
Microencapsulated Bovine Chromaffin Cells In Idtro:
Effect of Density and Coseeding with a NGF-Releasing Cell Line

1"S.R. Wlnn P.A. Tresco, B. Zielinskix, J. Sagenz, P. Aebischer
Artificial Organ Laboratory, Brown University, Providence, RI 02912, ZDepartment ofAnatomy & Cell

Biology, University ofIllinois, 1L 60612, USA

*Current address: Cytotherapeutics Inc., 4 Richmond Sq., Providence, RI 02906, USA

ABSTRACT

Immobilization of discrete cell clusters
within a partially crosslinked matrix prevents
reaggregation of primary tissues and may
provide a means for long-term maintenance of
encapsulated cells. Dissociated bovine adrenal
chromaffin (BAC) cells were suspended
throughout crosslinked polyanionic micro-
spheres previously shown to be selectively
permeable. Microcapsules approximately 500
/xm in diameter were seeded with: 1) three
different densities of BAC cells; and 2) BAC
cells suspended in Matrigel(R) or coseeded with a
genetically modified nerve growth factor (NGF)-
releasing fibroblast cell line. Each group was
analyzed in vitro at 1, 4 and 8 weeks for
spontaneous and potassium-evoked release of
catecholamines, and maintained/n v/tro for up
to 12 weeks for morphological observations.
Over time, release of norepinephrine (NE) and
epinephrine (EPI) diminished, while dopamine
(DA) remained constant from the monoseeded
capsules. In the coseeded group, an increase in
potassium-evoked release of DA was observed
from I to 4 weeks, and remained at that level up
to 8 weeks. Encapsulated chromaffin cells
retained a rounded morphology typical of
undifferentiated cells. Intact chromaffin cells
with well preserved and abundant secretory
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granules were observed ultrastructurally after 4
weeks/n v/tro. Small neurites from the chromaf-
fin cells in the coseeded group were observed at 4
weeks with light microscopy, and up to 12 weeks
with electron microscopy. Under static incuba-
tion conditions, 1 mM D-amphetamine resulted
in a significant increase in the output of NE and
DA from the coseeded capsules 8 weeks post-
implantation, as compared to microcapsules
loaded with chromaffin calls alone. Encapsu-
lation within an immobilization matrix allows
manipulation of the internal environment,
thereby providing the ability to pre-treat cells
with various factors in a non-invasive manner,
which may enhance long-term cellular viability.
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INTRODUCTION

Neural implantation of polymer-encapsulated
tissues has been utilized as a model system for
analyzing the effectiveness of diffusive release of
neuroactive agents in denervated regions of the
central nervous system /1,26,32/. In animal
models of parkinsonism, transplantation of
encapsulated PC12 cells /26,32/ and bovine
adrenal chromaffin (BAC) cells /1/ to a
denervated striatum has been reported to
alleviate dopamine receptor agonist-induced
rotational asymmetry in rats. In the PC12 cell
implants, the effects appeared to be dopamine
mediated, since extracellular dopamine
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measured by microdialysis approached control
levels /26/. However, with adrenal medullary
transplants, factors other than catecholamine
release may be responsible for the behavioral
improvements /2,3,5/. Trophic mechanisms are
currently the most widely discussed possibilities
/2,3,5,7,18/.

When adrenal chromaffin cells are isolated
from the glucocorticoid-releasing cortical cells,
differentiation of the chromaffin cells into a
neuronal phenotype can occur both in vitro/27-
29/ and in oculo /14,15,24/. Extensive neuritic
outgrowths from chromaffin cells are dependent
on the presence of differentiating factors, such as
NGF, when maintained in culture /13,25,29/.
Both adrenal medulla/6,9,15,22/and dissociated
chromaffin cell/3,4,17/grafts show poor survival
when transplanted into striatal parenchyma.
However, NGF infused into the region of the
adrenal medullary cell transplants has been
reported to enhance survival, induce neuritic
extensions, and increase the effectiveness of
behavioral recovery/23/. This raises the question
of whether low concentrations of NGF in a
lesioned striatum /11/ contribute to the inability
of the chromaffin cells to maintain a neuronal
phenotype which may then limit their survival, or
are other factors contributing to poor
intrastriatal viability? The ability to deliver a
chronic supply ofNGF to chromaffin cells from a
living system may improve graft survival and
avoid the problems and limitations inherent in
pumps or polymer systems/30/.

In the present study, polyelectrolyte-based
microspheres containing either dissociated BAC
cells or chromaffin cells coseeded with an NGF-
releasing cell type, were maintained and
characterized in vitro for: 1) catecholamine-
release for up to 8 weeks; and 2) morphology for
up to 12 weeks. Polyelectrolytes are water,based
ionic polymers in which a selectively permeable
membrane is formed by interracial adsorption of
a polycation on spherical polyanionic crosslinked
matrices/8,12/. The technique described in this
report immobilizes and maintains discrete cell
clusters over extended periods of time in a
transparent three-dimensional matrix. Further-
more, microencapsulation provides a method for
pre-treating chromaffin cells with differentiating
factors prior to transplantation studies without

adding the insult of manipulating differentiated
cultured chromaffin cells off a two-dimensional
substrate.

MATERIALSAND METHODS

Cellular preparations

Dissociated BAC cells were isolated as
previously described /19,20/ and maintained in
DMEM supplemented with 6% fetal calf serum
(Gibco, Grand Island Biological Co., Grand
Island, NY) at 37"C in a water-saturated,
ambient air atmosphere containing 5% CO2.
Approximately one week following the isolation
procedure, cells were harvested by aspiration,
the supernatant was collected and centrifuged at
800 g. The fibroblast cell line R208F was
genetically modified through infection with a
retroviral vector containing the mouse NGF
cDNA/21/. The clonal line designated R208N.8
was maintained in DMEM supplemented with
10% fetal calf serum and utilized for coseeding
with BAC cells after removal from tissue culture
flasks by trypsin-EDTA treatment. These cells
were a generous gift from Drs. Xandra Breake-
field and Priscilla Short, Massachusetts General
Hospital. The R208N.8 NGF releasing clonal cell
line was previously assayed by ELISA and the
measured release of NGF was 165 pg/105
cells/hour (P. Short, personal communication).
The biological activity of the NGF released from
the R208N.8 cells was assessed by placing
R208N.8 cell-loaded microcapsules in wells
containing cultured PC12 cells. Induction of
neurites from PC12 cells that were at least twice
the length of a cell body’s diameter was required
for a positive NGF effect.

Encapsulation procedure

BAC cells in 250/xl DMEM were suspended
in 750/zl of a 2% (w/v) isotonic sodium alginate
(KelcoGel HV, Kelco, NJ) at a density of 2, 5,
and 10 x 106 / 250/zl, designated low, medium
and high, respectively. In every condition the
temperature was maintained at or near 10C.
The coseeded conditions, 2 x 106 R208N.8 cells
and 3 x 106 chromaffin cells mixed in 250 1
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Matrigel(R) (Collaborative Research, Lexington,
MA) were suspended in 750 /1 2% isotonic
sodium alginate. The control for the coseeded
group, 4 x 10 chromaffin cells mixed in 250
Matrigel(R), was also suspended in 750/.d isotonic
sodium alginate. Matrigel(R), an extracellular
matrix hydrogel containing predominantly
laminin (7 mg/m]) and type IV collagen (0.25
mg/ml), is a liquid under approximately 4- 25C
conditions that was utilized as a substratum for
the fibroblasts. The cell-loaded microcapsules
were fabricated as previously described /1/.
Approximately 200 cell-loaded microcapsules
were placed in individual wells of a 24 multiwe11
tissue culture plate (Falcon 3047).
Catecholamine analysis was performed at 1, 4,
and 8 weeks on cell-loaded microcapsules
maintained in vitro. The diameters of 20
microcapsules from each group were measured
with a morphometric analysis system (CUE-2,
Olympus Corp., Lake Success, NY).

In vitro release kinetics

Basal and potassium-evoked catecholamine
release profiles under static conditions were
determined by high performance liquid
chromatography (HPLC) with an electro-
chemical detector (LCEC). Both basal (5.4 mM
K/) and potassium-evoked (56 mM K/) release
was measured by analyzing 450 1 HBSS,
supplemented with 0.29 mM ascorbate, in-
cubated for 15 rain each, then treated with 50/1
of 1.1 N HC104 prior to column injection. The
medium density chromaffin cell-loaded micro-
capsules and the coseeded microcapsules were
also challenged with 1 mM D-amphetamine sul-
fate in HBSS under the same conditions after
being maintained for 4 and 8 weeks in vitro. The
same wells from each group were repeatedly
stimulated over time. The HPLC system and the
catecholamine detection limit of the chromato-
graphic system used have been previously
described/1/.

Catecholamine release was expressed as
either the average release/well in ng/15 min or as
per capsule (pg/capsule/15 min) obtained by
dividing total catecholamine release by the
number of microcapsules/well.

Morphologic analysis

Following 1, 4, 8 and 12 week maintenance
periods in vitro, microcapsules were fixed in a
3% paraformaldehyde, 0.5%, glutaraldehyde
solution, rinsed in phosphate buffered saline
(PBS), and dehydrated up to 95% ethanol. A 1:1
solution of 95% ethanol and the infiltration
solution of glycol methacrylate (Historesin,
Reichert-Jung for Cambridge Instruments) was
next added to the specimens for 1 hour. Pure
infiltration solution replaced the 1:1 mixture and
remained for at least 2 hours. The specimens
were briefly rinsed with the embedding solution,
transferred to flat molds, and embedded in glycol
methacrylate. Sections 5 /xm thick were
sectioned (Reichert-Jung, Supercut microtome
2050), mounted on glass slides and stained for
Nissl substance with cresyl violet. After 4 and 8
weeks in vitro, the relationship and pattern of
viability in the medium density chromaffin cell-
loaded microcapsules was visualized by simul-
taneous staining with fluorescein diacetate
(FDA) and propidium iodide (PI). One ml
suspensions from each time period with
approximately 50 cell-loaded microspheres were
exposed to working solutions as previously
described/10/. An average of 10 microcapsules/
time period were evaluated first for PI, which
labels nonviable cells, and secondly with FDA,
labeling viable cells, using an epifluorescent
microscope (Zeiss IM 35). For ultrastructural
observations, microcapsules were fixed in 3%
paraformaldehyde and 2% glutaraldehyde over-
night, rinsed in 50 mM PBS and processed as
previously described/31/. Ultrathin sections were
stained with Reynold’s lead citrate and uranyl
acetate and analyzed with a Philips 410
transmission electron microscope.

Statistical analysis

Mean and standard errors of the mean
(S.E.M.) were calculated for each time point and
group, with the exception of the size distribution
of the cell-loaded microcapsules. Student’s
paired t-test was used for statistical analysis.
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RESULTS

Bioassay

The NGF released from R208N.8 cell-loaded
microcapsules was shown to be biologically
active by its ability to induce neuritic extensions
in cultured PC12 ceils after being cocultured for
5 days in vitro (Fig. 1).

General observations

There was no significant difference in the
average diameters of microcapsules loaded with
low, medium and high densities of chromaffin
cells (498

___
35 m, 512 __+ 30 m, and 515

___
37

/.m, __. S.D., respectively). The microcapsuleS
contained an average of 250 cells/capsule at low
density, 750 at the medium density, and 1500 at
the highest density analyzed, which was deter-
mined by dividing the total number of cells
suspended in alginate by the number of micro-
capsules fabricated. The Matrigel(R)-containing
mono- and coseeded microspheres measured
505 +_ 40 and 514 __. 48 /m in diameter,
respectively. The monoseeded microcapsules
contained an average of 600 chromaffin cells,
while the coseeded group had 450 chromaffin
cells and 200 R208N.8 fibroblasts/capsule.

Catecholamine release

1. Monoseeded microcapsules: Figure 2 shows
the average basal and potassium-evoked release
of catecholamines from three wells/group (low,
medium and high) in which each group
contained approximately 200 capsules/well. One
week following the encapsulation procedure,
norepinephrine (NE), epinephrine (EPI), and
dopamine (DA) were spontaneously released in
5.4 mM HBSS from each group (Fig. 2).
Following a 56 mM K+ incubation, a significant
increase in the output of NE, EPI and DA was
observed within each group. In the high and
medium density microcapsules, a greater
decrease in EPI and NE released was observed
from 1 to 4 weeks, with the most significant
decline occurring with EPI release from the high
density microcapsule group (Fig. 2A). A small
decrease in potassium-evoked release ofD was

observed from the high and medium density
groups, whereas no such decrease over time was
seen in the low density group (Fig. 2C). At the
low seeding density, the chromaffin cells
appeared to release, under basal conditions, a
greater proportion of catecholamines compared
to 56 mM K+. The medium density chromaffin
microcapsules were also analyzed for 15 min,
with i mM .amphetamine. No significant changes
in the release characteristics were observed
between the basal and amphetamine conditions
after 8 weeks in vitro (Fig. 3A). The monoseeded
chromaffin cells suspended in Matrigel(R) showed
a potassium-evoked catecholamine release
pattern similar to that observed in the medium
density described previously (Fig. 4A).

2. Coseeded microcapsules: When compared
to the capsules containing chromaffin cells in
Matrigel(R) (Fig. 4A), the potassium-evoked
eatecholamine release profile from
approximately 300 coseeded mierocapsules/well
appeared very similar after 1 week in vitro (Fig.
4B). The quantities of NE/well measured over
time decreased similarly to that in the
monoseeded microcapsules. In contrast to the
Matrigel(R)-eontaining chromaffin microcapsules
(Fig. 4A), a sharp decrease in the EPI output
was observed with the coseeded capsules at 4
weeks (Fig. 4B). By 8 weeks, EPI was detected in
only 2 of the 4 wells stimulated with 56 mM K+.
A significant increase in the quantity of
dopamine released was observed from 1 to 4
weeks in the coseeded capsules and remained at
that elevated level up to 8 weeks in vitro (Fig.
4B). Under static incubation conditions,
treatment with 1 mM D-amphetamine induced a
significant increase in the output of NE and DA,
as compared to basal levels after 8 weeks of
maintenance in vitro (Fig. 3B).

Morphology

Discrete clusters of chromaffin cells were
observed throughout each capsule following the
fabrication process (Fig. 5A). These clusters
retained their rounded endocrine-like shape and
did not reaggregate to form large clusters over
time (Fig. 5B). The viability of the medium
density chromaffin mieroeapsules was analyzed
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Light micrograph of PC12 cells cocultured for 5 days in vitro with microcapsules containing the R208N.8
cell line as observed with Hofmann modulation optics. Note the neurites extending from the PC12 cells
(arrow) indicating that the released NGF was bioactive. Note also the microcapsule, which can move during
manipulations, containing the R208No8 cells (*). Scale bar 50/zm.
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Fig. 2:

h vitro catecholamine release profiles at 1,4
and 8 weeks after 15 min incubations in HBSS
with 5.4 mM (basal) and 56 mM (high K+)
potassium of microcapsules containing high
Ok), medium (B), and low (C) densities of BAC
cells. Averages were determined by dividing
the total catecholamines measured/well by
the number of microcapsules/well at each
given time (data presented as pg/capsule,
with approximately 200 microcapsules in
each of 3 wells).
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Fig. 3: Basal and mM amphetamine-induced v 0

release of catecholamines from BAC-
containing mono- OeO and coseeded (B)
microcapsules after 8 weeks in vitro. To
compensate for the differences in BAC

160densities/capsule in each group, the release +
profiles were normalized for BAC cells by
comparing 300 coseeded microcapsules/well "i 12o
to 200 monoseeded capsules/well. In the
coseeded experiment, a statistically "
significant increase in NE and DA was eo

observed after a 15 mln exposure to
amphetamine, as compared to basal "=-E 40
quantities. *p<O.05 with Student’s paired t-
test. Bars represent means_+ S.E.M.

by double labeling with the fluorochrome
markers FDA and PI. At both 4 and 8 weeks #z
vitro, only a few cells per cluster stained positive
for PI (Fig. 5C). Generally, the distribution of
non-viable versus viable cells showed a random
dispersion. Ultrastructurally, intact and well
preserved chromaffin cells with their electron-
dense secretory vesicles were observed at 4

weeks (Fig. 5D), with few fibroblasts or
endothelial cells surviving within the
microcapsules. In the coseeded microcapsules,
small neurites were observed at the light and
electron microscopic level extending from the
chromaffin cells by 4 weeks in vitro. In general,
the chromaffin cells and fibroblastic cell line
remained isolated from one another. The
fibroblasts were observed to be in the vicinity of
Matrigel(R) within the capsule space. At the
ultrastructural level, the chromaffin cells
extended small neurites (Fig. 6A) and the
fibroblasts continued to survive in the
microcapsules after 12 weeks of maintenance in
vitro (Fig. 6B).

(A) ’= I
I’1 EPl I

(B)

4 8

Fig. 4: The average potassium-evoked release of
catecholamines after 1, 4 and 8 weeks of
maintenance in vitro comparing Matrigel(R)-
containing chromaffin microcapsules,
approximately 200 microcapsules/well (A), to
approximately 300 coseeded micro-
capsules/well (3). The values are expressed
as ng/well with bars representing means _+

S.E.M.
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Fig. 5: A) Light micrograph of microcapsules containing BAC cells at the medium density taken with HofTnann
modulation optics after the fabrication process. Scale bar 300/m. B) The BAC cells retain the rounded
endocrine-like morphology and remain immobilized after an 8 week maintenance period in vitro. Scale bar
50/m. C) A double-labeled fluorescence technique shows the distribution of the viable FDA positive cells
(green) to the non-viable PI positive (red) cells. D) An electron micrograph of microencapsulated
chromaffin cells with their electron-dense storage granules after 4 weeks in vitro. Scale bar 2/m.
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Fig. 6: A) An electron micrograph of a microcapsule containing chromaffin cells coseeded with the R208N.8 NGF-
secreting fibroblast cell line after 12 weeks in vitro. Note the electron-dense secretory vesicles and
neuritic outgrowths (arrows) from coseeded chromaffin cells. Scale bar 1/m. B) Electron micrograph of a
coseeded microcapsule containing R208N.8 fibroblasts after 12 weeks of maintenance in vitro. Note the
well preserved fibroblasts aligned along their long axis with their typical morphology. Scale bar 1/m.

DISCUSSION

The present study shows that dissociated
BAC cells can be maintained for at least 12
weeks in culture when immobilized in partially
crosslinked microcapsules previously shown to
be selectively permeable. Since the small
aggregates remained isolated from one another
over time, viability was similar at the different
densities analyzed. When larger cell aggregates,
e.g., those greater than 100/xm in diameter, are
microencapsulated within polyelectrolytes, a
significant degeneration of cells, i.e., greater than
50%, is observed within a 2 week maintenance
period in vitro (unpublished observations). Very
few of the anchorage-dependent cells in the
dissociated chromaffin cell suspension, the
fibroblasts, endothelial and Schwann cells, were
observed at the ultrastructural level, suggesting
the alginate immobilization matrix may inhibit

their proliferation. In contrast, the fibroblasts
continue to proliferate to a confluent monolayer
when the chromaffin cell suspension is grown on
tissue culture flasks (plates) in vitro. Survival of
the engineered fibroblasts in a microcapsular
configuration required the addition of an
extracellular matrix substrate.

The immobilized dissociated BAC clusters
did not require the application of exogenous
NGF for survival. Basal and potassium-evoked
catecholamine release patterns were consistent
between the groups over time. The output of
EPI, especially in the high and medium den-

sity groups, dropped in greater proportions
than NE or DA. This may be due to a reduc-
tion in phenylethanolamine-N-methyltransferase
(PNMT) activity, which catalyzes the formation
of epinephrine from norepinephrine, whose ex-
pression is controlled by the glucocorticoids of
the adrenal cortex/33/. Within each group, an
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increase in catecholamine release was observed
following a high K+ incubation, showing that the
chromaffin cells retained the capacity for
exocytosis. The monoseeded chromaffin cells,
irrespective of the presence of Matrigel(R), also
retained their rounded endocrine phenotype, in
contrast to the chromaffin cells coseeded with
the NGF-secreting cells.

In the coseeding experiments, the Matrigel(R)

cell suspension was mixed with the alginate to
provide a substrate for the anchorage-dependent
NGF-secreting cells and support neuritic
outgrowths from the chromaffin cells.
Morphological observations revealed intact,
viable fibroblasts in the microcapsules for up to
12 weeks in vitro, suggesting that the fibroblasts
continue to survive. The ultrastructure of the
coseeded chromaffin cells after 12 weeks in vitro
together with the potassium-evoked
catecholamine release profile at 4 and 8 weeks
also suggests that the engineered fibroblasts
retained the capacity to secrete bioactive NGF.
Application of NGF to adrenal medulla cultures
has been shown to elicit the selective induction
of tyrosine hydroxylase and dopamine-fl-
hydroxylase /16/, inducing a neuronal
transformation, and altering the catecholamine
profile. The activity of PNMT was down
regulated in the coseeded microcapsules as
shown by a dramatic decrease in EPI release.
Further evidence of a shift towards a neuronal
transformation was observed when the coseeded
microcapsules were exposed to 1 mM
amphetamine after an 8 week maintenance
period in vitro. A significant increase in
measured quantities of NE and DA was
observed as compared to the monoseeded
capsules.
A previous study has revealed that

intrastriatal implants of dissociated BAC cells in
microcapsules consistently survived at 4 weeks
and alleviated apomorphine-induced rotations in
the 6-OHDA unilateral lesioned rat model/1/.
These cells also appeared endocrine-like in their
morphology/1/. Thus, in both cases exogenous
NGF application did not appear to be required
for short-term survival. Long-term survival may,
however, require the addition of NGF.

Microencapsulation may provide a method
for consistent chromaffin cell survival in

intrastriatal transplants without exogenously
applied NGF /1/. The results indicate that low
concentrations of striatal NGF or the nutritional
conditions cannot account for the poor survival
of unencapsulated intrastriatal chromaffin cell
implants. By modifying the internal milieu of the
microcapsules, comparisons of striatal implants
containing endocrine-like vs. differentiated
chromaffin cells can be made, and thereby
determine whether an altered phenotype
survives better, and/or is more effective in
ameliorating experimental parkinsonism.
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