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REVIEW

Microdosing and Other Phase 0 Clinical Trials: Facilitating
Translation in Drug Development

T Burt1,∗, K Yoshida2,3, G Lappin4, L Vuong5,6, C John2, SN de Wildt7, Y Sugiyama8 and M Rowland9,10

INTRODUCTION

Increasing costs of drug development and ethical concerns
about the risks of exposing humans and animals to novel
chemical entities favor limited exposure clinical trials such
as microdosing and other phase 0 trials. An increasing body
of research supports the validity of extrapolation from the
limited drug exposure of phase 0 approaches to the full,
therapeutic exposure. An increasing number of applications
and design options demonstrate the versatility and �exibility
these approaches offer to drug developers.

BACKGROUND AND DEFINITIONS

The pursuit of alternative approaches for �rst-in-human (FIH)
trials arose in response to a decline in drug development pro-
ductivity and as an attempt to reduce the costs and time
spent identifying failed drugs.1 Such alternative approaches,
variously named Exploratory Investigational New Drug appli-
cations (eIND), phase 0, and, under the current guidelines,
Exploratory Clinical Trials, were established by regulatory
authorities to reduce the risks to humans by limiting drug
exposure during FIH trials.2,3 Reduction in exposure and
expected risks led to a reduction in preclinical testing, asso-
ciated time and costs, drug manufacturing requirements,
and promises to provide valuable human-based data prior
to initiation of full-�edged INDs.4–6 Just how much better
informed and more ef�cient these approaches are than tra-
ditional ones depends on the type of information provided,
associated time and costs, available alternatives, and the
validity of extrapolating modeling from the limited exposure
to full-therapeutic dose exposure.
The current, internationally harmonized, regulatory frame-

work de�ning and governing microdosing and other phase
0 clinical trials is the International Conference on Harmo-
nization (ICH) M3 Guidelines3. Under this framework phase
0 trials are FIH trials where the exposure to the drug is less
than in phase I studies (i.e., less than maximal tolerated dose
[MTD]), have no therapeutic purpose, and are not intended to
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assess tolerability. The �ve phase 0 approaches described in
the guidelines form a spectrum of exposure from single, min-
imal (microdose) exposure to multiple doses into the antic-
ipated therapeutic range (Table 1). Other approaches that
meet the spirit of the guidelines are possible and early con-
sultation with local regulators is recommended to help iden-
tify the optimal approach.2 The 2006 the US Food and Drug
Administration (FDA) eIND guidance emphasizes the inher-
ent �exibility in the regulations: “Existing regulations allow
a great deal of �exibility in the amount of data that needs
to be submitted with an IND application, depending on the
goals of the proposed investigation, the speci�c human test-
ing proposed, and the expected risks. The Agency believes
that sponsors have not taken full advantage of that �exibility
and often provide more supporting information in INDs than
is required by regulations”.2

As a contribution to the body of de�nitions we propose the
term “in-humano” to describe the type of limited testing in
“exploratory clinical trials.” The term was coined during dis-
cussions on the occasion of microdosing symposium at the
American College of Clinical Pharmacology (ACCP) annual
meeting in 2013. Although limited, such brief and/or local
drug interactions within humans may generate data of mech-
anistic and conceptual value not otherwise available prior to
phase I studies. The term “in humano” testing uses the Latin
terminology similar to “in silico,” “in vitro,” and “in vivo” test-
ing, to indicate preclinical testing in humans, meaning that no
clinical, (i.e., therapeutic or toxic) effects are expected. It is
a step on the spectrum from human in vitro tissues, to stud-
ies in intact preclinical species, to studies in isolated intact
human organs or tissues, to systemic subtherapeutic expo-
sure in humans and �nally, systemic therapeutic exposure in
humans.

In the case of microdosing (Approaches 1 and 2, Table 1)
the dose is de�ned as no greater than 100 µg (for small
molecules) or 1/100th of the No Observed Adverse Effect
Level (NOAEL), whichever is the lower. With such low expo-
sures no gross effects, therapeutic, toxic or radiotoxic when
labeled with radioisotopes, are expected. As will be dis-
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Table 1 Abbreviated de�nitions of phase 0 approaches (ICH M3)3

Number/Duration of Doses Maximum Dose Preclinical Requirements Genotoxicity/Dosimetry

Approach 1 (microdosing) 1 100 µg AND 1/100 of NOAEL Extended single dose toxicity

In rodent; GLP

No genotoxicity; PET

dosimetry

Approach 2 (microdosing) 5 (6 half-lives between doses) Each dose:100 µg AND 1/100

of NOAEL

7-day repeated-dose toxicity

In rodent; GLP

No genotoxicity; PET

dosimetry

Approach 3 1 Starting at subtherapeutic

dose and moving into the

anticipated therapeutic

range but < ½ NOAEL

Extended single-dose toxicity

In rodent and non-rodent;

GLP

Ames assay; PET dosimetry

Approach 4 Multiple<14 days Starting dose:<1/50 of NOAEL

AUC; Into the anticipated

therapeutic range but< 10th

preclinical AUC if no toxicity,

or < NOAEL

14-day repeated-dose toxicity

in rodent and non-rodent;

GLP

Ames assay + chromosomal

damage test; PET dosimetry

Approach 5 Multiple<14 days Starting dose: <1/50 NOAEL;

Into the anticipated

therapeutic range but<

non-rodent NOAEL AUC, or

<½ rodent NOAEL AUC

14-day repeated-dose toxicity

in rodent and non-rodent;

GLP

Ames assay + chromosomal

damage test; PET dosimetry

NOAEL, No Observed Adverse Effect Level; AUC, area under the curve; GLP, good laboratory practice.

Figure 1 PKPD Continuum. phase 0/microdosing allows study of
drug effects in the following domains: (I) – plasma PK; (II) – target
PK; (III) – receptor binding and displacement; (IV) – pharmacolog-
ical effects; biomarkers and/or clinical outcomes. PD, pharmaco-
dynamics; PK, pharmacokinetics. Cu, concentration unbound in
tissue; O, outcome; BM, biomarkers/metabolites; SEP, surrogate
end points.

cussed later, however, pharmacological effects, both phar-
macokinetic (PK) (e.g., absorption, distribution, metabolism,
excretion [ADME]) and pharmacodynamic (PD) (e.g., recep-
tor binding and displacement, production of intermediate
metabolites, and modi�cation of targets; Figure 1) may take
place, and be detected with targeted approaches and sen-
sitive analytical tools even if no gross effects are elicited in
the organism as a whole. For microdosing approaches used
to test proteins, a molar limit (30 nmol) is applied due to
the large size of the molecules.2 The molar and mass def-
initions converge if the size of the test molecule is 3.3 kDa,
when it is both 100 µg and 30 nmol. For any larger molecules
the 100 µg de�nition of microdosing will be the more con-
servative one. As an illustration - the TGN1412 monoclonal
antibody, at 150 kDa, was given at 0.1 mg/kg to six healthy

volunteers and caused a cytokine storm and near fatal mul-
tiple organ failure within 24 h7. For a 45 kg individual the
resulting 4.5 mg meets the molar de�nition of a microdose
study (30 nmol x 150 kDa = 4.5 mg). However, were the
100 µg de�nition used the resulting dose would have been
45-fold lower.

ANALYTICAL TOOLS

The limited systemic exposure of phase 0 studies may
require more sensitive assays than conventional analytical
tools. The three most commonly used techniques are liquid
chromatography-tandem mass spectrometry (LC-MS/MS),
positron emission tomography (PET), and accelerator mass
spectrometry (AMS) (Table 2).4,5,8 Of these, AMS is by far
the most sensitive, followed by PET and LC-MS/MS. AMS
and PET require radiolabelling, however unlike PET, AMS
radiation exposure is minimal and typically does not require
dosimetry studies.3,9 The advantage of PET is the ability to
provide continuous, dynamic information about drug effects
in real time in the living human, in tissues of interest, including
target receptor binding and occupancy; however, unlike AMS
and LC-MS/MS, PET imaging cannot distinguish metabolites
from parent compound.10 LC-MS/MS is the cheapest, most
accessible, and associated with the least amount of process-
ing while AMS and PET require the presence of specialized
units for production of the radioisotopes, radiochemistry,
processing, and analysis. While PET requires the presence of
such facilities in close proximity to the clinical research site
(with the exception of 18F and 124I that can be shipped due
to their 100 min and 4-day half-life, respectively) AMS is usu-
ally processed in remote facilities with the long half-life of 14C
(�5700 years) presenting no limitations on shipment sched-
ules. The limited availability of specialized AMS and PET
facilities is of little relevance since typically only one phase
0 study with six to 10 participants is required per drug devel-
opment program.

www.wileyonlinelibrary/cts
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Table 2 Properties of analytical tools used in phase 0 studies. Adapted from Bauer et al.9

AMS PET LC-MS/MS

Sensitivity 10−16 to 10−18 g 10−12 to 10−14 g 10−12 g

Sample types Mostly plasma but any samples may

be used (e.g., biopsies, bronchial

lavage, CSF, urine, feces, blister

samples)

Real-time imaging; dynamic,

contemporaneous information from

multiple tissues/targets

Mostly plasma but any samples may

be used (e.g., biopsies, bronchial

lavage, CSF, urine, feces, blister

samples)

Sample frequency / duration 6-10 / h duration unlimited Continuous / dynamic; duration

limited by radioisotope half-life

6-10 / h duration unlimited

Plasma sample volume Typically 50 µL, but as little as 2 µL N/A; continuous / dynamic “counting”

of drug molecules per unit space

Typically 100 µL-2 mL, but as little as

25 µL8,11,12

Radiolabelling 14C 11C, 13N, 15O, 18F, and 124I None

Radiation exposure Very low Low None

Parent compound and metabolites Discriminating parent compound from

metabolites possible

No discrimination Discriminating parent compound from

metabolites possible

Administration PO and IV IV PO and IV

Site of analysis Can be outsourced On-site only Can be outsourced

Costs per study13 � $ 400–600 k � $ 500–700 k � $ 80–140 k

Availability Limited availability; � six facilities

dedicated to biomedical research

worldwide

Available in specialized centers (e.g.,

tertiary-care facilities)

Commonly available

AMS, accelerator mass spectrometry; PET, positron emission tomography; LC-MS/MS, liquid chromatography-tandem mass spectrometry; CSF, cerebrospinal

�uid; N/A, not applicable.

Table 3 Comparison of phase 0/microdosing with traditional phase I approaches

Phase 0/Microdosing (eIND) Traditional Phase I (IND)

Therapeutic intent None Possible

Study of systemic tolerability None Yes

Proof of Mechanism Possible (e.g., PET receptor

binding and displacement)

Possible

Preclinical Package Limited, variable; depends on

extent of exposure to the test

article and experimental goals

Full requirements

in vitro models Full requirement Full requirements

toxicology Limited, variable Full requirements

genotoxicology None or limited Full requirements

GMP Flexible, depending on available

preclinical information and route

of administration (e.g., sterility

ensured for IV route)

Full requirements

Regulatory Review 30-day 30-day

Usual Duration of Program 4-12 months 12-24 months

Cost of Program $ 0.5-0.75 M $ 1.5-2.5 M

Studies

size (typical) 4-10 participants 6-30 participants

duration (per participant) 1-14 days* 6-60 days*

number of study sites Single Single/Multiple

maximal dose <MTD MTD

exposure Limited (see Table 1) Multiple doses allowed

population Healthy volunteers or

patientsVulnerable populations

Usually health volunteers (unless

toxicity risk is high, e.g., in

oncology trials)

*on average, could be longer with longer half-life drugs; MTD, maximum tolerated dose.

PHASE 0 VS. OTHER FIRST-IN-HUMAN (FIH) CLINICAL

TRIALS (TABLE 3)

The conduct of a phase 0 study differs from other devel-
opmental clinical trials in several respects, most importantly
the use of low doses, low plasma concentrations, and the

highly sensitive analytic tools needed to analyze drug effects.
The regulatory framework allows a quicker initiation of phase
0 studies due to reduced preclinical package requirements
and simpler manufacturing process. In many other aspects,
including the ethics, recruitment, volunteer management,
phase 0 trials are similar to other FIH studies.

Clinical and Translational Science
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Table 4 Current and emerging applications of phase 0 / microdosing approaches. “Current applications” refers to phase 0 clinical studies that were part of

new drug development, or those used in multiple research settings to obtain information on existing drugs in new populations or circumstances. “Emerging

applications” denotes new and theoretical applications that are in the early stages of development and/or validation

Examples and references

Current applications

PK and BA Study of drug disposition (e.g., absorption, distribution, metabolism, excretion, bioavailability [ADME], TMDD);19

effectiveness-related PK (i.e., PK parameters that directly impact on safety and ef�cacy).20

DDI Cocktail and cassette DDI studies.21,22

PD/Localization/Proof of

mechanism

Phosphorylation in PBMCs.16 DNA adducts in PBMCs.17 Target tissue localization.23–25

Vulnerable populations Pediatric studies of drug disposition.26–29 Future applications may apply also to women (including pregnant

women), patients with hepatic impairment, renal impairment, poly-pharmacy, comorbidity, and frail elderly

patients.30

Diagnostic radiopharmaceuticals Due to lack of appropriate animal models, phase 0 used for selection amongst four 18F-labelled PET amyloid

imaging agents for assessment of β-amyloid plaques in brains of patients with Alzheimer’s disease.31

Emerging applications

PBPK, M&S Modeling and simulations incorporating in-silico, in vitro, PBPK/PD32 and economic parameters13 can all

enhance the predictive value and feasibility of phase 0 studies.22

Biologics Small antibody (PET)33. Large protein (AMS).34

Adaptive design phase 0/phase I Microdosing/phase I adaptive design.34

Intra-Target Microdosing (ITM) –

drug development in target.

Intra-Arterial Microdosing (IAM) proof-of-concept in rats.15 Insulin injected intra-arterially caused local effect

(18F-FDG uptake into muscle) while systemic exposure was at microdose levels with no effects.

Extreme environments Space (micro-gravity, radiation, altered chronobiology), north/south poles (cryo-environments, altered

chronobiology), hyper/hypobaric environments (e.g., high altitudes). Altered physiology and pharmacology

may have drug ef�cacy and toxicity implications and requires testing of pharmaceuticals in the extreme

environment setting. Lack of emergency facilities favors phase 0 approaches.

Individualized therapy phenotyping Prediction of DDI in healthcare settings by using microdose probes prior to initiation of therapy.22,35–38

Environmental toxins Describing the disposition of potential carcinogens (e.g., PAH) using nontoxic microdoses in humans.39,40

PK, pharmacokinetics; BA, bioavailability; PD, pharmacodynamics; TMDD, target-mediated drug disposition; DDI, drug-drug interactions; PBPK, physiologically-

based pharmacokinetics; M&S, modeling and simulation; PBMCs, peripheral blood mononuclear cells; FDG, �uorodeoxyglucose; PAH, polycyclic aromatic hydro-

carbon.

HUMAN-BASED CONTRIBUTIONS TO DRUG

DEVELOPMENT DECISION PROCESS (FIGURE 1)

Even though there is no therapeutic intent, phase 0 tri-
als allow the study of key properties that are relevant to
drug development “go-no-go” decision making (Figure 1).
These properties, sometimes called “pillars of pharmacol-
ogy,” include the following domains: (I) plasma PK, (II) target
PK (for both ef�cacy and toxicity targets), (III) receptor bind-
ing and displacement, and (IV) PD (biomarkers and clinical
outcomes).14 Of these, only clinical outcomes that depend on
long-term exposure cannot be studied with any of the phase
0 options. However, even with the most limited exposure of
a single-dose microdose (Approach 1, Table 1) the �rst three
domains can be studied, and, as will be demonstrated in
the following sections depending on the exposure, sampling
(e.g., biopsies), analytical tools (e.g., PET), and approach
(e.g., Intra-Target Microdosing [ITM]), some PD information
may also be obtained.15–17 All phase 0 approaches depend
on the validity of extrapolation from the limited-exposure sce-
nario to the full exposure of therapeutic-intent administra-
tion, to be discussed in detail below. However, in the ultimate
analysis, phase 0 always provide previously unavailable infor-
mation about test article effects in humans. This information
reduces the uncertainty about the test article. Depending on
the individual development scenario, such information may
reach a meaningful threshold for a “go-no-go” decision or
provide valuable guidance for the phase I and phase II pro-
grams that follow. Any information obtained, however, should

justify the investment and time spent obtaining it. This was
found to be the case in economic modeling and simulations
of microdosing studies.13

PAST AND CURRENT VALIDATION EFFORTS AND

APPLICATIONS

Since the introduction of the exploratory clinical trial frame-
work more than a decade ago the main foci in the �eld have
been testing of the validity of the approach and exploring
potential applications.18 Validation efforts focused mainly on
demonstration of linearity across the microdose to therapeu-
tic dose spectrum and development of modeling and sim-
ulation tools to address circumstances when non-linearity
may be an issue. Application efforts focused on drug devel-
opment scenarios where the requirement or convenience of
safe testing and early arrival at informed “go-no-go” deci-
sion making has been particularly pronounced (Table 4). The
validation efforts and research on the various and expanding
number of applications is described in the following section
and is an ongoing process.

PK and bioavailability

The main application of phase 0/microdosing studies has
been in the evaluation of PK and bioavailability of new
drugs. There have been extensive efforts to predict PK of
drugs in humans using preclinical methods, such as allo-
metric scaling from experimental animals, physiologically
based pharmacokinetics (PBPK) or extrapolation of study

www.wileyonlinelibrary/cts
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results obtained with in vitro systems (in vitro-in vivo extrap-
olation [IVIVE]), using human liver microsomes.41 However,
quantitative prediction of human PK can still be challeng-
ing, and phase 0/microdose studies can serve as a powerful
complementary tool to existing approaches. Safely obtain-
ing PK data is particularly valuable where a drug has a
narrow therapeutic index (NTI), as is often the case with
anticancer agents.37,42,43 The pivotal microdosing valida-
tion studies in the PK/bioavailability domain have been the
CREAM (Consortium for Resourcing and Evaluating AMS
Microdosing) and EUMAPP (European Microdosing acceler-
ator mass spectrometry [AMS] Partnership Programme) trials
in Europe, and the NEDO (New Energy and Industrial Tech-
nology Development Organization) trials in Japan.19,44,45 By
now the results of more than 35 studies in both animals and
humans have been reported comparing microdose vs. full
dose. Of these, a microdose successfully predicted thera-
peutic dose PK in 79% of drugs administered orally (n = 27)
and 100% of those administered IV (n = 12).30

Microdosing studies have been used in various drug
development programs. One compared three analogues of
diphenhydramine (DPH) with the aim of improving upon
DPH’s poor properties as a hypnotic, speci�cally, the delayed
onset of action and residual wakeful hypnotic effects.20 DPH
and an analogue that previously had failed in development
both showed PK linearity between amicrodose and full dose.
With predictability demonstrated and assumed for the group
of analogues, the candidate with the highest bioavailabil-
ity, shortest t1/2, and least intersubject variability, deemed
desired properties, was chosen for further development.
This example is notable for the ability of the microdosing
approach to detect speci�c and narrow PK parameters of
direct relevance to drug clinical utility, both therapeutic and
side effects, which could not otherwise be managed by sim-
ply modifying the dose or frequency of administration of DPH
itself. Identifying such properties (or their absence) could
reward the investment in a phase 0 study by leading to early
termination of those analogues that did not demonstrate
the desired PK properties. In this study each of the ana-
logueswas evaluated separately, using AMS,while in another
study, using LC-MS/MS, the oral bioavailability of three Ca-
channel blockers was assessed simultaneously by adminis-
tering them as microdose cassette.46

Microdose absolute bioavailability studies

Absolute bioavailability (F), is a measure of the fraction of an
extravascularly administered dose of drug reaching the sys-
temic circulation intact. For small molecules the most com-
mon extravascular route is oral, for biologics it is subcuta-
neous. Phase 0 microdose absolute bioavailability studies
consist typically of an oral, intravenous crossover design.47

In addition to F, this design provides a multitude of other
preliminary pharmacokinetic data, including Cmax, tmax, t½, CL
(clearance), and V (volume of distribution). The estimate of
CL allows prediction as to whether it will be affected by such
factors as blood �ow and plasma protein binding, the antic-
ipated loss of oral bioavailability on �rst passage through
the liver during the absorption process, as well as facilitat-
ing PBPK model development (see below) and improving in

vitro-in vivo extrapolation of this parameter. V together with

F guide the oral dose needed to ensure exposures within the
anticipated therapeutic range.

Of the eight drugs reported where F was compared
between amicrodose and a therapeutic dose only two drugs,
propafenone and sumatriptan, gave an anomalous result
(propafenone: 5.8% and 13% sumatriptan: 7.6% and 20%
for the microdose and therapeutic dose, respectively) while
the other were within a twofold difference.30 Still, microdos-
ing currently compares more favorably than allometry and
PBPK, when both absolute bioavailability and shape of the
concentration curve are considered.41

Evaluation of nonlinearity of drug disposition

If drug disposition pathways are linear, successful direct
extrapolation of exposure from microdose to therapeutic
dose is expected.18,30,41,48 Common causes of nonlinear PK
include intestinal solubility, metabolism in intestine or liver,
membrane transport in intestine, liver, or kidney, and plasma
protein binding.19 On rare occasions, with small molecu-
lar drugs, there is also a possibility of saturation of bind-
ing to drug target at the therapeutic dose, as observed with
warfarin.19 These factors should be considered when design-
ing phase 0 studies for the purpose of projecting human PK
at therapeutic dose.

Even when nonlinear PK between microdose and ther-
apeutic dose exist, model-based simulations incorporating
nonlinear processes may allow quantitative extrapolation of
human exposure.22,48 This may be possible if the non-linear
processes are identi�ed in advance in preclinical IVIVE stud-
ies, suspected from similarly structured drugs, or suggested
from the eIND study itself (see Intra-Target Microdosing [ITM]
below).15,41,48 Although not exclusive, the basic concept in
analyzing saturation of metabolic enzymes or transporters
can be expressed in Michaelis-Menten equation:

v =
Vmax × [S]

Km + [S]

(

⇔ CL =
Vmax

Km + [S]

)

where CL, Km, [S], v, and Vmax represent clearance,Michaelis-
Menten constant, concentration of a substrate S, velocity
of reaction, and maximum reaction velocity, respectively. As
demonstrated in Figure 2, if the level of exposure after thera-
peutic dose is below Km, the same clearance between micro-
dose and therapeutic dose (i.e., direct extrapolation from
microdose) is expected. If, on the other hand, the level of
exposure after therapeutic dose is higher than Km, the clear-
ance after microdose coupled with kinetic in vitro saturation
information, especially when integrated within a PBPKmodel
(see below), can still be used to predict the exposure level
expected after therapeutic doses. Such extrapolation may
need to account for auto-induction or saturation of multiple
pathways, as in the case following oral administration, when
the drug concentrations in the intestine may saturate multiple
enzymes and/or transporters.49

Drug-drug interactions (DDI)

The primary objective of DDI studies is to quantitatively char-
acterize alterations in PK pro�les of the substrate drug as a
function of interaction with other xenobiotics. The DDI may
result in abnormal increases or decreases of drug levels,

Clinical and Translational Science
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Figure 2 Conceptual representation of nonlinear drug disposition and extrapolation from microdose to therapeutic dose for (a) drugs
showing linear PK and (b) drugs showing nonlinear (saturable) PK at therapeutic dose. Width of the blue and orange bars schematically
represents ranges of substrate drug concentration after microdose and therapeutic dose, respectively. AUC, area under the concentration-
time curve; CL, clearance; Km, Michaelis-Menten constant; [S], concentration of a substrate drug S.

potentially leading to safety or ef�cacy concerns, respec-
tively. The most important DDI mechanisms are inhibition or
induction of drug metabolic enzymes or transporters. Accu-
rate evaluation of DDI effects is essential for appropriate use
of new or existing medications.50

DDIs of PK origin are increasingly being predicted from
in vitro experiments using PBPK. However, situations do
arise, especially during candidate selection, where informa-
tion on the compound is insuf�cient to allow con�dent DDI
predictions to be made.51 Microdosing offers a powerful
complementary tool to evaluate DDI PK susceptibility of new
or existing drugs as a substrate, “victim” drug, with three
key advantages. Firstly, at such low doses there are fewer
safety concerns caused by the potentially higher exposure
of victim drugs when coadministered with inhibitors of elim-
ination pathways. This is particularly important when exam-
ining DDI effects in drugs with narrow therapeutic index.
Secondly, when using “cocktail” strategies to evaluate drug
effects on multiple elimination pathways, there is little risk
of “cross-reaction” when substrate drugs are administered
simultaneously in a microdose.22 Thirdly, simultaneous, “cas-
sette,” administration substantially reduces the variability in
the results, hence increases the power of the studies and
reduces the required sample size.
To demonstrate the validity of a DDI cocktail approach,

which could be used to evaluate a potential perpetrator
during drug development, a cocktail of four probe sub-
strate drugs was administered as a microdose to evaluate
DDI effects on different elimination pathways (midazolam for
CYP3A, tolbutamide for CYP2C9, caffeine for CYP1A2, and
fexofenadine for P-glycoprotein [P-gp]).52 As a result of co-

administration of ketoconazole and �uvoxamine, increases
in the exposure of all four substrate drugs were observed.
The magnitude of inhibition by these two perpetrators was
consistent with previous observation after therapeutic doses
of these four probe substrate drugs, suggesting that micro-
dose studies can be directly and safely used to estimate
the degree of DDIs in clinical settings. Similar DDI stud-
ies have been conducted with drugs subject to membrane
transporters, such as metformin (substrate of organic cation
transporter 2 [OCT2] and multidrug and toxin extrusion pro-
tein [MATEs] in the kidney)53 and ceriprolol (substrate of
OATP2B1 and P-gp in the intestine).38 These studies also
demonstrated similar magnitude of DDIs between microdose
and therapeutic dose.
To further extend the application of cocktail microdose

studies, Sugiyama and colleagues conducted a cocktail-
dose clinical microdose DDI study to identify the rate-
determining process for the hepatic elimination of atorvas-
tatin, a well-established substrate of CYP3A and organic
anion transporting polypeptide 1B (OATP1B) transporter.54

They compared the pharmacokinetic alteration of atorvas-
tatin, pravastatin, and midazolam in the presence and
absence of probe inhibitors, itraconazole for CYP3A and
single dose rifampin for OATP1B. The pharmacokinetics of
this cocktail was observed at baseline, after an oral dose
of 600 mg rifampicin (OATP1B inhibitor), and after an intra-
venous dose of 200 mg itraconazole (CYP3A4 inhibitor). As
a result, exposure of atorvastatin was increased dramat-
ically with single dose rifampin coadministration, but not
with itraconazole coadministration. Since the observed phar-
macokinetic change was consistent with pravastatin, they

www.wileyonlinelibrary/cts
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concluded that OATP1B is the key determinant of atorvas-
tatin systemic clearance.

PD/Proof of mechanism

The limited systemic exposure of research participants to
administered compounds during phase 0 studies, even the
so-called “subpharmacological” levels of microdose stud-
ies, does not mean that no pharmacological effects have
occurred, only that these effects are so limited that no
therapeutic or toxic effects can be expected in the organ-
ism as a whole. With sensitive analytical tools and appro-
priate approaches certain PD effects of the test article
may be observed. For example, PET imaging of labelled
drug or labelled biomarker may identify receptor binding or
biomarker accumulation, respectively, thus providing proof
of mechanism of drug actions. AMS detection of 14C-labelled
DNA adducts or phosphorylated drug in PBMCsmay do like-
wise. Intra-TargetMicrodosing (ITM; see below) generates full
exposure in a local target area by administering a microdose
calculated on a full-body basis directly into the target, thus
enabling detection of therapeutic-level exposure PD param-
eters in tissues of interest while keeping systemic exposure
at subtherapeutic levels.15 These scenarios are described in
detail in the following sections.

Drug-DNA adducts, mitochondrial toxicity, and adverse

drug reaction (ADRs) in anticancer and antiviral therapy

Formation of DNA adducts, the covalent binding of xenobi-
otics to DNA bases, is a crucial step in both carcinogenesis
and cancer treatment.55 These formations can be detected
with AMS if the drug or suspected carcinogen is labeled with
14C and administered in a microdose thus avoiding carcino-
genic or cytotoxic risk.17,56,57

Lightfoot et al. conducted a study to examine the uptake
of carcinogens into human breast tissue and their ability
to bind to DNA to form DNA adducts.57 In the �rst such
report, patients undergoing breast surgery were orally
administered prior to surgery one of two known carcinogens
(2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [PhIP]
and benzo[a]pyrene [B[a]P]) as microdoses, 20 µg of PhIP
or 5 µg of B[a]P. At surgery, normal and tumor breast tissue
were resected and tissue concentrations of carcinogen
measured by liquid scintillation counting and DNA adduct
levels by AMS. In both cases the carcinogen was shown
to reach the target organ and form DNA adducts there (see
also below under “Environmental toxins”).
Similarly, as mechanistic proof of anticancer cytotoxic

effects, microdosing has been used to identify DNA
mono-adduct formation and repair after anticancer drug
administration. Henderson et al. administered microdose
14C-carboplatin to cancer patients followed by AMS assess-
ment of carboplatin-DNA mono-adduct formation in periph-
eral blood mononuclear cells (PBMCs), an essential step in
the therapeutic action of this drug. The study showed that
14C-carboplatin microdoses had the same adduct formation
and repair kinetics as therapeutic doses.17 It is also feasible
to use such phase 0 studies to study drug-resistance medi-
ated by potential polymorphism in DNA-repair, thus identify-
ing patients best and least suited for carboplatin treatment.58

Vuong et al. appliedmicrodosing to study zidovudine (ZDV)
PK and uptake of active drug metabolites at the site of action
and of DNA-incorporation.16 In the study, AMS was used to
measure 14C-ZDV concentrations in PBMCs, the drug’s site
of action, following a 520 ng dose (less than one-millionth
of the standard daily dose). The study showed that ZDV is
rapidly absorbed and eliminated, has one major metabolite,
and is sequestered in PBMCs. Mass balance analysis of the
14C-labeled dose indicated that a signi�cant portion of ZDV
remained after 96 h with a much prolonged elimination half-
life. The study also showed equivalent PK parameters for the
microdose and therapeutic dose, supporting the usefulness
of microdosing and AMS as a tool for studying PK and PD of
drug substances.16

Phase 0 approaches could also be used to study adverse
drug reactions (ADRs) such as cardiac mitochondrial dys-
function associated with doxorubicin mitochondrial DNA
adduct formation, or potential for ZDV toxicity in neonates
of mothers receiving antiviral therapy.16,59 The value of such
limited-exposure phase 0 human studies is further high-
lighted by the poor prediction of cardiotoxicity and other
adverse effects of drugs from preclinical in vitro and animal
models.60,61

Drug and biomarker localization

Determining appropriate target exposure is one of the key
objectives of drug development (Figure 1).14 Due to method-
ological and technological limitations, however, drug PK
has traditionally been investigated using plasma exposures.
Recent application of imaging technologies in PK studies
has enabled the quantitation of drug concentration in target
organs.25,62,63 Among them, PET has been most frequently
used to directly evaluate drug disposition at target organs
and in the case of cancer therapeutics also allows determin-
ing cross-reactivity with normal tissues.5,23,24,33,62,64 Biodis-
tribution, passage of membranes (e.g., BBB), tissue kinet-
ics, receptor binding and occupancy, “surrogate end points”
and inter-subject variability, are all examples of data that
can be obtained with PET and due to its high sensitivity
(10−12 to 10−14 g; Table 2) can be obtained at microdose
exposures.5,9,65

Examination of receptor binding occupancy was used to
obtain mechanistic understanding of the interaction of a drug
and its target, as in the development of ziprasidone as a cen-
tral dopamine D2 receptor antagonist.

64 In such a study, radi-
olabeled tracer speci�c to the receptor of interest is admin-
istered in the presence and absence of a test drug, and dis-
placement of the radiotracer is quanti�ed to evaluate the
binding af�nity of the test drug. Even though this study used
therapeutic doses of ziprasidone, displacement methodol-
ogy can be applied with subtherapeutic exposure when the
displacing agent is a compound other than the test drug (e.g.,
known agonist or competitive antagonist for the receptor)
and can be given in pharmacologically active doses. Such
studies can provide not only target af�nity but also dynamic
information about local exposure.

PK at the site of action can be useful in evaluating a
drug’s potential to interact with PD targets. One represen-
tative example is in the development of a potential antiamy-
loid drug for treatment of Alzheimer’s disease.23 The authors
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investigated the brain distribution of 11C-labelled ST1859
with PET imaging to compare regions rich in amyloid-
beta and other regions. Although they observed rapid and
high accumulation of this drug in brain, con�rming pas-
sage across the blood-brain-barrier (BBB), they did not see
regional distribution consistent with amyloid-beta brain dis-
tribution, presumably due to a combination of non-speci�c
binding and relatively low binding af�nity to amyloid-beta.
PET imaging can also be used to directly observe PD

effects by labelling the biomarker that is produced, modi-
�ed, ormobilized by the test article. A proof-of-concept study
with 18F-labelled �uorodeoxyglucose (FDG) as a biomarker
of insulin action is described in the “Intra-Target Micro-
dosing (ITM)” section.15 Another important application of
PET imaging is the evaluation of drug interaction potential
caused by the alteration in membrane transport functions.
Major focus has been placed on the DDI effect on distri-
bution into brain, liver, and kidney. For example, coadmin-
istration of P-gp inhibitors (tariquidar and cyclosporine A)
increased brain exposure of 11C-labeled verapamil, suggest-
ing the in vivo importance of P-gp in limiting verapamil’s brain
distribution.66–68 For liver and kidney, because inhibition of
basolateral uptake or apical ef�ux have different outcomes
in terms of systemic and peripheral exposures, it is impor-
tant to measure both of them when evaluating DDI effect.69

All of these in vivo peripheral exposure measurements are
essential in building reliable PBPK models (see PBPK sec-
tion) and IVIVE methodologies of drug disposition pathways,
ultimately leading to quantitative prediction of not only sys-
temic but also target organ exposures.

Vulnerable populations

Vulnerable populations include children, pregnant and lactat-
ing women, hepatically/renally impaired, frail elderly, comor-
bidity, poly-pharmacy with potential for DDIs, and those with
genotypes predisposing them to abnormal drug responses
(e.g., through CYP mutations that increase/decrease drug
metabolism, or genotypes predisposing to hypersensitivity
reactions).70 Common to these populations is their exclusion
from primary drug development programs due to safety con-
cerns. Testing drugs in such populations is often restricted
due to the risks associated with drug exposure.70,71 How-
ever, prediction of drug response from adult pharmacological
data in these populations is often impaired due to their unique
pathophysiology, and in pediatric populations has been esti-
mated to be reliable in less than 20%of cases.72 Even though
the recent increase in use of PBPK modeling may increase
the validity of extrapolation from adult and animal data,
alternative drug disposition pathways in vulnerable popula-
tions may result in unexpected variability.72 An example in
pediatrics is the switch from sulfation to glucuronidation as
the primary metabolic pathway of acetaminophen.26 Lack of
evidence-based guidance to clinical management leads to
extensive off-label use and is associated with increased inci-
dence of adverse drug reactions (ADRs).70,72–74 The safety
inherent in phase 0 approaches is an attractive complement
to extrapolation from adult data in these populations and
use of PBPK simulations. Another advantage is that by the
time the vulnerable populations are studied, data on linear-
ity, or type of non-linearity, are usually available from adult

studies and can improve extrapolation. However, to date,
phase 0 approaches have only been applied to the pediatric
population.30

The main potential barriers to the application of phase 0
approaches in vulnerable populations, and in particular in
children and pregnant women, are ethical in nature and are
related to safety. The three principal safety concerns are
exposure to the drug, burden of procedures, and exposure to
radiation. Exposure to the drug inmicrodosing studies is sub-
therapeutic and hence identi�ed as no more than minimal
risk, constituting a major advantage over therapeutic-dose
studies in vulnerable populations.75 The burden of proce-
dures in pediatric population is mainly related to the amount
of blood sampling. European and World Health Organization
(WHO) guidelines recommend restricting blood sampling vol-
umes to no more than 3% of total blood volume (TBV) over
1 month, and 1% of TBV over a 24 h period. This equates
to 1/100 of 240 ml = 2.4 ml in a 24 h period in a 3 kg
neonate.76,77 Such amount can easily satisfy the sampling
requirements of LC-MS/MS (� 100 µl per sample but as
low as 25 µl).11 The much higher sensitivity of AMS further
reduces sampling requirements (as little as 2 µl per sam-
ple, depending on drug concentration). Radiation exposure
is low with PET and extremely low with AMS, consistent with
normal background exposure.29 Finally, the ethics argument
needs to be strengthened by scienti�c necessity and expo-
sure to no more than minimal risk over that expected in usual
daily activities. A recent FDA position statement supports the
use of microdosing studies in patients but leaves the appli-
cation in healthy children questionable.75

Several pediatric microdose studies have been conducted
to date in the US and Europe.26–29 Doses ranged from 3
to 30 ng/kg and sampling was 20 µL per sample where
possible. Levels of radioactivity administered were kept
extremely low (10-100 Bq/kg or 0.3-3 nCi/kg). These have
been proof of concept studies with ursodiol,27 midazolam,29

and acetaminophen26,28 demonstrating linearity across the
microdose to therapeutic dose range thus paving the way
to future applications with other drugs and other vulnerable
populations. Of particular interest is elucidation of ontogeny
of ADME pathways such as drug metabolism, transport, and
renal function and the use of microdosing to phenotype such
pathways.78

Development of diagnostic radiopharmaceuticals

In the past few years several pharmaceutical companies
used eIND approaches for the development of diagnostic
radiopharmaceuticals. An example is 18F-AV-45, a PET imag-
ing agent to estimate β-amyloid plaque density in patients
assessed for Alzheimer’s disease.31 The sponsor �led eINDs
for four different candidates to be evaluated in healthy
volunteers and in AD patients. The absence of appropriate
animal models required a human study for selection among
the four candidates thus favoring the safe and low-cost
phase 0 approach. The PET-microdosing enabled demon-
stration of BBB passage and localization to regions of inter-
est. The candidate with the appropriate PK, metabolism, tar-
get organ uptake, retention (in cortical brain regions known
to be high in amyloid disposition), and clearance from non-
target brain tissue, was selected as the lead candidate for
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clinical development and eventually approved for marketing
by the FDA.

EMERGING APPLICATIONS OF

PHASE 0/MICRODOSING STUDIES

Modeling and simulations

Phase 0/microdosing data and PBPK models can comple-
ment and enhance each other. PBPKmodels comprise phys-
iological and biochemical data, which are independent of
the drug, and often called a systems property, onto which
are overlaid drug speci�c data, often in the form of physic-
ochemical and in vitro human data, to predict the likely PK
in vivo under a variety of situations. PBPK models have now
become an established part of both early and late stage drug
development, and increasingly form part of the label infor-
mation provided following approval of the drug by regula-
tory agencies.51,79,80 While the ability of PBPK to accurately
predict human PK has improved over the years, uncertainty
still exists when using in vitro data only, and often there is
a need to update the model in the light of in vivo human
data. Phase 0 data can enhance PBPK by providing valuable
early human-based data. Conversely, PBPK can enhance
the extrapolation of phase 0 data to therapeutic dose lev-
els. Coupling phase 0 data with PBPK is particularly help-
ful in situations where established methods such as allome-
try and in vitro-in vivo extrapolation (IVIVE) are problematic,
due to either large unexpected interspecies PK differences,
or when IVIVE for one or more processes controlling the PK
of the compound are not well established, respectively. Sev-
eral approaches are being taken. One is to take advantage
of the previously stated observation, that microdosing IV dis-
position PK of a drug is the same as that following therapeu-
tic doses.19,30,44 Armed with the IV microdose data, the dis-
position kinetics of the PBPK model is de�ned, while it can
also be used to inform and update the IVIVE scaling parame-
ters controlling clearance and distribution. The expected oral
input, and hence PK pro�le, is then simulated based on such
in vitro data as solubility, particular size distribution, dissolu-
tion pro�le, intestinal permeability, and stability to intestinal
and hepatic enzymes and transporters, taking into account
nonlinearities if necessary. This helps not only to more accu-
rately predict the likely oral dose needed to ensure adequate
systemic exposure of drug, based on in vitro (or preclinical)
pharmacodynamic information, but also the best sampling
times, and likely inter-subject variability. It also helps in the
selection of the best candidate to meet therapeutic objec-
tives (such as size of dose to ensure adequate exposure,
dosing interval, and inter-subject variability) when several are
being considered prior to phase I testing.
PBPK models have been integrated with pharmacody-

namic components to explain inter-individual variability in
response.32 For such approaches, it is important to support
and validate the PBPK model with in vivo tissue concentra-
tion measurement whenever possible. As described earlier,
PET-based microdosing is a powerful tool to measure local
exposure and transport of drugs in various tissues. These
model-based methodologies will allow better extrapolation
of preclinical pharmacodynamic �ndings to the prediction of
therapeutic outcomes.

For certain types of drugs, membrane transport can be
the major determinant of tissue exposure. As a result,
transporter-mediated DDIs can cause altered exposure in
the tissues leading to change in ef�cacy or safety pro�les
of drugs.69,81 In many cases, however, changes in transport
function are not re�ected in systemic exposure, even for drug
clearance organs such as liver or kidney, while they can affect
tissue exposure of substrates.82 In order to predict complex
outcomes of the change in membrane transporter functions,
establishment of PBPK models with the support of in vivo

tissue concentration measurement is critical.

Biologics

The speci�city of modern biologic drugs for their targets
favors them as candidates for phase 0 studies. The often
high species speci�city may render animal models poorly
predictive of human PK and response. In addition, local-
ization of biologics at their speci�c targets makes PET-
microdosing a useful tool in studying access and dynamic
exposure at the target.With their PK and PD typically affected
by target-mediated drug disposition (TMDD), New Biological
Entities (NBEs) lend themselves to the study of target dynam-
ics, compartmental PK, and receptor binding and displace-
ment using labeling with PET radioisotopes.83 Inter-patient
variability and cross-reactivity between target (e.g., tumor)
and non-target (e.g., plasma, muscle) tissues can also be
demonstrated.33 Finally, if the pharmacological target of the
biologic is labeled (e.g., glucose [and 18F-FDG] in the case of
insulin) then the typically speci�c pharmacology of NBEs can
be studied as well using PET-microdosing.15 Many biolog-
ics are administered intravenously thereby bypassing poten-
tial non-linear absorption, transport, and metabolism mech-
anisms that could render extrapolation from microdose to
full-dose less reliable.

In 2013, the �rst microdosing study of a biologic was
reported, where PK, biodistribution, and tumor targeting of
the mini antibody 124I-F16SIP (80 kDa, 2 mg, 25 nmol), an
antiangiogenesis drug for head and neck cancer, were stud-
ied using PET imaging.33 The study was able to demon-
strate tumor targeting, near optimal bioavailability, and low
interindividual variability in PK in the four patients studied,
thereby supporting further development. In 2015, the �rst
14C-labelled recombinant human protein (human recombi-
nant placental alkaline phosphatase [hRESCAP], an endoge-
nous anti-in�ammatory protein) was studied in a phase
0/phase I adaptive design study.34 Results demonstrated lin-
ear PK from microdose (53 µg) to therapeutic dose (5.3 mg).
The study enabled the demonstration of a t1/2 greater than 2
days, a “go-no-go” developmental requirement for this com-
pound, with the phase 0 component of the study prior to
entry into the phase I component, thus allowing ef�cient allo-
cation of resources. With this protein drug it appears that the
elimination process is not saturable, and this may be the case
for other classes of protein drugs, in contrast to monoclonal
antibodies, which exhibit TMDD.84

A potential problem with biologics, especially those with
potent binding to non-target tissues, is that the drug admin-
istered in a microdose may “sink” into the non-target tissue
thus producing non-linear observations in the target.85 This
issue could be partly addressed by performing full-body PET
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Table 5 Potential applications of Intra-Target Microdosing (ITM)

Drug Organ / Tissue Biomarker

Nitrates, inotropes, adrenergic, muscarinic, PDE5

inhibitors, neutral endopeptidase (NEP) inhibitors,

natriuretic peptides

Peripheral vascular Vasodilation, vasoconstriction, cGMP spillover measurement

Anesthetics, analgesics (e.g., Nav1.7 inhibitors) Peripheral organ / tissue Anesthesia, analgesia

Triptans Blood vessels Analgesia, substance P and CGRP levels

Neuromuscular blocking agents Skeletal muscles Muscle relaxation/paralysis

Chemotherapy Liver, kidney, brain, breast Receptor binding (with PET imaging of radiolabeled drug)

Anticoagulants, antiplatelet Blood Coagulation parameters, platelet aggregation

Immune modulators, antihistamines Blood Cytokines, allergic symptoms

Hypoglycemics, sodium glucose cotransporter-2

(SGLT-2) inhibitors, diuretics

Kidney Glucose levels, reabsorption in proximal tubule (by 18F-FDG)

Antiarrhythmics Heart ECG

CNS stimulants and depressants (e.g., hypnotics,

sedatives, anxiolytics), NMDA antagonists

CNS Neuronal activity (e.g., Wada Test)

Due to the brief, local pharmacological-level exposure ITM can be used to detect PD effects in drug classes that allow collection of biomarkers in the time frame of

seconds to minutes. PDE5, phosphodiesterase type 5; cGMP, cyclic guanosine monophosphate; CGRP, Calcitonin Gene-Related Peptide; SGLT, Sodium-glucose

transport; ECG, electrocardiogram; NMDA, N-methyl-D-aspartate; CNS, Central Nervous System. Adapted from Burt et al.15

in an attempt to identify such “sink” tissues, or by using Intra-
Target Microdosing (ITM, see below), to temporarily expose
the target to the entire dose prior to entry into the general
circulation.15,33 An issue here is the balance between the
speed of distribution of the biologic from plasma to target,
with subsequent binding, within the tissue and the transit
time of plasma carrying the biologic away from the tissue.
Clearly, the slower the former, the less the bene�t of ITM.

Intra-Target Microdosing (ITM) (Table 5)

In this novel exploratory drug development approach the
test article is administered directly into the target such that
only a small fraction of tissue within the body is initially
exposed to the test article and for a limited amount of time.15

The most readily available direct administration route is intra-
arterial but intra-muscular, intra-thecal, or even topical deliv-
eries are possible. The test article then returns systemically
through the venous system and is diluted by approximately
the proportion of the target mass to the full-body mass. If
the target is about 1/100 of the body mass (e.g., the hand)
and the test article is administered at the NOAEL then the
rest of the body will receive microdose exposure. The advan-
tage of the approach is that target exposure may be suf-
�cient to detect human-speci�c acute PD effects relevant
to safety and ef�cacy while limiting systemic exposure to
safe subpharmacological levels. Target exposure post-ITM
differs from systemic administration (e.g., PO or IV) in that
the therapeutic-level concentrations are maintained only for
a brief time (seconds to minutes) after administration. Nev-
ertheless, considerable variation is possible in the exposure
pro�le depending on the rate and duration of administration
for a given total dose, as well as the amount of �uid admin-
istered. Imaging of the labeled drug in the target, measure-
ment of drug concentrations in the vein draining the target,
and use of in vivo and PBPK models, could all inform the
translation of the ITM information to the intended therapeu-
tic route of administration. In effect, the approach combines
two contemporaneous investigations: The local pharmaco-
logical exposure with a systemic microdose exposure, and

allows comparing the two with minimal variability to examine
the validity of extrapolation.
In a proof-of-concept rodent study Burt et al. hypothe-

sized that after administering a microdose of insulin into the
femoral artery effects on ipsilateral leg muscles would be
similar to those seen after systemic administration of a ther-
apeutic dose, while sparing the rest of the body any systemic
effects.15 18F-FDG uptake into tissues was chosen as the pri-
mary biomarker. Glucose and insulin levels were secondary
outcomes. FDG which responds to insulin in the same man-
ner as glucose, is taken up into tissues within minutes. After
administering insulin into the femoral artery, 18F-FDG uptake
into ipsilateral leg muscles, as measured by the slope of the
standard Uptake Value (SUV) plot, was similar (95% con�-
dence interval [CI], 20.024 to 0.029, P = 0.7895) to that after
systemic full-dose administration. Likewise, glucose levels in
the ipsilateral femoral vein were reduced. At the same time,
contralateral and systemic effects remained at the micro-
dose, subpharmacological, baseline level, statistically signif-
icantly less than the ipsilateral effects (CI, 20.045 to 20.007, P
= 0.0147). These observations established the two proof-of-
concept objectives, the �rst, to demonstrate that local expo-
sure after intra-arterial administration of subpharmacologi-
cal doses (measured on a systemic basis) can produce phar-
macological effects similar to those after systemic full-dose
administration and, second, that such local administration
exposes the rest of the body to subpharmacological, micro-
dose levels.

Extreme environments

This is an entirely new area of application that we antic-
ipate will grow in demand. Humans are venturing beyond
the narrow con�nes of the biosphere. Extreme environments
include space (exposure to microgravity, radiation, altered
chronobiology), poles (low temperatures, altered chronobiol-
ogy), high altitudes, and underwater (hypo/hyperbaric). With
the altered physical properties of the environment comes the
potential for altered physiology (e.g., bone density, muscle
strength, blood �ow, and chronobiology), pathology, pharma-
cology, and even storage and handling of pharmaceuticals all
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potentially leading to altered response to pharmacotherapy.
This calls for dedicated and controlled testing of xenobiotic
substances at the extreme environment. For all practical pur-
poses such studies would be akin to FIH studies in terms
of the novelty of the expected response and implied risks.
And with another feature of such extreme environment being
the lack of readily accessible comprehensive emergency ser-
vices, the inherent safety of phase 0 limited exposures is
clearly an advantage.

Individualized therapy phenotyping

There is considerable inter-individual variability in the mech-
anisms that affect drug disposition, and speci�cally, drug
metabolism (e.g., by CYP450 enzymes), and transporter
activity, that could lead to undesirable therapeutic conse-
quences such as underdosing, overdosing, and drug-drug
interactions (DDI).35 The ability to predict such variability prior
to initiation of pharmacotherapy, and to do so in a safe man-
ner by using a microdose probe drug, is especially important
for drugs that exhibit a narrow therapeutic index, where the
population is known to exhibit variability in metabolic phe-
notypes, and in vulnerable populations.35 It is also important
where concomitant polypharmacy may potentiate the probe
drug as in the case of ketoconazole and �uvoxamine that can
induce up to 12-fold potentiation of midazolam exposure by
inhibition of CYP3A4.52 Midazolam PK has been shown to
be linear in the dose range of 100 ng to 3 mg, allowing the
administration of amicrodosemidazolamprobe to accurately
predict full dose metabolism by CYP3A4 without the risk of
adverse effects.36,86 This was demonstrated following both
PO and IV administrations allowing, through deconvolution,
assessment of presystemic intestinal vs. hepatic CYP3A4
activity.

Environmental toxins

Phase 0 approaches offer the potential to study environ-
mental and anthropogenic toxins in a controlled and safe
manner.39,40 In fact, exposure to most environmental toxins
is normally in the microdose range, and this fact was used
by the FDA as an argument against the practicality of per-
forming routine genetic toxicology testing for microdosing
studies.2 However, long term exposures to substances that
do not display acute toxicities may lead to adverse health
effects. This is most notable in the case of chemical car-
cinogens but may also apply to heavy metals and radioac-
tive substances. While some of these substances have been
studied in animals in high doses few controlled data are avail-
able in humans, where natural exposure is usually to small
doses of complex mixtures.39 In the �rst such study, a single
dose of 14C-dibenzo[def,p]chrysene (DBC, 29 ng, 5 nCi), a
polycyclic aromatic hydrocarbon (PAH), identi�ed as a prior-
ity chemical of carcinogenic concern, was administered as a
microdose to three female and six male healthy volunteers.40

The single-dose exposure, equivalent to 28% of average
daily dietary intake, was assessed to be “minimal risk” and
approved by the local ethics committee. AMS was used to
determine PK parameters in plasma samples. Such data can
be used to determine the extent of metabolism, the type of
metabolism used to activate the pro-carcinogen, as well as
the detoxifying type. And just as in the previously mentioned

Henderson et al. study,17 formation of DNA mono-adducts
in PBMCs can be detected following these minute doses as
potential “surrogate end points” of carcinogenicity.

RECOMMENDATIONS

Human is the best model of human

Animal models are notoriously poor predictors of human
pathophysiology and treatment response.87,88 This is espe-
cially true when interactions with multiple targets (e.g., trans-
porters, enzymes, carrier proteins, target-mediated drug
disposition) take place, or when unique human targets or
systems are engaged (e.g., neurodegenerative and psychi-
atric disorders). An example is the lack of appropriate animal
models to study the role of amyloid plaques in pathogen-
esis of Alzheimer’s disease and the aforementioned use of
PET-microdose study to study 18F-labelled amyloid imaging
agents and establish proof of concept in humans.31

Strategic timelines (Figure 3)

Phase 0 approaches should be incorporated into the main-
stream developmental process. It is important to start con-
sideration of phase 0 approaches, especially if labelling is to
be involved, as soon as possible, preferably 2-2.5 years prior
to anticipated entry into human testing. This period should
include a pre-IND typemeeting with the regulatory authorities
to discuss the goals of the proposed investigation, the spe-
ci�c human testing proposed, assessment of the expected
risks, and determination of the amount and type of data that
need to be submitted. This period should also anticipate the
technical aspects of the eIND studies by initiating considera-
tions of formulation and drug radiolabeling, and establishing
the standards, capabilities, skills and expertise associated
with the analytical methods.

Initially, DDI and vulnerable populations were not included
as part of the framework of phase 0. However, �nding infor-
mation about DDI before phase I may play an important part
in the decision to enter into full clinical development, espe-
cially if microdosing assessment of DDI is part of candidate
selection among similarly performing preclinical candidates.
In addition, there has been increasing pressure to obtain, as
early as possible, evidence-based data on pharmacotherapy
for vulnerable populations, many of whom (e.g., frail elderly)
are important consumers of healthcare.

Linearity and validity of extrapolation from limited

exposure to full exposure

The potential for non-linear mechanisms interfering with
extrapolation of phase 0 results should be carefully examined
prior to embarking on such approaches. Saturation of trans-
porters, metabolism, protein binding, and receptor binding
at anticipated pharmacologic doses should be studied using
in vitro models and where possible with compounds from
the same pharmacological class as reference compounds.
It is important to note that non-linearity by itself does not
rule-out limited-exposure studies. As long as the nature of
non-linearity is correctly characterized it may allow accurate
extrapolation of phase 0 study results to therapeutic dose
levels.
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Figure 3 eIND Strategic Timelines. Timelines are indicated on a scale of years before and after initiation of eIND clinical trial (vertical red
line). In vitro and in vivo testing in support of full IND and phase I testing may continue in parallel to the phase 0 program so that no delays
are incurred should a “go” decision be taken.

Phase 0/phase I development program

In addition to the previously described phase 0/phase I adap-
tive study design34 there is the more general phase 0/phase
I parallel program development. This means that the preclin-
ical development, including animal testing, for the full IND
submission for phase I testing continues in parallel to the
phase 0 testing. The advantage of this approach is that the
phase I development can be stopped at any point as soon as
phase 0 testing indicates a “no-go” decision while no time is
lost in the phase I development if the results of the phase 0
testing indicate a “go” decision. In the latter case, the results
of phase 0 (e.g., PK parameters, DDI, target exposure) can
inform the design of the phase I program.

Government and organizational support

Regulators, professional organizations, industry, and
academia should unite to provide formal guidance, incen-
tives, and funding to promote research, education, and
utilization of microdosing and other phase 0 approaches.

Collaboration

Drug developers should share not only data but also
information on the decision-making process, and the
assumptions taken into consideration of drug development

“go-no-go” decisions, while balancing collaboration bene-
�ts against con�dentiality constraints. Speci�cally, the rea-
sons for the under-utilization of microdosing and other
phase 0 approaches need to be understood and addressed.
Maybe most important, all stakeholders should engage in
continuous discussions on how to improve these method-
ologies and their applications. The multidisciplinary nature
of this process should be embraced for its breakthrough
collaborative potential, not available in each of the indi-
vidual disciplines. Clinical pharmacologists, radiochemists,
nuclear medicine and analytics experts, economists, clini-
cal researchers, statisticians, and regulators, should not only
gather together in task forces to tackle speci�c developmen-
tal challenges, but regularly work together to seek and iden-
tify new ones.

Culture

Drug development organizations should provide incentives
to discover true failure early. Currently the bonus structure is
sometimes based on advancing development forward. The
implied aversion to failure may con�ict with the main advan-
tage of phase 0 approaches, i.e., the potential for early ter-
mination of development and reallocation of resources to the
development of more promising candidates.89
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Economics

An important element in the decision to utilize exploratory
developmental approaches, the economic bene�t, needs to
be studied in more diverse developmental scenarios, appli-
cations, and details than previous reports.13,90 To developers,
the bene�t will be the balance of the investment in resources
vs. the savings in time and money when compared with full
phase I programs. Of particular value to developers is the
saving of time to meaningful developmental decisions as this
could increase the patent-life of back-up compounds. To
insurers and healthcare systems as a whole there may be
an additional value in the earlier introduction of novel thera-
peutics that could reduce the burden of illness.

Ethics – risk/benefit assessment

The main ethical bene�ts of the exploratory approaches are
in the reduction of risk in human testing, the early identi�ca-
tion and rejection of ineffective or toxic compounds, thereby
avoiding delays in development of successful back-up com-
pounds, and preventing unnecessary testing in humans and
animals. The ethics of administering drugs to humans with no
therapeutic intent was brought up in earlier reports as a chal-
lenge to phase 0 studies.91–93 However, such testing, no dif-
ferent from usual phase I testing in healthy volunteers where
also there is no therapeutic intent, is justi�ed by the scienti�c
necessity and bene�cence implied in a more ef�cient drug
development process. Phase 0 approaches are also consis-
tent with the 3Rs, reduction, re�nement, and replacement,
promoting ethical animal research.

Patient advocacy groups

These organizations are usually highly motivated to advance
research, are especially concerned about safety of research
participants, and are compelled by the potential for mini-
mal exposure to experimental risk. They should be engaged
early in the development process allowing time to become
informed, involved in ethics discussion about their bene-
�t/risk ratio, able to disseminate the information, and con-
tribute to the recruitment process. They could also help
advocating for such clinical research approaches with policy
makers and potential funders.
An example of such productive collaboration is provided

by the Dutch patient organization for congenital diseases
(VSOP) that helped pave the way for the use of phase 0 tri-
als in The Netherlands. This group was strongly aware of
the need to conduct drug studies in children as well as the
challenges, ethical, regulatory and practical, that are in the
way of performing these studies. They understood and sup-
ported the concept of 14C-labelled AMS microdosing. They
supported the grant application with the Dutch Organization
for Health Research and Innovation and provided a support
letter, approved by the Ethics Board, to be given to parents
at the time of the informed consent process.

SUMMARY

A number of drivers and developments suggest that micro-
dosing and other phase 0 applications will experience
increased utilization in the near-to-medium future. Increas-
ing costs of drug development and ethical concerns about

the risks of exposing humans and animals to novel chemical
entities are important drivers in favor of these approaches,
and can be expected only to increase in their relevance. An
increasing body of research supports the validity of extrapo-
lation from the limited drug exposure of phase 0 approaches
to the full, therapeutic exposure, with modeling and simu-
lations capable of extrapolating even non-linear scenarios.
An increasing number of applications and design options
demonstrate the versatility and �exibility these approaches
offer to drug developers including the study of PK, bioavail-
ability, DDI, and mechanistic PD effects. PET microdosing
allows study of target localization, PK and receptor binding
and occupancy, while Intra-Target Microdosing (ITM) allows
study of local therapeutic-level acute PD coupled with sys-
temic microdose-level exposure. Applications in vulnerable
populations and extreme environments are attractive due to
the unique risks of pharmacotherapy and increasing unmet
healthcare needs. All phase 0 approaches depend on the
validity of extrapolation from the limited-exposure scenario to
the full exposure of therapeutic intent, but in the �nal analysis
the potential for controlled human data to reduce uncertainty
about drug properties is bound to be a valuable addition to
the drug development process.
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