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Abstract

Most generative models for clustering implicitly assume that the number of data
points in each cluster grows linearly with the total number of data points. Finite
mixture models, Dirichlet process mixture models, and Pitman–Yor process mix-
ture models make this assumption, as do all other infinitely exchangeable cluster-
ing models. However, for some tasks, this assumption is undesirable. For exam-
ple, when performing entity resolution, the size of each cluster is often unrelated
to the size of the data set. Consequently, each cluster contains a negligible fraction
of the total number of data points. Such tasks therefore require models that yield
clusters whose sizes grow sublinearly with the size of the data set. We address
this requirement by defining the microclustering property and introducing a new
model that exhibits this property. We compare this model to several commonly
used clustering models by checking model fit using real and simulated data sets.

1 Introduction

Many clustering tasks require models that assume cluster sizes grow linearly with the size of the data
set. These tasks include topic modeling, inferring population structure, and discriminating among
cancer subtypes. Infinitely exchangeable clustering models, including finite mixture models, Dirich-
let process mixture models, and Pitman–Yor process mixture models, all make this linear growth
assumption, and have seen numerous successes when used for these tasks. For other clustering
tasks, however, this assumption is undesirable. One prominent example is entity resolution. Entity
resolution (including record linkage and deduplication) involves identifying duplicate1 records in
noisy databases [1, 2], traditionally by directly linking records to one another. Unfortunately, this
approach is computationally infeasible for large data sets—a serious limitation in “the age of big
data” [1, 3]. As a result, researchers increasingly treat entity resolution as a clustering task, where
each entity is implicitly associated with one or more records and the inference goal is to recover the
latent entities (clusters) that correspond to the observed records (data points) [4, 5, 6]. In contrast to
other clustering tasks, the number of data points in each cluster remains small, even for large data
sets. Tasks like this therefore require models that yield clusters whose sizes grow sublinearly with
the total number of data points. To address this requirement, we define the microclustering property
in section 2 and, in section 3, introduce a new model that exhibits this property. Finally, in section 4,
we compare this model to several commonly used infinitely exchangeable clustering models.
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1In the entity resolution literature, the term “duplicate records” does not mean that the records are identical,

but rather that they are corrupted, degraded, or otherwise noisy representations of the same entity.
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2 The Microclustering Property

To cluster N data points x1, . . . , xN using a partition-based Bayesian clustering model, one first
places a prior over partitions of [N ] = {1, . . . , N}. Then, given a partition CN of [N ], one models
the data points in each part c ∈ CN as jointly distributed according to some chosen form. Finally, one
computes the posterior distribution over partitions and, e.g., uses it to identify probable partitions of
[N ]. Mixture models are a well-known type of partition-based Bayesian clustering model, in which
CN is implicitly represented by a set of cluster assignments z1, . . . , zN . One regards these cluster
assignments as the first N elements of an infinite sequence z1, z2, . . ., drawn a priori from

π ∼ H and z1, z2, . . . |π
iid∼ π, (1)

where H is a prior over π and π is a vector of mixture weights with
∑
l πl = 1 and πl ≥ 0 for

all l. Commonly used mixture models include (a) finite mixtures where the dimensionality of π is
fixed and H is usually a Dirichlet distribution; (b) finite mixtures where the dimensionality of π
is a random variable [7, 8]; (c) Dirichlet process (DP) mixtures where the dimensionality of π is
infinite [9]; and (d) Pitman–Yor process (PYP) mixtures, which generalize DP mixtures [10].

Equation 1 implicitly defines a prior over partitions of N = {1, 2, . . .}. Any random partition CN of
N induces a sequence of random partitions (CN : N = 1, 2, . . .), whereCN is a partition of [N ]. Via
the strong law of large numbers, the cluster sizes in any such sequence obtained via equation 1 grow
linearly with N , since with probability one, for all l, 1

N

∑N
n=1 I(zn= l) → πl as N → ∞, where

I(·) denotes the indicator function. Unfortunately, this linear growth assumption is not appropriate
for entity resolution and other tasks that require clusters whose sizes grow sublinearly with N .

To address this requirement, we therefore define the microclustering property: A sequence of ran-
dom partitions (CN : N = 1, 2, . . .) exhibits the microclustering property if MN is op(N), where
MN is the size of the largest cluster in CN . Equivalently, MN /N → 0 in probability as N →∞.

A clustering model exhibits the microclustering property if the sequence of random partitions im-
plied by that model satisfies the above definition. No mixture model can exhibit the microclus-
tering property (unless its parameters are allowed to vary with N ). In fact, Kingman’s paintbox
theorem [11, 12] implies that any exchangeable partition of N, such as a partition obtained using
equation 1, is either equal to the trivial partition in which each part contains one element or satisfies
lim infN→∞MN /N > 0 with positive probability. By Kolmogorov’s extension theorem, a se-
quence of random partitions (CN : N = 1, 2, . . .) corresponds to an exchangeable random partition
of N whenever (a) each CN is exchangeable and (b) the sequence is consistent in distribution—i.e.,
if N ′<N , the distribution of CN ′ coincides with the marginal of CN ′ obtained using the distribu-
tion of CN . Therefore, to obtain a nontrivial model that exhibits the microclustering property, one
must sacrifice either (a) or (b). Previous work [13] sacrificed (a); here, we instead sacrifice (b).

3 A Model for Microclustering

In this section, we introduce a new model for microclustering. We start by defining

K ∼ NegBin (a, q) and N1, . . . , NK |K
iid∼ NegBin (r, p), (2)

for a, r > 0 and q, p ∈ (0, 1). Note that K and some of N1, . . . , NK may be zero. We then define
N =

∑K
k=1Nk and, givenN1, . . . , NK , generate a set of cluster assignments z1, . . . , zN by drawing

a vector uniformly at random from the set of permutations of (1, . . . , 1︸ ︷︷ ︸
N1 times

, 2, . . . , 2︸ ︷︷ ︸
N2 times

, . . . . . . ,K, . . . ,K︸ ︷︷ ︸
NK times

).

The cluster assignments z1, . . . , zN induce a random partitionCN of [N ], whereN is itself a random
variable—i.e., CN is a random partition of a random number of elements. We call the resulting
marginal distribution of CN the NegBin–NegBin (NBNB) model. If CN denotes the set of all
possible partitions of [N ], then

⋃∞
N=1 CN is the set of all possible partitions of [N ] for N ∈ N. In

appendix A, we show that under the NBNB model, the probability of any given CN ∈
⋃∞
N=1 CN is

P (CN ) =
pN

N !
a(|CN |)

(1− q)a (q (1− p)r)|CN |

(1− q (1− p)r)a+|CN |
∏
c∈CN

r(|c|), (3)
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where x(m) = x (x+1) . . . (x+m−1) form ∈ N and x(0)=1. We use | · | to denote the cardinality
of a set, so |CN | is the number of (nonempty) parts in CN and |c| is the number of elements in part c.
We also show that if we replace the negative binomials in equation 2 with Poissons, then we obtain
a limiting special case of the NBNB model. We call this model the permuted Poisson sizes (PERPS)
model. Under certain conditions, the PERPS model is equivalent to the linkage structure prior [6, 4].

In practice, N is usually observed. Conditional on N , the NBNB model implies that

P (CN |N) ∝ a(|CN |) β|CN |
∏
c∈CN

r(|c|), (4)

where β = (q (1− p)r) / (1− q (1− p)r). This equation leads to the following “reseat-
ing algorithm”—much like the Chinese restaurant process (CRP)—derived by sampling from
P (CN |N,CN \n), where CN \n is the partition obtained by removing element n from CN :

• for n = 1, . . . , N , reassign element n to
– an existing cluster c ∈ CN \n with probability ∝ |c|+ r,
– a new cluster with probability ∝ (|CN \n|+ a)βr.

We can use this algorithm to draw samples from P (CN |N), however, unlike the CRP, it does not
produce an exact sample if used to incrementally construct a partition from the empty set. When the
NBNB model is used as the prior in a partition-based clustering model—e.g., as an alternative to
equation 1—the resulting Gibbs sampling algorithm for CN is similar to this algorithm, but accom-
panied by appropriate likelihood terms. Unfortunately, this algorithm is slow for large data sets. We
therefore propose a faster Gibbs sampling algorithm—the chaperones algorithm—in appendix B.

In appendix C, we present empirical evidence that suggests that the sequence of partitions (CN :
N = 1, 2, . . .) implied by the NBNB model does indeed exhibit the microclustering property.

4 Experiments

In this section, we compare the NBNB and PERPS models to several commonly used infinitely
exchangeable clustering models: mixtures of finite mixtures (MFM) [8], DP mixtures, and PYP
mixtures. We assess how well each model “fits” partitions typical of those arising in entity resolu-
tion and other tasks involving clusters whose sizes grow sublinearly with N . We use two observed
partitions—one simulated and one real. The simulated partition contains 5,000 elements, divided
into 4,500 clusters. Of these, 4,100 are singleton clusters, 300 are clusters of size two, and 100 are
clusters of size three. This partition represents data sets in which duplication is relatively rare—
roughly 91% of the clusters are singletons. The real partition is derived from the Survey on House-
hold Income and Wealth (SHIW), conducted by the Bank of Italy every two years. We use the 2008
and 2010 data from the Fruili region, which consists of 789 records. Ground truth is available via
unique identifiers based upon social security numbers; roughly 74% of the clusters are singletons.

For each data set, we consider four statistics: the number of singleton clusters, the maximum cluster
size, the mean cluster size, and the 90% quantile of cluster sizes. We compare each statistic’s true
value, obtained using the observed partition, to its distribution under each of the models, obtained
by generating 5,000 partitions using the models’ “best” parameter values. For simplicity and inter-
pretability, we define the best parameter values for each model to be the values that maximize the
probability of the observed partition—i.e., the maximum likelihood estimate (MLE). The intuition
behind our approach is that if the observed value of a statistic is not well-supported by a given model,
even with the MLE parameter values, then the model may not be appropriate for that type of data.

We provide plots summarizing our results in figures 1 and 2. The models are able to capture the mean
cluster size for each data set, although the NBNB model’s values are slightly low. For the SHIW
partition, none of the models do especially well at capturing the number of singleton clusters or the
maximum cluster size, although the NBNB and PERPS models are the closest. For the simulated
partition, neither the PYP mixture model or the PERPS model are able to capture the maximum
cluster size. The PERPS model also does poorly at capturing the 90% quantile. Overall, the NBNB
model appears to fit both data sets better than the other models, though no one model is clearly
superior to the others. These results suggest that the NBNB model merits further exploration as a
prior for entity resolution and other tasks involving clusters whose sizes grow sublinearly with N .

3



Figure 1: Results for the simulated partition. Each plot contains a boxplot depicting the distribu-
tion of a single statistic under each of the five models, obtained using the MLE parameter values
(provided in appendix D). The dashed horizontal line indicates the true value of the statistic.

Figure 2: Results for the SHIW partition. This figure’s interpretation is the same as that of figure 1.

5 Discussion

Infinitely exchangeable clustering models assume that cluster sizes grow linearly with the size of
the data set. Although this assumption is appropriate for some tasks, many other tasks, including
entity resolution, require clusters whose sizes instead grow sublinearly. The microclustering prop-
erty, introduced in section 2, provides a way to characterize models that address this requirement.
The NBNB model, introduced in section 3, exhibits this property. The figures in section 4 show that
in some ways—specifically the number of singleton clusters and the maximum cluster size—the
NBNB model can fit partitions typical of those arising in entity resolution better than several com-
monly used mixture models. These results suggest that the NBNB model merits further exploration
as a prior for tasks involving clusters whose sizes grow sublinearly with the size of the data set.
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A Derivation of P (CN) Under the NBNB and PERPS Models

In this appendix, we derive P (CN ) where CN ∈
⋃∞
N=0 CN . We start by noting that

P (CN ) =

∞∑
K=|CN |

P (CN |K)P (K) (5)

and
P (CN |K) =

∑
z1,...,zN∈[K]

P (CN | z1, . . . , zN ,K)︸ ︷︷ ︸
I(z1,...,zN⇒CN )

P (z1, . . . , zN |K) (6)

for any K ≥ |CN |. (The number of parts in CN may be less than K because some of N1, . . . , NK
may be zero.) Since N1, . . . , NK are completely determined by K and z1, . . . , zN ,

P (z1, . . . , zN |K) = P (z1, . . . , zN |N1, . . . , NK ,K)P (N1, . . . , NK |K) (7)

=

∏K
k=1Nk!

N !

K∏
k=1

P (Nk |K) (8)

=

∏K
k=1Nk!

N !
(1− p)Kr pN

K∏
k=1

r(Nk)

Nk!
, (9)

where we have used P (Nk |K) = r(Nk)

Nk!
(1− p)r pNk . Therefore,

P (CN |K) =
∑

z1,...,zN∈[K]

I(z1, . . . , zN ⇒ CN )
pN

N !
(1− p)Kr

K∏
k=1

r(Nk) (10)

=
pN

N !
(1− p)Kr

( ∏
c∈CN

r(|c|)

) ∑
z1,...,zN∈[K]

I(z1, . . . , zN ⇒ CN ) (11)

=
pN

N !
(1− p)Kr

( ∏
c∈CN

r(|c|)

)
(|CN |!)

(
K

|CN |

)
. (12)

Substituting equation 12 into equation 5 yields

P (CN ) =
pN

N !

( ∏
c∈CN

r(|c|)

) ∞∑
K=|CN |

(1− p)Kr (|CN |!)
(
K

|CN |

)
P (K). (13)

Using P (K) = a(K)

K! (1− q)
aqk, we know that

∞∑
K=|CN |

(1− p)Kr (|CN |!)
(
K

|CN |

)
P (K) =

(1− q)a (q (1− p)r)|CN |

(1− q (1− p)r)a+|CN |
a(|CN |). (14)

Finally, substituting equation 14 into equation 13 yields equation 3 as desired.

The PERPS model is similar to the NBNB model (equation 2), but with

K ∼ Poisson (α) and N1, . . . , NK |K
iid∼ Poisson (λ), (15)

for α, λ > 0. If we let r = λ / p and a = α/ q, and then let p, q → 0, then equation 3 converges to

PPERPS(CN ) =
λN

N !
α|CN | e−α e−λ|CN | eαe

−λ
. (16)

Equation 16 can also be derived directly by following the approach used to derive equation 3.
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B The Chaperones Algorithm: Scalable Inference for Microclustering

For large data sets with many small clusters, standard Gibbs sampling algorithms (such as the one
outlined in section 3) are too slow to be used in practice. In this appendix, we therefore propose
a new sampling algorithm: the chaperones algorithm. This algorithm is inspired by existing split–
merge Markov chain sampling algorithms [14, 4, 6], however, it is simpler, more efficient, and—
most importantly—likely exhibits better mixing properties when there are many small clusters.

We start by letting CN denote a partition of [N ] and letting x1, . . . , xN denote the N observed
data points. In the usual incremental Gibbs sampling algorithm for nonparametric mixture models
(described in section 3), each iteration involves reassigning every element (data point) n = 1, . . . , N
to either an existing cluster or a new cluster by sampling from P (CN |N,CN \ n, x1, . . . , xN ).
When the number of clusters is large, this step can be very inefficient because the probability that
element n will be reassigned to a given cluster will, for most clusters, be extremely small.

Our algorithm focuses on reassignments that have higher probabilities. If we let cn ∈ CN denote
the cluster containing element n, then each iteration of our algorithm consists of the following steps:

1. Randomly choose two chaperones, i, j ∈ {1, . . . , N} from a distribution
P (i, j |x1, . . . , xN ) where the probability of i and j given x1, . . . , xN is greater than zero
for all i 6= j. This distribution must be independent of the current state of the Markov chain
CN ; however, crucially, it may depend on the observed data points x1, . . . , xN .

2. Reassign each n ∈ ci ∪ cj by sampling from P (CN |N,CN \n, ci ∪ cj , x1, . . . , xN ).

In step 2, we condition on the current partition of all elements except n, as in the usual incremental
Gibbs sampling algorithm, but we also force the set of elements ci ∪ cj to remain unchanged—i.e.,
n must remain in the same cluster as at least one of the chaperones. (If n is a chaperone, then this
requirement is always satisfied.) In other words, we view the non-chaperone elements in ci ∪ cj as
“children” who must remain with a chaperone at all times. Step 2 is almost identical to the restricted
Gibbs moves found in existing split–merge algorithms, except that the chaperones i and j can also
move clusters, provided they do not abandon any of their children. Splits and merges can therefore
occur during step 2: splits occur when one chaperone leaves to form its own cluster; merges occur
when one chaperone, belonging to a singleton cluster, then joins the other chaperone’s cluster.

This algorithm can be justified as follows: For any fixed pair of chaperones (i, j), step 2 is a sequence
of Gibbs-type moves and therefore has the correct stationary distribution. Randomly choosing the
chaperones in step 1 amounts to a random move, so, taken together, steps 1 and 2 also have the
correct stationary distribution (see, e.g., [15], sections 2.2 and 2.4). To guarantee irreducibility,
we start by assuming that P (x1, . . . , xN |CN )P (CN ) > 0 for any CN and by letting C ′N denote
the partition of N in which every element belongs to a singleton cluster. Then, starting from any
partitionCN , it is easy to check that there is a positive probability of reachingC ′N (and vice versa) in
finitely many iterations; this depends on the assumption that P (i, j |x1, . . . , xN ) > 0 for all i 6= j.
Aperiodicity is also easily verified since the probability of staying in the same state is positive.

The main advantage of the chaperones algorithm is that it can exhibit better mixing properties than
existing sampling algorithms. If the distribution P (i, j |x1, . . . , xN ) is designed so that xi and xj
tend to be similar, then the algorithm will tend to consider reassignments that have a relatively high
probability. In addition, the algorithm is easier to implement and more efficient than existing split–
merge algorithms because it uses Gibbs-type moves, rather than Metropolis-within-Gibbs moves.

C NBNB and the Microclustering Property

In this appendix, we present empirical evidence that suggests that the sequence of partitions implied
by the NBNB model exhibits the microclustering property. Figure 3 shows MN /N for samples of
MN over a range of N values from ten to 104. We obtained each sample of MN using the NBNB
model with a = 1, q = 0.9, and r, p such that E(Nk |K) = 3 and var (Nk |K) = 32 / 2. For
each value of N , we initialized the algorithm with the partition in which all elements are in a single
cluster. We then ran the reseating algorithm in section 3 for 1,000 iterations to generate CN from
P (CN |N), and set MN to the size of the largest cluster in CN . As N → ∞, MN /N appears to
converge to zero in probability, suggesting that the model exhibits the microclustering property.

7



Figure 3: Empirical evidence suggesting that the NBNB model exhibits the microclustering property.

D Experiments

For each data set, we calculated each model’s MLE parameter values using the Nelder–Mead algo-
rithm. For the simulated partition, the MLE values are r = 2.955 × 10−5, p = 0.1875, a = 102.4,
and q = 0.9999 for the NBNB model; λ = 0.215 for the PERPS model; γ = 0.279 for the MFM
model; θ = 21,719 for the DP model; and θ = 9,200 and δ = 0.540 for the PYP model. For the
SHIW partition, the MLE values are r = 1,001, p = 6.212 × 10−4, a = 100.6, and q = 0.9267
for the NBNB model; λ = 0.624 for the PERPS model; γ = 1.056 × 10−2 for the MFM model;
θ = 1,037 for the DP model; and θ = 1,037 and δ = 0 for the PYP model (making it identical to the
DP model). Note that for both data sets, the DP and PYP concentration parameters are very large.
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