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Lymphoma microenvironment is a complex system composed of stromal cells, blood

vessels, immune cells as well as extracellular matrix, cytokines, exosomes, and

chemokines. In this review, we describe the function, localization, and interactions

between various cellular components.We also summarize their contribution to lymphoma

immunity in the era of immunotherapy. Publications were identified from searching

Pubmed. Primary literature was carefully evaluated for replicability before incorporating

into the review. We describe the roles of mesenchymal stem/stromal cells (MSCs),

lymphoma-associated macrophages (LAMs), dendritic cells, cytotoxic T cells, PD-1

expressing CD4+ tumor infiltrating lymphocytes (TILs), T-cells expressing markers of

exhaustion such as TIM-3 and LAG-3, regulatory T cells, and natural killer cells. While

it is not in itself a cell, we also include a brief overview of the lymphoma exosome and

how it contributes to anti-tumor effect as well as immune dysfunction. Understanding the

cellular players that comprise the lymphoma microenvironment is critical to developing

novel therapeutics that can help block the signals for immune escape and promote

tumor surveillance. It may also be the key to understanding mechanisms of resistance to

immune checkpoint blockade and immune-related adverse events due to certain types

of immunotherapy.
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BACKGROUND

The cellular context in which lymphoma cells thrive has only recently become an important focus
of inquiry. The roles of what used to be considered passive bystanders are quickly becoming
elucidated in order to parse out potential targets for immunotherapy. Although our understanding
of cytogenetic abnormalities and molecular pathways in lymphoma are in advance of solid organ
tumors, the same cannot be said of the tumor microenvironment. In this section, we summarize
some of the major components of the lymphoma microenvironment and their contribution to
lymphoma immunity.

The primary goal of this review is to address the interplay between lymphoma cells and the
cells of the lymphoma microenvironment and to understand how this communication leads to
mechanisms of immune evasion and tumor proliferation. Our manuscript will also present some
of the controversies in the field and present the limitations in our understanding of the roles and
responsibilities of the microenvironment cell in lymphoma pathogenesis.

INTRODUCTION

Lymphomas are a diverse group of clonal neoplasms arising from B and T lymphocytes,
and natural killer (NK) cells and are characterized by infiltration of lymphoid structures.

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2018.00288
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2018.00288&domain=pdf&date_stamp=2018-07-27
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mina.xu@yale.edu
https://doi.org/10.3389/fonc.2018.00288
https://www.frontiersin.org/articles/10.3389/fonc.2018.00288/full
http://loop.frontiersin.org/people/585447/overview
http://loop.frontiersin.org/people/456001/overview


Kumar and Xu Microenvironment Cell Contribution to Lymphoma Immunity

Most of these neoplasms correspond to the normal
stages of B-cell or T-cell differentiation and hence can
be classified accordingly (1). Advances in structural and
functional genomics have highlighted the underlying genetic
aberrations and oncogenic regulatory pathways leading to
a better understanding of the molecular pathogenesis of
lymphomas (2). In contrast, the integral role played by
microenvironment in lymphomagenesis and progression has
only been recently highlighted and needs to be explored in
greater depth.

LYMPHOMA MICROENVIRONMENT

In addition to somatic mutations and inflammation, the role
of tumor microenvironment (TME) in acquisition of key
characteristics of cancer pathogenesis and progression, like
sustained tumor proliferative signaling, resisting cell death,
evasion of growth suppressors, and immune escape mechanism
is becoming important in the study of lymphoma pathogenesis
(3). The lymphoma microenvironment is increasingly being
recognized as a dynamic and interactive supporting network
of immune cells, stromal cells, cytokines, blood vessels,
and extracellular matrix components, including sclerosis,
whose composition is guided by the neoplastic cells and
which in turn, influence tumor initiation, progression,
and drug resistance (4). The key factors influencing the
composition of microenvironment include lymphoma subtypes
and signaling interactions between the lymphoma cells and
microenvironment cells. The various components of a typical
lymphoma microenvironment are outlined in Table 1.

A deeper knowledge of interactions between lymphoma cells
and its non-malignant microenvironment would be critical in
understanding the differences between the pathogenesis and
prognosis of various lymphoma subtypes and potential new
therapeutic targets.

TABLE 1 | Components of lymphoma microenvironment.

A. IMMUNE CELLLS

1. Cytotoxic T cells (CTLs)

2. Follicular B helper T cells (TFH)

3. Regulatory T cells (Tregs)

4. Natural Killer cells (NK)

5. Bystander B cells

B. STROMAL CELLS

1. Mesenchymal stromal cells (MSC)

2. Lymphoma associated macrophages (LAMs)

3. Myeloid-derived suppressor cells (MDSCs)

4. Dendritic cells

C. ANGIOGENESIS

D. EXTRACELLULAR COMPONENTS

1. Extracellular matrix (ECM)

2. Cytokines/Chemokines

3. Lymphoma exosome

MESENCHYMAL STROMAL CELLS (MSCs)

MSCs have both anti-inflammatory as well as
immunosuppressive properties. The latter characteristic
can aid tumor cells to escape immune surveillance. Investigators
have found that co-injection of MSCs with neoplastic (A20)
B cells promotes B cell lymphoma growth in the lacrimal
glands of immunocompetent mice and were associated with
marked increased in CD4+ forkhead box P3 (FoxP3) + T cells
and myeloid-derived suppressor cells (5). In murine model of
lacrimal gland B-cell lymphomas, those lymphoma cells that
were coinjected with MSCs were found to have increased CD4+
Foxp3+ regulatory T cells as well as CD11b+ Ly6C+Ly6G–
MDSCs. These coinjected tumors demonstrated less apoptosis
and had up-regulated immune-associated molecules such as
tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β,
transforming growth factor beta (TGF-β), and arginase. Hence,
it appears that MSCs help create an immunosuppressive milieu
in the context of lacrimal gland B-cell lymphomas (5). Likewise,
other investigators have found that MSCs promote tumor
growth in mice with p53 mutations that develop spontaneous
lymphomas (6).

MSCs have also been postulated to differentiate into the
fibroblastic reticular cells and follicular dendritic cells necessary
for the infiltration of follicular lymphoma in the bone marrow
(7). Investigators have demonstrated that marrow MSCs from
patients with follicular lymphoma, which has a relatively high
rate of marrow involvement, overexpress chemokine (C-Cmotif)
ligand 2 (CCL2) and aid in sustaining the growth of malignant B
cells. These findings suggest an integral role of stromal cells in the
infiltration and persistence of lymphoma in medullary sites (7).

LYMPHOMA-ASSOCIATED
MACROPHAGES (LAMs)

LAMs are the macrophage/circulating monocyte lineage cells
found in close association with lymphoma. Their roles appear
to differ based on tumor type. Elevated numbers of LAMs
have been correlated with poor prognosis in certain tumors. In
individual studies of advanced stage classic Hodgkin lymphoma
(CHL) as well as in meta-analyses, a high-density of LAMs is
a strong predictor of adverse outcomes in adult patients (8,
9).

LAMs appear to demonstrate dual predictive roles in follicular
lymphoma. High levels of CD68+ or CD163+ LAMs are
associated with poor outcome in follicular lymphoma treated
with conventional chemotherapy prior to the rituximab era,
whereas this effect was diminished or even inverted when
rituximab is used in combination (10). In murine models, anti-
CD20 monoclonal antibody (mAb) mediated depletion of B cells
relied upon the macrophage expression of Fc-gamma receptors
(FcγR) (11).

Therapeutically, it has also been shown that relatively novel
immunomodulatory drugs such as pomalidomide convert the
polarization status of macrophages from M2 to M1 in mouse
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models of central nervous system (CNS) lymphoma (12). This
appears to be achieved by reducing signal transducer and
activator of transcription (STAT) 6 signaling while enhancing
STAT1 signaling and thereby pomalidomide increases the
phagocytic activity of macrophages. This finding argued for the
therapeutic activity of pomalidomide against CNS lymphomas.

In CHL, an increased number of CD68 positive LAMs
have been significantly associated with a shorter progression-
free survival, increased likelihood of relapse after stem cell
transplantation and an overall shortened disease-specific
survival, making them a potential risk stratification biomarker
(13). Such studies were carried out in patients treated with
standard chemotherapy so it is unknown whether they would be
consistent in patients receiving novel therapies that may alter the
microenvironment.

MYELOID-DERIVED SUPPRESSOR CELLS
(MDSCs)

MDSCs are myeloid lineage cells that appear to suppress
immune surveillance, particularly in the bone marrow. They
can accumulate in the context of a wide variety of pathologic
conditions, including cancer, and inflammation (14). MDSCs
have been shown to form mature osteoclasts in response to
nuclear factor KB ligand (RANKL), increasing bone resorption.
They are thought to influence the ability of tumors to spread
into the marrow niche (15). Tumors can encourage the accrual
of MDSCs by secreting factors such as granulocyte-macrophage
colony stimulating factor (GM-CSF), stem cell factor (SCF),
and interferon-γ (IFN-γ) (16). Elevated levels of MDSCs
have been demonstrated in lymphoma, leukemia and multiple
myeloma (17).

When normal peripheral blood mononuclear cells were
incubated with monocytes from patients with B-cell non-
Hodgkin lymphoma (NHL), a reduction in T-cell proliferation
as well as decreased Th1-response was seen via measurement
of IFN-γ production. Using anti-CD14 immunomagnetic beads
to decrease the monocyte population resulted in restored T-
cell proliferation. These findings could not be attributed to
any significant difference in percentage of monocytes in the
peripheral blood of patients vs. healthy controls. Furthermore,
the CD14 positive monocytes in patients with NHL showed
reduced HLA-DR expression, which is associated with decreased
immune function and possibly more aggressive lymphoma (18).

In CHL patients, a group of investigators showed that
at initial diagnosis, all subsets of MDSCs were higher in
the lymphoma patients compared to healthy controls. While
the patients underwent therapy, MDSC subsets declined. The
patients who achieved complete response had lower CD34+
MDSCs, monocytic MDSC, and polymorphonuclear MDSCs
in their peripheral blood compared to the non-responders. In
particular, the undifferentiated CD34+ MDSCs were proposed
as a possible biomarker for outcome (19).

More recently, patients with diffuse large B-cell lymphoma
(DLBCL) were found to have higher circulating CD14+ HLA-
DRlo monocytic MDSCs, which was in concordance with two

other studies. The level of these MDSCs correlated with a worse
clinical prognosis and was associated with regulatory T cells
(Tregs) proliferation (20). Such findings suggest thatMDSCsmay
be a rational target for novel therapies in patients with aggressive
lymphomas.

Studies of MDSCs in peripheral T-cell lymphomas and NK/T-
cell lymphomas are few and understandably limited in the
number of primary human tumors tested. One of the larger
studies was conducted in 32 extranodal NK/T cell lymphoma
patients. Similar to that found in other lymphoma subtypes,
patients with the tumor had higher levels of CD33+ CD11b+
HLA-DR– MDSCs. These MDSCs had increased expression of
IL-17, arginase-1 and cytokine-inducible nitric oxide synthase
(iNOS) and suppressed T cell proliferation. The higher levels of
MDSCs were associated with shorter progression-free survival
and overall survival (21). In cutaneous T-cell lymphomas,
programmed death-ligand 1 (PD-L1) was expressed by MDSCs
as well as by tumor cells themselves and was associated with
inhibition of T-cell proliferation and promotion of regulatory
FoxP3+ T cells (22).

DENDRITIC CELLS

Dendritic cells are some of the most powerful antigen-presenting
cells in the body, aiding in the activation of cytotoxic T cells
as well as naïve helper T cells. It has been shown that direct
follicular dendritic cell contact with the neoplastic cells of mantle
cell lymphomas and other NHL can protect them from apoptosis.
This was mediated by upregulation of microRNA-181a (miR-
181a), which reduced the levels of proapoptotic Bcl-2-like protein
11 (Bim). Inhibition of miR-181a led to restoration of Bim,
releasing the dendritic cell suppression of apoptosis in lymphoma
cell lines and primary lymphoma cells (23).

In the setting of follicular lymphoma, tumors with gene
expression signatures that included genes highly expressed
by dendritic cells and monocytes were associated with poor
outcomes. In contrast, those tumors with gene expression
signatures containing genes encoding T cell markers and
macrophages were associated with prolonged survival (15).
However, follow-up studies did not show compatible findings
when immunohistochemical assays substituted gene expression
analysis (24, 25).

In vitro studies were initially promising whenDCswere pulsed
with either tumor antigen or whole tumor lysate to stimulate
immune responses from T cells. While in vivo translation
into hematologic malignancies have not demonstrated durable
responses, these studies were performed in patients with
advanced disease (26). Hence, it is possible that combination
with other immunotherapy in less advanced disease may be
promising.

CHEMOKINES AND CYTOKINES

The microenvironment of CHL is a good model to study the
role of chemokines and chemokine receptors in the interaction
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between microenvironment cells and the Hodgkin Reed-
Sternberg (H-RS) cells toward the formation and sustenance
of lymphoma microenvironment. The tumor microenvironment
of CHL (constituting 99% of the tumor) is composed of B
cells, T cells, eosinophils, plasma cells, neutrophils, macrophages,
dendritic cells, and fibroblasts, and is largely derived from
the dysregulated chemokine secretion by the H-RS cells and
TME cells (27). The key cytokines playing an active role in
the process, include IL-7, IL-10, TGF-β, chemokine ligand 5
(CCL 5), chemokine ligand 1 (CCL1), and Galectin-1 (28,
29).

The T cells surrounding Reed-Sternberg cells express CCL5,
which acts as a chemo-attractant for monocytes, eosinophils,
basophils and mast cells as well as CD4 positive T cells
(30, 31). C-C chemokine receptor type 3 (CCR3) + Th2
cells and eosinophils are attracted by the CCL1(eotaxin)
produced by fibroblasts surrounding RS cells (32, 33). Earlier
on, chemokine receptors like C-C chemokine receptor type
5 (CCR5) were thought to be only expressed by the non-
neoplastic bystander cells. However, subsequent studies have
shown constitutive expression of CCL5 receptor (CCR5) on H-
RS cells by immunohistochemistry, flow cytometry, and western
blot (34). CCL5, along with other chemokines released by
either H-RS cell, Hodgkin cell stimulated fibroblasts or T cells
are central to the recruitment of CD4+ T lymphocytes and
eosinophils into the classic HL microenvironment. Chronic
inflammation at the site of tumor, driven by chemokines and
cytokines, has also been found to promote tumor progression
(35).

CYTOTOXIC T CELLS (CTLs)

Increased numbers of infiltrating CD8 positive T cells, many
expressing cytotoxic markers like TIA-1, as measured by
both immunohistochemistry and flow cytometric analysis have
been associated with better outcomes in B-cell lymphomas
(36, 37). Elevated numbers of cytotoxic lymphocytes positive
for programmed cell death-1 (PD-1) was also found to be
associated with favorable prognosis in the setting of follicular
lymphoma (38).

The cytotoxic activity of T cells is enhanced by the targeting
of the PD-1 pathway, which can lead to tumor cell lysis. Tumor
specific activated T cells as well as regulatory T cells express
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), which
binds to CD80/CD86 on antigen presenting cells and leads
to T cell anergy by competing with CD28 as a costimulatory
molecule. Immune checkpoint blockade can augment antitumor
immunity (39).

During chronic antigen stimulation, a protein called
lymphocyte activation gene-3 (LAG-3) is upregulated on T cells,
suppressing CD4+ T cell expansion in response to antigen as
well as CD8+ T cell function (40). Specifically, LAG-3 has been
shown to maintain tolerance to tumor antigens via its effects
on CD8+ T cells. In murine models, LAG-3 blockade increases
proliferation and effector function of antigen-specific CD8+
T cells within organs and tumors that express their cognate

antigen (41). These models suggest that LAG-3 can be a target
for increasing the effectiveness of cytotoxic T-cell immunity
against tumor.

REGULATORY T CELLS (Tregs)

Tregs include subsets of immune suppressive cells that regulate
self-tolerance and immune homeostasis. Thymic derived Tregs
are involved in preventing autoimmunity while peripheral
Tregs maintain tolerance in mucosal sites. Both these naturally
occurring CD25+CD4+ Treg populations express FoxP3, which
is a more specific marker for regulatory T cells than CD25,
CD45RB, or CTLA-4 (41–43). Tregs suppress the activity of
bystander T cells, natural killer cells and B cells via CTLA-4,
IL-10, and TGF-β1 (44).

FoxP3+ Tregs, particularly in inflamed tissues, have been
shown to express T cell immunoglobulin and mucin-domain
containing-3 (TIM-3), which enhances their regulatory
function. Blockade of TIM-3 signaling appears to demonstrate
therapeutic benefit in preclinical tumor models (45). TIM-
3 works as a co-inhibitory receptor that is also expressed
on IFN-γ producing T cells as well as macrophages and
dendritic cells, where it leads to inhibition of normal Th1
responses (46).

Studies in mice have shown that Tregs are present in
the peripheral blood of animals and that these circulating
cells can regulate humoral immune responses in vivo.
Furthermore, it was shown that the PD-1 pathway can
inhibit blood Treg function. Hence, there is reason to
believe that the PD-1: PD-L1 pathway can limit the
differentiation and normal function of Tregs, suggesting
that manipulation of this pathway can support protective
immunity (47).

On the basis of their role in lymphomagenesis, Wang et al
divided Tregs into 4 groups: suppressor Tregs (suppress CD8+
CTLs), malignant FoxP3+ Tregs, direct tumor-killing Tregs,
and incompetent Tregs. The association between number of
Tregs and lymphoma prognosis would vary depending on the
type of Tregs present. For instance, in angioimmunoblastic T-
cell lymphoma, where more of incompetent Tregs or direct
tumor-killing Tregs are present, the anti-tumor cytotoxicity is
preserved and hence, better prognosis is associated with increase
in Tregs (48).

In certain NHL where Tregs are overrepresented in biopsy
specimens compared to normal lymphoid tissue; these cells
appeared to be recruited by malignant B cells (49). However,
the story is not straightforward. In a study of 280 CHL patients,
higher numbers of intratumoral Tregs was associated with
better failure free survival and also somewhat better overall
survival. Similarly, in follicular lymphoma and germinal center
subtype diffuse large B-cell lymphomas, there was a positive
correlation between disease specific survival and numbers of
intratumoral FoxP3 positive cells (50, 51). From these studies, it
has been surmised that the increased Tregs contribute to immune
surveillance in lymphomas by reducing overall inflammation and
lymphoma cell proliferation.
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FOLLICULAR B HELPER T CELLS (TFH)

TFH cells are abundant in follicular lymphomas. In the normal
germinal center, TFH cells appear to be involved in CD40-
mediated interactions in the germinal center. In follicular
lymphoma, these cells appear to provide IL-4 stimulation to the
B cells and in conjunction with CD40 interactions, aid in the
proliferation of neoplastic cells through STAT5 signaling (52).
Recent work suggests that circulating CD4+ C-X-C chemokine
receptor type 5 (CXCR5)+ T cells serve as the memory
compartment of TFH cells (53). CXCR5 is the receptor for
chemokine ligand 13 (CXCL13), produced by follicular dendritic
cells, that promotes the entry of B cells into germinal center.
Hence, the upregulated expression of CXCR5 facilitates contact
between the B cells and T cells (54).

In patients with low-grade B-cell lymphomas like follicular
lymphoma or marginal zone lymphomas, subsets of circulating
TFH cells differ from healthy controls, with reduced C-C
chemokine receptor type 6 (CCR6) and increased PD-1 (55).
Increased levels of PD-1 receptor have also been found in T
cells from chronic lymphocytic leukemia (CLL) patients and were
not explained by patient age (56). These are correlated with the
overexpression of PD-L1 and PD-L2 by the CLL cells. While
both CD4+ and CD8+ T cells are increased, overall there are
relatively more CD8+ T cells in patients with CLL. The presence
of tumor cells appears to be associated with T cells showing
an exhausted phenotype. Specifically, they often express CD160,
CD244, PR domain zinc finger protein 1 (BLIMP-1), in addition
to PD-1 (57). TFH cells have also been shown to provide support
for the follicular lymphoma B cells through IL-4 and CD40
ligand production. However, the exact role of TFH cells in the
context of lymphoma is not fully understood. Part of the difficulty
rests in the fact that they can elicit various cytokine-mediated
functions simultaneously and can, in turn, be influenced by their
microenvironment (58).

NATURAL KILLER (NK) CELLS

NK cells are CD16+ CD56+ cytotoxic lymphocytes of the innate
immune system, which induce apoptosis even in the absence
of antibodies and major histocompatibility complex. NK cells
can recognize tumor antigens via killer-cell immunoglobulin-
like receptors (KIRs). KIRs can have inhibitory or activating
functions and depends on the intracytoplasmic region of the
receptor (59). Studies have shown defective NK cell cytolytic
function in CLL (60). In a large 11-year human study, low
cytotoxic activity of NK cells was associated with increased cancer
risk (61).

Working through dendritic cell maturation, NK cells can
prune the adaptive immune response. A subset of NK cells
produces IFN-γ, TNF-α, IL-10, and certain chemokines that aid
in the differentiation of T cells and dendritic cells (62). In mouse
models, IFN-γ and perforin protein knockouts will develop B-cell
lymphomas that show suggestion of immunosurveillance defect
(63). Once a tumor microenvironment is developed, TGF-β is
induced and TIM-3 expression on NK cells is upregulated. The

increased TIM-3 expression has been associated with lower NK-
cell cytotoxicity and poor outcomes in a variety of neoplasms
(64).

Studies have demonstrated an acquired quantitative as well
as qualitative deficiency of NK cells in CHL microenvironment,
contributing to immune evasion mechanism for lymphoma
progression (65). A study quantifying immune cells in CHL
found NK cell density to be five times less compared to NHL
or normal tissues (66). Recent studies have shown significant
reduction in NKG2D expression as well as weak cytotoxic activity
in NK cells in untreated CHL patients (67). Reactivation of
silenced NK cells in CHL is a potential therapeutic target and
is being currently pursued. Immune checkpoint inhibitors, like
Nivolumab, are being used to recover cytotoxic activity of NK
cells in CHL by PD-1 inhibition. Drugs targeting heat shock
protein-90 have been found to be effective in preclinical studies
(68). In a recent phase 1 study, the bispecific (CD30/CD16a),
tetravalent antibody, AFM13 has proven significantly effective in
NK cell activation (69).

BYSTANDER B CELLS

Bystander CD 20+ B cells are more numerous in lymphocyte
predominant Hodgkin Lymphoma (LP-HL) compared with
CHL, where their role in tumor progression is debatable
(70). B cell production of IL-10 may aid in antitumor
immunosuppression by T cell inhibition (71), whereas
competition with tumor cells (H-RS) for T-cell derived survival
signals may halt tumor cell growth.

LYMPHOMA EXOSOME

Exosomes are microparticles that can be secreted by cells and
usually range in size from 30 to 100 nm (72). Upon discovery in
1983, they were thought to be cellular waste, but are now known
as carriers of signaling molecules in various contexts, ranging
from malignant to autoimmune (73) and infectious states (74).
They are composed of a bilayer lipid membrane and the internal
contents associated with reverse invagination from the plasma
membrane and can includemRNAs, microRNAs, proteins, lipids,
and signaling molecules (75).

Studies have begun to elucidate the role of exosomes
in the interaction between circulating tumor cells and the
microenvironment. CLL-derived exosomes were shown to
induce stromal cells to take on a cancer-associated fibroblast
(CAF) phenotype in vitro. The CAFs, in turn, support a niche that
promotes CLL cell adhesion, survival and growth in vivo (76).

Recent studies demonstrate the possibility of studying
circulating lymphoma exosomes. A group from Spain
demonstrated the prognostic value of tumor associated mRNA
in exosomes of patients with B-cell NHL by utilizing liquid
biopsies (77). In this study, BCL-6 and C-MYC positivity in the
pretreatment samples predicted worse progression free survival
compared to patients without.

In another recent study, exosomes produced by lymphoma B
cells carrying mutated MYD88 were reported to reprogram
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the marrow microenvironment such that mast cells
and macrophages were induced to promote endogenous
proinflammatory signaling pathways. Hence, it is believed that
exosomes play a key role in the communication of tumor cells
to non-malignant cells in the bone marrow, possibly creating a
tumor-friendly environment (78).

EXTRACELLULAR MATRIX (ECM)

The extracellular matrix is a network of physically and
biochemically distinct macromolecules, like proteins,
glycoproteins, and proteoglycans, which constitute the
basement membrane and interstitial matrix and are central
to the maintenance of structural integrity and regulation of cell
behavior in organs (79). In solid organ tumors, dysregulated
ECM has been shown to expedite cancer progression directly
by affecting cancer cells causing cellular transformation,
cancer stem cell expansion and disruption of tissue polarity
leading to tumor invasion and metastasis (80) or indirectly
by affecting stromal cells (81) and facilitating creation of
tumorigenic microenvironment by promotion of angiogenesis
and inflammation (82).

ANGIOGENESIS

Lymphoma tumor microenvironment also includes a rich
scaffold of vessels that supply nutrients to the proliferating
cells. Much of the prior clinical studies have focused on
vascular endothelial growth factor (VEGF) inhibition (83, 84)
in preventing tumor angiogenesis. However, the addition of
bevacizumab does not currently appear to improve efficacy above
that found in R-CHOP chemotherapy alone in the setting of
aggressive B cell lymphomas (85).

Platelet-derived growth factor (PDGF) type BB recruits PDGF
receptor-expressing pericytes to neovessels, thus promoting
vascular maturation and stabilization (86). It appears that PDGF
can also be involved in the expression of other stromal angiogenic
factors like basic fibroblast growth factor and VEGF (87).

Inhibition of platelet derived growth factor receptor B
(PDGFRB) with imatinib mesylate or sunitinib malate has shown
some efficacy in carcinoma models (88–90) but has not yet
been thoroughly evaluated in the context of lymphomas. One
study showed impaired growth of lymphoma in both human
xenograft and mouse allograft models with the use of imatinib,
a tyrosine kinase inhibitor of PDGFRB. These investigators show
decreased microvascular density and in vivo, imatinib induced
apoptosis of tumor associated PDGFRB positive pericytes and
loss of perivascular integrity (91).

The tumor endothelium has also been shown to prevent
T cell homing, and hence, can serve as a barrier against
immunotherapy. Lessons can be learned and possibly refined
from studies carried out in solid organ tumors, such as ovarian
cancers, in which overexpression of endothelin B receptor
was associated with absence of tumor infiltrating lymphocytes
(TILs) and short survival time. An inhibitor for endothelin B
receptor increased the adhesion of T cells in vitro to human

endothelium. This adhesion required intercellular adhesion
molecule 1 (ICAM-1) and augmented tumor immunotherapy
in vivo without increasing systemic antitumor immune response
(92). Endothelial mechanisms that regulate howmuch and which
types of T cells can infiltrate the tumor likely plays a large role
in the effectiveness of immunotherapy such as cancer vaccines.
This area requires much further study, particularly in the setting
of lymphomas.

In a study of lymph nodes in 286 Hodgkin lymphoma
patients, morphometric parameters of angiogenesis were shown
to be related to poor prognosis. Morphometric microvascular
parameters, like microvessel density and total vascular area were
inversely related to overall disease-specific survival (93).

MECHANISMS OF TUMOR
MICROENVIRONMENT MEDIATED
IMMUNE EVASION AND TUMOR
PROGRESSION IN NHL

The chief interactions involved in immune escape and promotion
of tumor progression in NHL are illustrated in Figure 1.
Cytotoxic T lymphocytes (CTLs), gamma delta T (γδ T) cells,
natural killer (NK) cells and lymphoma associated macrophages
constitute the principal antitumor immune responses in the
body. The malignant lymphoma B- cells interact closely in
association with the niche microenvironment elements to escape
these immune responses.

Loss of lymphoma cell surface molecules/ markers, which
are integral to their recognition by immune cells, leads
to reduced tumor immunogenicity and immune evasion.
Genetic alterations leading to loss of MHC Class I, MHC
Class II, and CD58 contribute to the failure of CD 8+
T lymphocyte, CD4+ lymphocyte, and NK cell-mediated
tumor cytotoxicity (52). Another mechanism of escaping T/NK
cell mediated cytotoxicity is by overexpression of inhibitory
lymphoma cell surface molecules, like PD-L1 and herpes
virus entry mediator (HVEM), which on interaction with
their counterparts on T cells lead to impaired T/NK cell
activity (96). It has been shown that the use of anti CD47
antibodies lead to increased phagocytic activity of SIRP-alpha
(SIRP-α) bearing macrophages (97), thereby indicating that
overexpression of CD47 and SIRP-alpha is a lymphoma cell
mechanism to evade macrophage-mediated destruction. The B-
NHL cells also modulate the composition of microenvironment
toward creation of a more immunosuppressive niche by
secretion of Treg chemokine CCL22, in response to IL-
4 and CD40L expression by T follicular helper cells (98).
Inhibitory enzymes, like indolediamine oxidase (IDO), and
phenylalanine oxidase interleukin 4-induced gene 1 (IL4I1),
secreted by lymphoma associated macrophages and some B-
NHL cells also contributes to immune suppression by Treg
expansion and inhibition of effector T cell proliferation and
activity (94, 95). Increased expression of FAS Ligand (FASL)
by NHL B cell induces cytotoxic T cell apoptosis, whereas IL-
12 secretion induces T cell exhaustion by LAG-3 and TIM-3
induction (99).
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FIGURE 1 | In non-Hodgkin B-cell lymphoma, malignant B cells escape immune response by multiple mechanisms, including lack of recognition by immune cells due

to loss of cell surface molecules involved in recognition, CD4+ T cells (MHC II), CD8+ T cells (MHC I), and NK cells (CD58). Overexpression of B cell surface inhibitory

receptors, like PD-L1, Lectin-like Transcript 1 (LLT1), Herpes Virus Entry Mediator (HVEM), CD47, and CD200 which are the ligands for PD-1, CD161, BTLA, and

SIRP-α, and secretion of inhibitory enzymes, Indoleamine 2, 3-dioxygenase (IDO) and IL4I1 leads to impaired T cell mediated cytotoxicity and T cell exhaustion. IDO

and IL4I1 are also responsible for recruitment and differentiation of immunosuppressive Tregs, as well as exhaustion of T-effector cells through CCL22, TGF-β, and

IL-12 secretion. FAS Ligand (FASL) induces apoptosis of CTLs (94, 95).

MECHANISMS OF TUMOR
MICROENVIRONMENT MEDIATED
IMMUNE EVASION AND TUMOR
PROGRESSION IN CHL

The chief interactions involved in immune escape mechanism
and promotion of tumor progression in CHL are illustrated
in Figure 2. The H-RS cell orchestrates the rich polymorphous
background cellularity comprising of T cells, macrophages,
eosinophils, mast cells, neutrophils, plasma cells, plasma cells,
stromal cells, and fibroblasts principally through secretion of
cytokines and chemokines. H-RS cells secrete Colony Stimulating
Factor-1 (CSF-1) and macrophage migration inhibitory factor
(MIF) to recruit M2 macrophages, which in turn, secrete
chemokines like, IL-8, to attract neutrophils into and eotaxin to
attract eosinophils into tumor tissue (52).

It has been widely appreciated that TME and H-RS
cells contribute to anti-tumor immune evasion by multiple
mechanisms. Loss of MHC Class II molecules in CHL by
chromosomal translocation has been linked to reduced tumor
antigen presentation and hence, escape from immune cells.
Aberrant expression by H-RS cells of surface molecule PD-
L1, the ligand for PD- expressed on CTLs and CD4+ T cells,

reduces anti-tumor immune function by T cell exhaustion. H-
RS cells modify the microenvironment composition toward an
immune tolerant state by inducing CD4+ T cell differentiation
into immunosuppressive Tregs by secreting Galectin-1, TGF-
β and CD70 and CD80 expression or by causing T-cell
exhaustion through the secretion of TGF-β, IL-10, galectin-1, and
prostaglandin E2 (100). Expression of FAS Ligand can induce
apoptosis of CTLs, leading to reduced T cell mediated tumor
cytotoxicity and tumor progression (101).

THERAPEUTIC IMPLICATIONS

A better understanding of the interactions between the
lymphoma cells and the microenvironment niche has unraveled
multiple new potential therapeutic targets in lymphoma
treatment. The use of active and passive immunotherapy
to bolster antitumor response is one such strategy and
has been found to be considerably successful (102). Passive
immunotherapy, based on the use of monoclonal antibodies and
genetically engineered T cells has shown promising results in the
treatment of relapsed/refractory NHL (103, 104). Recently, newer
antibodies with multiple binding sites for tumor and T cells are
being developed and early clinical trial results using bispecific

Frontiers in Oncology | www.frontiersin.org 7 July 2018 | Volume 8 | Article 288

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Kumar and Xu Microenvironment Cell Contribution to Lymphoma Immunity

FIGURE 2 | In classic Hodgkin lymphoma, H-RS cells secrete cytokines, like IL-5, IL-9, and IL-10 to recruit eosinophils, mast cells and T cells, respectively to

constitute the rich supportive tumor microenvironment. H-RS cells also produce macrophage migration inhibitory factor (MIF), which supports M2 macrophage

infiltration. Galectin-1 induces differentiation of CD4+T cells toward immunosuppressive Tregs and causes apoptosis of both TH1 cells and CTLs. FAS Ligand (FASL)

induces apoptosis of CTLs. PD-L1 expression by H-RS cells helps the tumor escape immune responses by causing T-cell exhaustion. BCMA, B Cell Maturation

Antigen; APRIL, Proliferation Inducing Ligand.

T-cell engager (BiTE), blinatumomab have been very promising
(104).

Active immunotherapy modalities include vaccines and
immune checkpoint inhibitors. The results with vaccines have
been variable. Immune checkpoint inhibitors, on the other hand,
have yielded excellent response rates, especially in Hodgkin
lymphoma (60–80%) compared to NHL (20–40%) (105).

Improving the function of infiltrating immune effector cells,
like T cells, and macrophages, has been shown to improve
survival. Another major focus of upcoming lymphoma treatment
strategies has been to target and diminish the microenvironment
support for tumor cells, thereby limiting their survival. These
treatmentmodalities have included targeting the pro-survival cell
surface molecule signaling pathways (protumor signals), limiting
tumor angiogenesis, attacking protumor microenvironment cells
like mesenchymal stromal cells.

Similar to disrupting the protumor microenvironment
approach is the recent focus on therapeutics aimed at
mobilization of lymphoma cells away from their nourishing
microenvironment. Abnormal ECM architecture, like dense
collagen, has been known to be associated with poor
chemotherapy response and resistance in solid tumors due

to impaired drug delivery (106). In murine models, vaccine
targeting tumor associated fibroblasts has been proven to
decrease collagen type I expression, leading to 70% greater drug
uptake (107).

CONCLUSION

The lymphoma microenvironment is a complex stage where the
actors can interact with each other in varying ways depending
on the context. It is becoming clear that the so-called bystander
cells of the microenvironment may share the limelight with
tumor cells in their contribution to disease pathogenesis and
progression. Understanding their function can lead to more
sophisticated methods of turning host cells effectively against the
lymphoma as well as to circumvent resistance against immune
checkpoint blockade and life-threatening complications from
therapy.
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