

assayed proteins are cell surface markers, rather than 

functional proteins. Intracellular staining (ICS) [9], which 

requires blocking protein secretion and fixing the cells, 

can be coupled with cytometry to interrogate for the 

relative levels of functional proteins such as cytokines or 

phospho-kinases. Cytometry methods (particularly FFC 

and FACS) readily handle large numbers of cells, and so 

can be used to identify (and sort) relatively rare cell types. 

Cytometry tools capable of a high degree of multiplexing 

are very powerful, but are also expensive, and usually 

require a staffed facility for their operation.

Surface methods (Table  1) for single cell functional 

proteomics include the established and relatively simple 

and inexpensive ELISpot technique for detecting protein 

secretion from live cells [9]. Cells are immobilized on an 

antibody-coated surface, and sandwich-type immuno-

assays are utilized to detect secreted proteins in the 

vicinity of individual cells.

Microfluidics technologies constitute the third class of 

tools. Common advantages of microfluidics tools are that 

they can often be cheaply manufactured in large quanti-

ties, they can handle very small numbers of cells and 

require only tiny quantities of expensive reagents, and 

they may often be customized to allow for on chip 

incubation, cell lysis, and so on. For single cell proteo-

mics, microfluidics platforms fall into two groups - those 

in which the cells are stained to identify specific proteins, 

and those for which proteins are released from the cells 

and measured using surface immunoassays. �e first 

group includes the image cytometry, cell-array, and 

micro-droplet techniques. Early variations of such tools 

detected proteins from single cells by imaging stained 

cells, or by flowing the labeled cells or cell-encapsulation 

droplets through a microfluidic channel designed to 

allow fluorescence detection. �ese were basically micro-

chip versions of FFC or FACS [10]. More recent 

approaches have significantly diverged to take advantage 

of some of the unique aspects of microfluidics. For 

example, cells can be spatially segregated into large arrays 
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(cell arrays [11-15]), or they can be entrained within 

arrays of drops [16-18]. Such manipulations are followed 

by immunostaining of membrane proteins, followed by 

automated imaging to quantify single-cell fluorescence 

signals. �ese approaches can offer control over the cell 

environment before analysis, which make them attractive 

screening tools. One disadvantage of these and other 

cell-staining approaches [19,20] is that they have limited 

multiplexing capacity.

�e most advanced microfluidic single-cell proteomics 

tools use surface-immobilized antibodies for separating 

protein detection from cell manipulation (Figure  1c,d). 

�is approach has several advantages: it can yield 

increased multiplexing capacity, it can be extended to 

assays for secreted, cytoplasmic, and membrane proteins, 

and measurements of cellular functions can be integrated 

with the proteomics assays. �e experimental challenge 

is that a given cell may only produce between a few 

hundred and a few thousand copies of a protein of 

interest  - such numbers are typical for many phos pho-

proteins or secreted signaling proteins. �e solution is to 

enclose the cell within a microenvironment with a 

volume of about 1  nl. In this way, the resultant protein 

concentration can be sufficiently high to allow detection 

Table 1. Single-cell functional proteomics tools

 Numbers and   Statistical accuracy   
 types of   and signal   
Technique proteins assayed Throughput Detection limit quanti�cation Notes and features Literature

Flow cytometry methods

Fluorescence 
�ow cytometry

Around 15 
proteins (mostly 
membrane proteins, 
a few cytoplasmic 
proteins)

104 cells s-1 500 copies per cell 90% phenotyping 
accuracy; relative 
protein abundance 

Standard for sorting and 
enumeration of cellular 
phenotypes. Secretion blocked 
and cells �xed for cytoplasmic 
proteins

[5,6]

Mass �ow 
cytometry

Around 35 
membrane and 
intracellular proteins, 
likely expandable

103 cells s-1 >103 copies per cell Good cell counting 
statistics; relative 
protein abundance

Cells handled in bulk prior to 
analysis. Secretion blocked 
and cells �xed for cytoplasmic 
proteins

[8]

Surface methods

ELISpot 1-3 secreted 
proteins

6 spots per 105 cells Quantitative for 
percentage active 
cells

Cells secrete proteins onto 
antibody coated surfaces; 
secretion activity correlated with 
cell location

[9]

Micro�uidics technologies

Image cytometry 3-4 membrane or 
intracellular proteins 
and cell size

103-104 cells per 
chip

105 �uoro-phores 
per μm2

Good cell counting 
statistics; relative 
protein abundance

Cells are �xed and stained (in 
bulk) with �uorescent antibodies; 
protein assay and cell location 
spatially correlated

[19,20]

Cell array 1 intracellular 
protein

<103 cells per 
chip

Good cell counting 
statistics; relative 
protein abundance

Single cells separated and 
imaged on chip; continuous 
monitoring of cell physiology

[12-15]

Micro-droplet 1 membrane or 
intracellular protein

102 μdrops s-1 Not de�ned Good cell sampling 
statistics

Cells entrained in microdroplets; 
microdroplet composition 
control permits screening cells

[16-18]

Micro-engraving 3 secreted plus 
3 membrane 
proteins

104-105 cells per 
chip

Not available Very good cell 
number statistics; 
relative protein 
abundance

Cells isolated in miocrowells; 
surface immunoassays; proteins 
colorimetrically detected; 
secretome kinetics from single 
cells; proteomeic and functional 
assays from same cell

[21-23, -37]

Single cell 
barcode chips 

About 20 secreted, 
membrane, or 
cytoplasmic 
proteins, 
expandable

103-105 cells per 
chip

102 copies Good cell counting 
statistics, absolute 
quanti�cation, 10% 
measurement error 
per protein per cell

Cells isolated in microchambers, 
miniature antibody arrays yield 
spatial separation of speci�c 
protein assays; proteomeic and 
functional assays from same cell; 
single cells or de�ned small cell 
populations accessed.

[4,5, 26-30]
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with standard immunoassays. �e beauty of micro fabri-

cation is that such tiny volume assays can be repeated 

many times, in parallel, on a single microchip. �e micro-

engraving approach developed by Love’s group (Figure 1c) 

[21-23] uses small volume microwells in an array format 

to isolate and culture single cells. A ‘microengraved’ 

(antibody-coated) substrate is used to cap the microwell 

array and to capture secreted proteins. Proteins are 

Figure 1. Selected tools for single-cell functional proteomics. Three technology platforms are illustrated, along with data that highlight the 

unique strengths of each platform. (a) All platforms start with a single-cell suspension. (b)(i) Intracellular staining (ICS) �ow cytometry for assaying 

for secreted (functional) proteins requires blocking cell secretion during an incubation step, �xing the cells, and then permeabilizing the cells to 

enable antibody staining. (b)(ii) Proteins are colorimetrically detected by streaming the cells, one at a time, through multicolor laser excitation. 

(b)(iii) A �ow cytometry scatter plot showing the correlation of two e�ector proteins detected from stimulated CD8+ T cells. This plot re�ects the 

excellent statistics achievable using this technique (adapted from [5] with permission). (c)(i) Microengraving assays start by isolating single cells into 

microwells, several thousand of which are patterned onto a single chip. A glass substrate that is microengraved with various capture antibodies 

covers the microwells. The substrate can be replaced at various times to reveal protein-speci�c secretion kinetics. The phenotype of the cells 

can also be determined by imaging, using �uorophore-labeled antibodies against speci�c cell-surface markers. (c)(ii) Secreted protein levels are 

measured by developing the microengraved slides with �uorophore-labeled, secondary antibodies and correlating the �uorescence signal with the 

microchamber address. (c)(iii) Assembled traces reveal the secretion kinetics for three proteins from a speci�c T-cell phenotype. The color coding 

key is provided in the colored circle at top left. Adapted from [37] with permission. (d)(i) Single-cell barcode chip (SCBC) assays also begin by 

isolating cells within small-volume microchambers. Flexibility of micro�uidics design enables individual cells to be lyzed for analysis of cytoplasmic 

proteins and membrane and secreted proteins. Proteins are captured on miniature antibody barcode arrays. A full barcode representing the panel 

of proteins to be assayed is incorporated into each microchamber. (d)(ii) SCBC assays yield data on single cells and on small cell populations. Three 

developed barcodes are shown; the yellow number indicates the numbers of cells in the associated microchamber. (d)(iii) Statistical analysis of 

single-cell data collected from model brain cancer cells. Top: scatter plot showing the correlation of two phosphoproteins. The black or red dots 

represent data from microchambers containing 0 or 1 cells, respectively. Bottom: scatter plots show the statistical uniqueness of the 0-cell, 1-cell, 

and 2-cell datasets for p-EGFR. a.u., arbitrary units. Adapted from [28] with permission.
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on

detected using sandwich-type ELISA immunoassays. 

Different fluorophores colorimetrically distinguish 

between different detection antibodies to allow the 

simultaneous detection of about three secreted proteins. 

�e microengraved substrate can be replaced multiple 

times in situ, thus enabling kinetic studies (Figure 1c(ii,iii)) 

at the single-cell level. �e multiplexing capacity of the 

microengraving method can be increased using 

fluorophore-labeled antibody staining of membrane 

proteins; fluorescence imaging of the captured cells yields 

information on membrane protein levels (to identify 

cellular phenotypes), and the microengraved substrate 

assays for secreted proteins (to assess cellular function).

A related approach is the single-cell barcode chips 

(SCBCs). �e basic concept is to pattern a many-element 

capture antibody array in each single-cell microwell so 

that different proteins are detected at different designated 

array spots. �e key enabling technology of SCBCs is the 

miniature antibody arrays. A related challenge is that 

antibody arrays are not stable to the physical conditions 

of microfluidics device fabrication. �e solution has been 

to couple the technique of DNA-encoded antibody 

libraries (DEAL) [24] with microfluidics-based flow 

patterning. Specifically, an elastomer film is molded so 

that it contains a series of long, serpentine channels. It is 

adhered to the top of a glass slide. Solutions containing a 

different single-stranded DNA (ssDNA) oligomer are 

flowed through each channel. �ose solutions evaporate. 

�e molded elastomer is then removed, leaving a series 

of 10 to 20 µm wide stripes of different ssDNA oligomers 

across the glass substrate. A second elastomer layer, 

patterned with between 300 and 10,000 microchambers 

for single-cell assays, is adhered to the glass slide. �e 

design is such that each microchamber contains a full 

complement of ssDNA stripes. Just before use, these 

miniature ssDNA arrays are converted into antibody 

arrays using a cocktail of complementary ssDNA-labeled 

antibodies. �e resultant antibody array (the barcode) 

[25] provides the detection technology for SCBCs 

(Figure  1d(ii)) [4,26]. Up to 20 functional proteins have 

been assayed per cell [5], and the limit is probably around 

100. Specific SCBC designs enable cell lysis, thus allowing 

cytoplasmic, membrane, and secreted proteins to be 

assayed from the same single cell. SCBC assays can yield 

absolute protein level quantification [27] and access to 

discrete cell populations (one cell, two cells, three cells 

and so on) [28] (Figure  1d(iii)). Both the SCBC and 

micro engraving platforms can be integrated with 

multicolor FACS to enable the integration of phenotype 

analysis with functional proteomics [28]. Quantitative 

data comparison across different SCBC assays [29] 

allows clinical studies or investigations in which statis-

tical cell behaviors are compared across a perturbation 

series.

Most microfluidics tools enable the single cells to be 

imaged. When integrated with proteomics measure ments, 

this can enable several interesting assays, such as 

correlating cell motility or cell-cell interactions [28,30] 

with specific protein levels. Unlike flow cytometry 

analyses, cells can remain in their native morphology so 

that cell size, spreading, or motility can be correlated 

with proteomic signature for each cell assayed [30]. �e 

ability of a cytotoxic T  cell to kill the target cell can be 

directly visualized under an optical microscope. Once 

conducted in a microengraving device, this allows direct 

comparison of cytolic activity with the protein profile of 

the same T cell [31]. Finally, cells can be recovered from 

these types of assays for additional analysis, or for 

establishing clonal cell lines with desired properties [23]. 

microfluidics platforms.

Applications to immune monitoring and function
Immune cells are classified along the hematopoietic 

lineage, starting with myeloid and lymphoid lineages. A 

triumph of immune system biology has been the identi fi-

cation of cell surface markers that allow, by FACS, the 

enumeration and sorting of specific immune-cell pheno-

types from blood or tissues. For example, a cytotoxic 

T  cell is defined by the cell surface markers Cluster of 

Differentiation (CD)3, CD45, and CD8, with additional 

markers specifying the antigen specificity of the T  cell 

receptor (TCR) or providing further phenotypic classifi-

cation, such as effector memory. However, functional 

information requires assays of secreted effector proteins 

(such as cytokines and cytotoxic granules) that mediate 

the tasks of target killing, self-renewal, recruitment of 

other immune cell types, and inflammation. Because of 

the variety of potential pathogen targets, cellular immu-

nity is functionally heterogeneous. Recent studies using 

different single-cell proteomics platforms have begun to 

capture and characterize this heterogeneity.

�e function of an immune cell is largely delineated by 

a range of proteins it produces. Early efforts to profile 

multiple immune effector functions of single immune cell 

function used ICS FFC. Betts et al. [32] measured five 

functions (degranulation and levels of interferon (IFN)-γ, 

macrophage inflammatory protein (MIP)-1b, tumor 

necrosis factor (TNF)-α, and interleukin (IL)-2) from 

single HIV-specific CD8+ T  cells collected from 

chronically HIV-infected individuals and people whose 

HIV infection has not progressed over a long term (called 

non-progressors or elite controllers). �e number of 

effector functions displayed in T cells from people with 

chronic HIV was limited relative to those from non-pro-

gressors, and the number of functions (‘polyfunction-

ality’) was inversely correlated with viral load. Another 
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example of the use of ICS FFC was by Darrah et al. [33], 

who showed that the degree of protection against 

Leishmania major infection in mice is predicted by the 

frequency of CD4+ T  cells simultaneously producing 

IFN-γ, IL-2, and TNF-α. More recent studies have used 

ICS mass cytometry. For example, Newell and coworkers 

[34] used this approach to assay 17 membrane protein 

markers, 6  intracellular cytokines and 2  cytotoxic 

granules from stimulated CD8+ T  cells from healthy 

patients. �ey found that the cytokine secretion profiles 

were almost statistically distributed across the individual 

cells, but there were distinct niches occupied by virus-

specific cells.

Microfluidic functional proteomics has been used for 

longitudinal monitoring of patients undergoing adoptive 

cell transfer (ACT) trials, a form of immunotherapy for 

metastatic melanoma. Ma and coworkers [4] used SCBCs 

to compare the functional diversity of tumor antigen 

(MART-1)-specific CD8+ T cells collected from the blood 

of a melanoma cancer patient with CD8+ T cells collected 

from healthy donors. At the time of collection, the patient 

was participating in an ACT trial that used TCR-

engineered T cells specific for the MART-1 melanosomal 

antigen [35]. In this therapy, the TCR-engineered T cells 

are expanded ex vivo and infused into the patient with 

the aim that the T cells will drive an anti-tumor immune 

response. Ma’s team assayed a panel of 12 secreted 

proteins and found a large (albeit not statistically 

random) range of functional phenotypes within a tightly 

defined T-cell phenotype [4]. A follow-up kinetic study 

[5] helped define some of this functional diversity 

(Figure  2). �e authors [5] studied three melanoma 

cancer patients participating in the same ACT trial and 

combined 19-plex SCBC functional (secreted) protein 

assays with 10-color FACS to measure the functional 

evolution of specific T-cell phenotypes at 5 to 10  time 

points over a 90-day trial (Figure  2a). �ese measure-

ments led to several conclusions. First, for a given patient 

and T-cell phenotype, if all single-cell data from all time 

points were co-analyzed, a level of functional co-

ordination was resolved, meaning that the T cells could 

be loosely classified according to biological behaviors, 

such as anti-tumor or pro-inflammatory. Second, the 

most polyfunctional cells dominated the immune res-

ponse (Figure  2b). Roughly 10% of the cells of a given 

phenotype secreted five or more different proteins. For 

any one of those proteins, those highly functional cells 

secreted, on average, 100-fold more protein copies than 

the less polyfunctional cells. �us, for a given phenotype, 

10% of the cells dominated the overall immune response 

by 10-fold. �is led to the defining of a polyfunctionality 

strength index (Figure  2c). Interestingly, although the 

cellular population dynamics or phenotype changes (such 

as naïve or central memory) over the course of the trial 

did not yield clear clinical correlates, the polyfunctionality 

kinetics did correlate with clinical observations, 

providing feedback for potentially improving the ACT 

trial design. �is collective work over the past decade has 

refined the notion that the quality of a T-cell immune 

response is best captured by the functional performance 

of the T cells, rather than their quantity [36].

Microfluidics platforms offer the unique capacity for 

coupling cell adhesion, spreading, and migration assays 

with multiplex functional proteomics from the same 

single cells. �is is because cells can be incubated and 

observed within the same microenvironment in which 

the protein assays are executed. Such assays have rele-

vance for understanding cancer cell behaviors. Cell 

migration, for example, can be influenced by certain of 

the cytokines more commonly associated with immune 

cells. Lu et al. [30] used an SCBC-type antibody array 

coupled with custom-designed microchip (Figure 3), and 

identified a few cytokines (IL-6, IL-8, and monocyte 

chemotactic protein (MCP)-1) that correlated with cell 

motility. Love and colleagues used microengraving to 

carry out two sets of studies that coupled functional 

behaviors with functional proteomics on single T  cells 

[31,37]. In the first [31], they measured cytolytic activity 

of CD8+ T cells by performing live-cell imaging of these 

cells cultured together with single target cells in a 

microengraving device. �is allowed the killing ability of 

individual T  cells to be directly correlated with the 

production of multiple cytokines, and it revealed a dis-

cordance between cytokine secretion and cytolysis. �e 

authors [31] found that the majority of in vivo primed, 

circulating HIV-specific CD8+ T cells were discordant for 

cytolysis and secretion of cytokines, notably IFN-γ, when 

encountering cognate antigen presented on defined 

numbers of cells. In their second study [37], they 

investigated the kinetics of cytokine production using 

serial analyses of single primary human T  cells under 

various conditions (Figure  1c). �ey showed that for 

multifunctional T helper 1-skewed cytokine responses 

(IFN-γ, IL-2, and TNF-α), cells predominantly release 

those cytokines sequentially, rather than simultaneously. 

�ese kinetic trajectories were associated with states of 

cell differentiation, suggesting that transient program-

matic activities of many individual T  cells contribute to 

sustained, population-level responses.

�e value of absolute quantification was demonstrated 

by Shin et al. [38], who used a 12-plex SCBC assay to 

investigate how the secretome of lipopolysaccharide-

stimulated macrophage cells responded to neutralizing 

antibody perturbations. �ey reported on the use of 

statistical-physics-derived models as a means for correctly 

predicting how specific secreted protein levels would vary 

with the perturbations. We cover related concepts below 

in our discussions of phosphoprotein signaling networks.
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Applications to intracellular signaling networks
For many cancers, genomic surveys are revealing a rich 

molecular landscape of altered signal transduction cas-

cades that often cluster along a set of druggable core 

pathways. In fact, these pathways contain many of the 

targets of the newer generations of targeted cancer 

therapies [39]. However, the translation of genomic data 

into effective clinical treatments has not been straight-

forward. �is is at least partly because non-genetic cell-

to-cell variability is profound in drug responses and 

Figure 2. Integrated FACS/SCBC phenotypic/functional proteomic analysis of tumor-antigen-speci�c T-cell populations collected 

from a melanoma cancer patient participating in an ACT trial. (a) Measurement protocol. MART-1 tumor-antigen-speci�c CD8+ T cells are 

separated from the blood of the patient using 10-parameter FACS sorting and then loaded onto an SCBC for assaying 19 secreted e�ector proteins. 

(b) Analysis of SCBC data. Unsupervised clustering of the single-cell proteomic data (tree, left) reveals coordinated behaviors that re�ect speci�c 

immune functions. Correlation coe�cients, calculated from single cell assays, are provided for proteins within the speci�ed groupings (In group) 

and outside those groupings (Out group). The scatter plot (right) shows correlations between two anti-tumor e�ector proteins (IFN-γ and TNF-α) 

and also shows that the roughly 10% of the cell population that secretes �ve or more di�erent proteins are also about 100-fold more active for any 

given protein, and so dominate the immune response for that phenotype. (c) The population kinetics of the TCR-engineered MART-1+ CD8+ T cells, 

as a percentage of CD3+ T cells (orange solid curve), along with the polyfunctional index (pie chart areas) for tracking population of the MART-1+ 

CD8+ T cells secreting �ve or more proteins. The pie chart composition re�ects the relative abundances of those proteins. GB refers to the protein 

Granzyme B. The dynamics of the polyfunctional cells showed much stronger correlations with the observed clinical responses in the patients. 

Adapted from [5] with permission.

Melanoma

cancer

patient

(a)

(b)

(c)

Peripheral

blood

M
A

R
T-

1
 T

e
tr

a
m

e
r

MART-1+

59%

MART-1−

29%

FSC-A

CD8+

MART-1+

CD8+ MART-1+ T cells

G
ra

n
z
y
m

e

M
IP

-1
β

M
IP

-1
α

T
N

F
-α

IF
N

-γ

C
C

L
-1

1

C
M

-C
S

F

T
G

F
-β

1

T
G

F
-β

2

T
N

F
-β

IL
-1

3

IL
-2

2

IL
-6

IL
-1

β

IL
-1

7
A

IL
-1

0

IL
-5

IL
-4

IL
-2

Correlation Antitumour effector Non-specific Inflammatory Regulatory Proliferative and Th2

In group

Out group

0.59

0.09

0.23

0.10

0.04

0.05

0.28

0.13

0.18

0.12

100,000

10,000

1,000

100

10

1
10,0001001

IFN-γ

r=0.71
≥ 5 functions

< 5 functions

Proliferative

+Th2

GB
IFN-γ TNF-α
MIPs

Inhibitory
Non-specific

Proliferative +Th2
Inflammatory

Days post infusion

0

30

60

07 15 30 45 60 72 90

C
D

8
 M

A
R

T-
1
%

T
N

F
-α

Wei et al. Genome Medicine 2013, 5:75 

http://genomemedicine.com/content/5/8/75

Page 7 of 12



resistance development, yet it cannot be readily captured 

from genome sequencing data. A recent editorial [40] has 

pointed out that capturing the functional protein 

signaling networks may prove valuable for this purpose, 

because it is those ‘signaling proteins, not the genes per 

se, that are responsible for the phenotypes of tumors and 

for the emergence of therapeutic resistance’. Single-cell 

proteomics provides the most direct approach for 

elucidating signaling network structure and coordination, 

and for interrogating how that coordination is disrupted 

by drugs. It thus may provide a powerful tool for 

translating genomic information into effective clinical 

practices for many highly challenging types of cancer 

[41].

An early single-cell study of phosphoprotein signaling 

[42] used ICS FFC to assay, in various cancer cells, the 

cytokine responses of six phosphoproteins, mostly from 

the signal transducers and activators of transcription 

(STAT) family. Signaling network heterogeneity and 

network remodeling was observed in both normal cells in 

a hematopoietic compartment [43] and cancerous cells 

such as acute myeloid leukemia [42], suggesting that cells 

could be classified according to functional phenotype. 

�ere have been other highly multiplex studies of 

phosphoprotein signaling networks using flow (or mass) 

cytometry [44] or image cytometry [19] over the past 

decade, and more recent work using SCBC platforms 

[27,28,45]. Such a sparse literature (especially compared 

with the routine use of cytometry techniques for cellular 

phenotyping) highlights the difficulty of these assays, 

even though the specific studies have illustrated their 

value. We now turn to discussion of this value, within the 

specific context of cancer pathways.

Cancer pathway models are essentially maps of the 

protein-protein interactions that describe the flow from a 

cell signaling trigger (ligand-receptor binding) to func-

tional behaviors, such as cell division or apoptosis. �ese 

pathways are often assembled from diverse datasets 

(high-throughput data on cell populations, integrated 

with small interfering RNA perturbations, knockout 

models, and so on) to yield maps in which the nodes are 

functional proteins and the edges are inhibitory or 

activating interactions. �ese models generally assume 

linear relationships between upstream effector proteins, 

ATP, and nutrient levels and activation downstream. 

However, most signaling cascades behave as excitable 

devices with thresholds, enabling them to integrate 

diverse temporal and spatial inputs to produce specific 

signaling responses [46]. Single-cell proteomics discerns 

much of this detail, and, if truly quantitative, can yield 

simplifying approaches towards understanding how such 

pathways function (Figure 4).

Population heterogeneity can arise from factors such as 

the stochastic nature of intracellular events controlled by 

low-copy-number transcription factors [47] or through 

cell-cell interactions [48,49]. �e net result is often high-

amplitude fluctuations at the single-cell level but stable 

distributions across a population [50]. �e concept of a 

stable population existing in the presence of random 

fluctuations is reminiscent of many physical systems that 

are successfully understood using statistical physics. 

�us, tools derived from that field can probably be 

applied to using fluctuations to determine the nature of 

signaling networks. �is approach contrasts with tradi-

tional biology thinking, which might seek to classify the 

population into functional phenotypes.

Figure 3. Multiplexed proteomics for co-measurement of cell 

migration and cytokine secretion of the same A549 (model lung 

carcinoma) cancer cells. (a) Light �eld images showing migration 

of three single cancer cells within micro�uidic channels collected at 

0 (before) and 24 (after) hours. (b) Heatmap: each column is a single-

cell assay; each row is an assayed parameter. Cell migration distance 

(top row) is shown with the entire protein secretion pro�le (lower 

14 rows). Approximately 1,000 single cells were assayed. (c) Scatter 

plots showing how the levels of three proteins (MCP-1 and IL-6) 

varied with cell migration distance. a.u., arbitrary units. Adapted from 

[30] with permission.
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Wei and coworkers [45] reported simulations to account 

for how an increasing signaling activity of a hypothetical 

protein would be reflected in the fluctuations of the 

activated state of that protein (Figure  4a). �ey used a 

mean field theory, which treated the increasing signaling 

activity of the hypothetical protein as arising from the 

statistically averaged (mean field) influences of effector 

proteins. As the activity increases, the fluctuations shift 

to higher average copy numbers and are increasingly 

dispersed. �e simulations captured how the experi-

mentally measured fluctuations of hypoxia inducible 

factor (HIF)-1α in single glioblastoma multiforme (GBM) 

Figure 4. Phosphoprotein signaling networks from multiplex, quantitative single-cell proteomics. All data represented are uniquely 

measured at the single-cell level. (a) A Monte-Carlo simulation of �uctuations that represent the copy numbers per cell of an activated (such as 

phosphorylated) form of a protein, as that protein is involved in increasing numbers of regulatory processes. On the right are the experimentally 

measured �uctuations of HIF-1α from model GBM cancer cells as these cells are exposed to di�erent O
2
 partial pressures. The increasingly 

important role of HIF-1α under hypoxic conditions is evident. Reproduced from [45]. (b) Scatter plot showing protein-protein correlations for two 

phosphoproteins. The black and red dots represent measurements from 0-cell and 1-cell SCBC microchambers, respectively. Reproduced from [28]. 

(c) A protein-protein correlation network for model GBM cancer cells following epidermal growth factor (EGF) stimulation (top), and following EGF 

stimulation + erlotinib (anti-EGF receptor) inhibition (bottom). The weight of the network edges re�ects the correlation strength, and a red edge 

indicates an anti-correlation. Reproduced from [27]. (d) Collective signaling modes, as determined by the eigenvectors of the single-cell protein-

protein covariance matrix. Shown are the eigenvectors associated with mTORC1 signaling in model GBM cells, as pO
2
 is varied. The composition of 

the green, red, and blue eigenvectors (top plot) is given in the pie charts below for each value of pO
2
 investigated. The amplitude of the mTORC1 

associated eigenvectors shows a minimum between 1.5% and 2% pO
2
, indicating the loss (and undruggability) of that signaling within this 

narrow window of pO
2
 values. Note that HIF-1α is strongly associated with mTORC1 signaling above 2% pO

2
, but not below 2% pO

2
, indicating a 

switch in the structure of the signaling network. The cells studied were model GBM cell lines containing the EDFR variant III (vIII) oncogene (U87 

EGFRvIII; panels a, b, d) or the EGRFvIII oncogene plus loss of the phosphatase and tensin homolog (PTEN) tumor suppressor gene (EGFRvIII PTEN). 

Reproduced from [45] with permission.
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cancer cells evolve as the cells were exposed to increas-

ingly hypoxic conditions. HIF-1α is, in fact, steadily 

activated as the cells transition from normoxia to hypoxia 

[51]. �is conclusion can be drawn by simply inspecting 

the HIF-1α fluctuations.

Quantitative, multiplexed assays can also provide 

protein-protein correlations. �is means that one can use 

statistical models that explicitly account for protein-

protein interactions (Figure 4b,c) and begin defining the 

state of the signaling network. Shin et al. [38] developed a 

quantitative Le Chatelier principle that relates how the 

changes in average signaling protein levels following a 

weak perturbation to a cell correlate to the changes in the 

chemical potentials of those proteins. �e Le Chatelier 

principle states that a stable system will respond to a 

weak perturbation so as to restore that stability. �e 

theory is summarized by the matrix equation ΔN
–
 = βΣΔμ. 

Here, ΔN
–
 is a column vector with P components repre-

senting the average protein levels of the P assayed 

proteins; β is 1/k
B
T, where k

B
 is Boltzmann’s constant and 

T is temperature; Σ is a P × P matrix where each element 

is the experimentally measured covariance of a specific 

protein P
i
 with another specific protein P

j
; and Δµ is a 

column vector whose P components describe the change 

in the chemical potentials of the P proteins, due to a 

change in external conditions (the perturbation). If the 

predicted changes in protein levels match experiment, 

the implication is that the signaling network is described 

by a stable state and responds to a weak perturbation so 

as to restore that state. If the calculation does not match 

experiment, then either the perturbation is strong or the 

signaling network is not stable. �e theoretical tools were 

coupled with single-cell proteomics assays of mammalian 

target of rapamycin (mTOR) complex1 (C1) and HIF-1α 

signaling in model GBM cancer cells, to capture the 

response of these networks to the transition from 

normoxia (21% O
2
 partial pressure (pO

2
)) to hypoxia (1% 

pO
2
) (Figure  4d). mTORC1 signaling was identified as 

one stable state above 2% pO
2
 and as a different stable 

state between 1.5% and 1% pO
2
, with a switch between 

those two states near 2 to 1.5% pO
2
. Within this narrow 

window of pO
2
, the models predicted that mTORC1 

would be unresponsive to inhibitors, but that it could be 

drugged at higher or lower pO
2
. �ese surprising pre-

dictions were found to be correct in both cell lines and 

tumor models [45].

�ese results have several implications. First, single-cell 

proteomics, coupled with approaches derived from statis-

tical physics, can yield detailed (and often surprising) 

predictions, which can be experimentally validated. 

Traditional biology experiments on bulk cell cultures or 

disease models rarely yield such detailed predictions. 

Furthermore, cellular heterogeneity was not assessed to 

capture functional phenotypes. Instead the fluctuations 

were analyzed to identify a stable state or to point to 

where that state was unstable. Although this general 

concept is not new, the experimental challenge has been 

to find approaches that can accurately sample the 

relevant fluctuations. Related examples have drawn from 

model systems using, for example, green fluorescent 

protein reporter genes to provide signatures of protein 

fluctuations. In one such case [50], time-lapse live-cell 

microscopy was used to capture specific promoter 

activity fluctuations in fibroblast cells. �e authors [50] 

identified switching rates between two stable states 

within the cells. A major advantage of the multiplexed 

platforms, such as SCBCs, is that fluctuations of broadly 

sampled signaling networks from primary cells can be 

measured, allowing predictive applications to non-model 

systems, with extensions to clinically relevant problems.

Extending such assays to discrete cell populations 

(unique to microfluidic/nanotechnology platforms) allows 

the investigation of cell-cell interactions. A few studies 

have explored the inhibitory or activating nature of such 

interactions using a combination of protein assays and/or 

functional observations [52-55]. A recent study [28] 

correlated the levels of a panel of phospho- (and effector) 

signaling proteins in model GBM cells, with cell-cell 

distances in two-cell assays. �is indicated that a detailed 

knowledge of pairwise cell interaction functions could be 

used to predict specific properties of larger cell 

populations. Such experiments again draw from concepts 

derived from statistical physics [56], and may eventually 

allow complex phenomena within tissue microenviron-

ments to be understood.

Looking forward
�e advance of methods for single-cell functional proteo-

mics has been rapid, and the majority of tools discussed 

here did not exist 5  years ago. �ese platforms offer 

unique and emerging opportunities. �e coupling of 

functional and proteomic assays at the single-cell level is 

one such advantage. Most microfluidic proteomics 

platforms, however, cannot yet match the statistics and 

throughput of cytometry tools. However, as these 

technologies evolve, the range of potential applications 

will continue to expand, as will the thinking regarding 

how the resultant datasets can be interpreted. It is likely 

that, in the near future, microchip platforms will enable 

as many as 100 proteins to be assayed from single cells, 

and platforms that enable 10- to 20-plex assays will 

become routine biological and clinical tools. However, 

beyond about 100 proteins, all (microchip or cytometry) 

single-cell proteomics approaches will ultimately be 

limited by antibodies or other capture agents. �us, an 

important underlying challenge is the production of 

high-performance and robust protein capture agents at 

low cost. A second outstanding challenge is the 
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develop ment of a capture-agent-independent approach 

that allows discovery.

One area that has not been covered here is that of mass 

spectrometry. However, that field has seen remarkable 

advances over the past few years, and single-cell 

proteomics may be on the horizon. Targeted proteomics 

using mass spectrometry has evolved to the extent that 

small cell numbers, or even single cells, can be analyzed 

for highly abundant proteins. Protein processing with 

immobilized enzymes [57] or novel column chromato-

graphy methods [58] may eventually allow mass spectro-

metry to be a single-cell proteomics discovery tool. 

Finally, the idea that single-cell functional proteomics 

can provide a conduit to the predictive world of statistical 

physics is exciting, but the benefits (and limitations) of 

this type of thinking are largely untapped. It is certain, 

however, that as measurement quantification, multiplex-

ing capacity, statistical sampling, and sensitivity all 

improve, so will the power of the models that can use 

these data to resolve what are otherwise complex bio-

logical problems.
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