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Abstract—The fabrication and testing of Teflon AF-coated
channels on silicon and bonding of the same to a similarly coated
glass wafer are described. With water or aqueous solutions in such
channels, the channels exhibit much better light conduction ability
than similar uncoated channels. Although the loss is greater than
extruded Teflon AF tubes, light throughput is far superior to
channels described in the literature consisting of [110] planes in
silicon with 45 sidewalls. Absorbance noise levels under actual
flow conditions using an LED source, an inexpensive photodiode
and a simple operational amplifier circuitry was 1 10 4 ab-
sorbance units over a 10-mm path length (channel 0.17-mm deep

0.49-mm wide), comparable to many commercially available
macroscale flow-through absorbance detectors. Adherence to
Beer’s law was tested over a 50-fold concentration range of an
injected dye, with the linear 2 relating the concentration to the
observed absorbance being 0.9993. Fluorescence detection was
tested with fluorescein as the test solute, a high brightness blue
LED as the excitation source and an inexpensive miniature PMT.
The concentration detection limit was 3 10 9 M and the corre-
sponding mass detection limit was estimated to be 5 10 16 mol.

I. INTRODUCTION

SENSORS that rely on measurements of the liquid phase are
important in chemical and biological monitoring. The most

widely applied class of analytical techniques in the solution
phase involves optical absorbance and fluorescence measure-
ments. Since the range of wavelengths accessible by solid-state
sources is continuously expanding, particularly into the ultravi-
olet, [1] and the fact that such sources (as well as solid state de-
tectors) can be readily integrated with microfluidic devices, the
optical measurements of liquid phase specimens will continue to
show great promise for developing miniaturized sensors. How-
ever, optical measurements, especially absorbance, must over-
come the sensitivity limitations associated with the short optical
path lengths. To achieve long path lengths for chip-scale sys-
tems, so-called Z-path cells can be fabricated. However, light
loss is especially severe in small cross section channels due to
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absorption of light by the channel walls and their less than ideal
reflectivity. Verpoorteet al.[2] etched silicon to produce micro-
channels with smooth planar surfaces to improve wall re-
flectivity. More recently, Tiggelaaret al. [3] etched channels in
silicon having surfaces (45sidewalls) and coated them with
40-nm thick Pt layers. They obtained photocurrents of 20 nA for
path lengths of 5–7 mm and cross-sectional areas of 0.14 mm.

A different solution to the same problem of light loss to the
wall has also been recently available. This is to make the optical
measurement cell behave as an optical fiber, i.e., such that there
is total internal reflection at the walls and the attenuation of light
due to passage through the cell is primarily due to absorption
by the analyte. Such a situation is achieved if the light-carrying
liquid core is bounded by optically transparent walls that are
made of a material with a refractive index (RI)lessthan that of
the liquid core. Recently, a series of amorphous copolymersn
[4]–[6] of polytetrafluoroethylene (PTFE) with 2,2-bis-(triflu-
oromethyl)-4,5-difluoro-1,3-dioxole has become commercially
available. These polymers, generically called Teflon AF, are op-
tically transparent and have a RI of 1.29–1.31, slightly lower
than that of water (1.33). Either Teflon AF tubes, or Teflon
AF-coated glass/fused silica capillaries, behave as liquid core
wave guides (LCW) when filled with water or aqueous solu-
tions when the liquid RI exceeds that of the polymer. The fact
that Teflon AF LCW-based systems permit uniquely powerful
fluorescence [7]–[12], chemiluminescence [13], [14], Raman
[15]–[20] and absorption detection [24]–[33] capabilities is be-
ginning to be widely exploited albeit not yet on the chip scale.
Unique applications of LCWs based on plastic or glass capil-
laries coated with Teflon AF or tubes made of Teflon [34], [35]
have also been described.

LCWs fabricated at the chip-scale have numerous potential
applications ranging from high-throughput drug screening to
clinical diagnostics and gene analysis. [36] We report here
on the fabrication and testing of chip-scale Teflon AF-coated
LCWs in microchannels etched in silicon substrates.

II. EXPERIMENTAL DETAILS

A. Reagents

Chemicals used (KOH, acetone, ethanol, HF) were elec-
tronic grade from Fisher Scientific (Fairlawn, NJ) except as
stated. Perfluorooctyltrimethoxysilane (0.4% solution in a
high boiling fluorocarbon solvent, FluoroSy FSM 660) was
obtained from Cytonix, Beltsville, MD. Teflon AF, 2400,
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1600, 1601S were obtained from Dupont (Wilmington, DE).
Perfluoro(n-butyltetrahydrofuran) (FC-75) was obtained from
3M Corp (Minneapolis, MN).

B. Etching Channels in Silicon

The 2-in silicon (thickness – m) wafers (Silicon
Inc., Boise, ID) and 2-in Pyrex glass (RI 1.473) wafers (Preci-
sion Glass & Optics, Santa Ana, CA) were used as substrates.
The channels are etched only on the silicon, the glass serves as
a cover plate. The silicon wafers were wet-oxidized for h,
forming a – m oxide layer on wafer front and back.
The oxide layer serves as a hard mask during the subsequent
wet etching of Si. The front-surface resist was patterned with
both straight and curved channels (radius of curvatureof 6.1
and 1.9 cm, respectively) with a fixed channel width (at the top,
the sidewalls are planes angled at 5.47) of 500 m. The
backside of the wafer was also coated with photoresist to protect
the oxide layer. A positive photoresist (S 1813, Shipley, Marl-
borough, MA) was used in this work. This prevented undesir-
able etching from the wafer backside during wet etching. After
the photoresist was patterned and developed using standard pho-
tolithography processing, the exposed oxide was etched by dip-
ping the wafer in a buffered oxide etch solution, [37] diluted
1:1 with deionized water. Exposed silicon was etched at 80C
with 25% KOH (water bath) to form channels in silicon. Etching
for h under these conditions produced a channel depth of

m. At this point, the oxide hard mask was removed from
both the front and back of the Si wafer with 20% HF. Finally, the
wafer was thoroughly cleaned with a standard acetone, alcohol,
and DI water rinse.

C. Adhesion Promoter Coating

Teflon AF perfluorodioxole copolymers are nonpolar, contain
no reactive chemical functionality, and are highly resistant to
chemical attack. Thus, adhesion to substrates depends primarily
on physical rather than chemical interactions [6]. In particular,
Teflon AF exhibits practically no adhesion to untreated glass or
Si surfaces. Two approaches were investigated to improve the
adhesion of Teflon AF to Si and glass. We have used thin fluo-
rocarbon films [38], [39] formed by plasma-enhanced-chemical
vapor deposition (PECVD) using inductively-coupled high den-
sity plasma (HDP) methods [40]–[42]. Chemically active fluo-
rine bonds in the plasma-generated fluorocarbon films promote
the improved adhesion of Teflon AF to glass or silicon surfaces.

A simpler method relies on perfluorooctyltrimethoxysilane
(0.4% solution) spin-coated onto silicon or glass. [43] The
coated wafers were immediately baked at 90C for 10 min in
an oven. Teflon AF was then spin-coated and exhibited good
adhesion.

D. Coating of Teflon AF

Three types of Teflon AF, namely 2400, 1600, 1601S
(Dupont), were used for the fabrication of the LCWs. Relevant
properties of these materials are listed in Table I. Dresset al.
calculated that a thick film is necessary to confine the
light to the liquid core [44]. Because of the low solids content

TABLE I
RELEVANT PHYSICAL PROPERTIES OFTEFLON AF COATINGS INVESTIGATED

Fig. 1. Scanning electron micrograph of the Teflon AF-coated channel on a
silicon wafer, shown in cross section. The adhesion promoting fluorocarbon
layer is not visible at this scale.

and low viscosity of Teflon AF 2400, multiple coatings were
needed to obtain a 1thick film. For Teflon AF 1600, a single
coating produced a film thickness of m. Multiple coat-
ings were needed with either Teflon AF 2400 or 1600 to obtain
films with the necessary m thickness. The wafer was
baked at 112 C for 5 min after each spin coating, for partial
removal of the solvent. This procedure produced films that
were not uniform in thickness. In contrast, the high viscosity
and high polymer concentration of Teflon AF 1601S resulted
in 15-20 thick and uniform films with a single coating. The
RI of these films, measured using a prism coupler operated
at 632.8 nm, was 1.30. In order to reduce the thickness of the
coated films, the solution was diluted using FC-75. The spin
speed and Teflon AF 1601 to FC-75 ratio were varied to obtain
films with thickness in the 1–20 m range. For the results
presented here, we used a 2:1 Teflon AF 1601S:FC-75 ratio.
At a spin speed of 4500 rpm, a single coating produced a film
thickness of 4.4 m. All the wafers were subjected to a baking
cycle immediately after the coating step to remove the solvent
as follows. a) Leave the coated substrate for 15–20 min at
ambient temperature; b) bake at 112C for 15 min; c) bake at
165 C for 15 min; d) bake at 330C for 30 min. The baking
procedure is essential for the complete removal of the solvent.
Interestingly, the RI of the films remained unchanged even
though the films were processed at temperatures above the glass
transition temperature C of the films. The baking
of Teflon AF above its softens the polymer and produces a
smooth surface. A scanning electron micrograph of the cross
section of the Si-channel coated with Teflon AF is shown in
Fig. 1. A coating that conforms to the channels is evident.
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Fig. 2. Process flow schematic. Fabrication of a bonded liquid core wave guide
(LCW) device fabricated on Si.

E. Cover Bonding for Sealed LCW and Control Devices

The Si wafer containing 180-m deep and 500-m wide
channels and a Pyrex glass wafer, without channels, similarly
coated with Teflon AF, as described in the previous section,
were used to fabricate a sealed channel. Access holes to the
channels had been made on the glass wafer with a 0.75-mm
diamond-tipped drill bit, using a programmable drill press,
before coating the wafer with Teflon. No modification of the
coating procedure from that used for the silicon wafer was
found necessary for coating the drilled glass wafer. The Teflon
AF-coated Si and glass wafers were aligned face-to-face and
clamped together. The whole assembly was put into a furnace
at 300 C for 30 min and cooled to room temperature before
removing the wafers from the clamping fixture. The sealed
channels were leak-checked with water. The complete process
flow diagram is depicted in Fig. 2.

A control device was made using uncoated (no Teflon AF)
Si channels capped with a glass wafer. The control wafers were
bonded to each after coating with 0.4-m thick poly-methyl-
silsesquioxane spin-on-glass (SOG) (Filmtronics Inc., PA), with
an R.I. very close to that of glass. The SOG was spin-coated at
3500 rpm for 30 s. This SOG was chosen because it flows at
relatively low temperature (150C–210 C). Bonding was car-
ried out for 3 h at 300 C.

F. Light Transmission Measurement

A high brightness 660-nm light emitting diode (H-2000L,
5 mm, rated to have a luminous output of 2000 mcd, when driven

at 20 mA, input power 36 mW; Stanley Electric, Tokyo, Japan)
was modified by removing most of the plastic encapsulant. A
0.5-mm diameter hole was drilled under a microscope from the
top of the LED to near the emitter surface, with the LED pow-
ered and where the highest emitted light intensity was observed,
taking care to not damage the emitter chip or the bonding wire.
A short (5 cm) bundle of 13 70-m diameter glass optical fibers
was put together, inserted into a Teflon (0.25 mm i.d.; 0.5 mm
o.d.) tube as a sleeve and held in place with silicone rubber adhe-
sive.The fibers and the sleeve tubing were affixed into the hole
with optical-grade, UV-cure adhesive (Type 81, Norland Prod-
ucts, Cranbury, NJ). The LED assembly was then covered with
opaque epoxy (2-part epoxy, 1-part activated carbon) to elimi-
nate ambient light. The free end of the fiber bundle was inserted
into the channel under test and sealed in place with silicone
rubber. This adhesive is removable and permits reuse of the fiber
bundle. A similar fiber bundle was used at the other end of the
channel, with the distal end epoxied to a small (45 mm) pho-
todiode (BPW34, Siemens), similarly sealed with black epoxy.
The fiber bundle is fragile and movement of the fibers during
measurement can cause noise/changes in signal. A small piece
of acrylic sheet was used as a support and the fiber bundle was
affixed thereon. The photocurrent was measured with a picoam-
meter (Keithley Instruments, model 480).

The channel under test in the control wafer was filled with
deionized water ensuring that there were no air bubbles and the
photocurrent measured with the LED driven at 20 mA. The fiber
bundle was then moved over to the corresponding channel in the
LCW coated wafer. The transmittance was repeatedly measured
in the corresponding channels in the respective wafers.

We also conducted direct transmission loss measurement
as a function of channel length. Direct transmission loss
measurement, as a function of length through the channels,
is difficult because repeated movement of fibers can scratch
channel surfaces and impair performance. The tube/channels
were filled with a dilute solution of fluorescein and illuminated
transversely at a measured distance from the exit using a near
UV (385 nm) LED (UV-LED E1L5M, Roithner Lasertechnik)
driven at 2.5 mA and focused to a spot approximately 100m
in diameter. Light emerging from one end of the tube/channels
was imaged on a miniature CCD spectrometer (USB 2000,
Ocean Optics Inc., Dunedin, FL). The fluorescence emission
intensity at 540 nm is measured varying the distance of the
LED illumination point from the tube/channel (observation)
end. Measurements made on both the Teflon AF-coated and
uncoated control micro-channels were compared with those
made on a commercial Teflon AF tube with i.d. of 0.25 mm.

G. Measurements in a Flow Injection Analysis (FIA) Manifold

The schematic of the FIA manifold is shown in Fig. 3.
The FIA experiment used the curved LCW channel with a
radius of curvature of 6.1 cm, rather than a straight channel,
to reject false signals arising from line of sight transmission.
The fiber-to-fiber distance, including the channel curvature,
was 10.4 mm. An alkaline solution of bromthymol blue (BTB,
molar absorptivity at 660 nm 11 000 Mcm , 660 nm is
not the wavelength of maximum absorption for BTB), 70M
in concentration, was used as the test analyte. A solution of
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Fig. 3. Arrangement for flow injection and absorbance detection,
schematically shown.

Fig. 4. Absorbance detector signal processing circuit.

1 mM NaOH was used as the carrier and delivered at a constant
flow rate of 47 L min with a peristaltic pump (Dynamax
RP-1, Rainin Inc., Emeryville, CA) to the channel inlet. The
analyte solution was injected using a 6-port chromatographic
valve (VICI Instruments, Houston, TX). Although the actual
injection loop in this valve was 20L, time based injection was
used to inject a smaller sample volume, estimated to beL.
Rather than using a commercial current amplifier, we opted to
use what could be easily and inexpensively incorporated on
a wafer-scale device. An inexpensive dual JFET operational
amplifier (TL082, Texas Instruments) was used to provide
both gain and offset to the photodiode output. The electronic
circuitry is schematically shown in Fig. 4. The amplifier
output was acquired and displayed on a notebook PC using
a 12-bitA/D card (PC-CARD-DAS16/12AO, Measurement
Computing Corporation, Middleboro, MA) with a data acqui-
sition rate of 1 Hz. Conformity to Beer’s law was measured by
injecting different concentrations of BTB into the test system
and converting the transmittance signal to absorbance (the
baseline signal was taken as).

Applicability to fluorescence detection was ascertained by
coupling a high current, high intensity blue LED (Luxeon
Emitter LXHL-BR01, center wavelength: 455 nm, Lumileds

TABLE II
LIGHT THROUGHPUT(PHOTOCURRENT) IN THE LCW VERSUS THE

CONTROL WAFER CHANNELS

LLC, San Jose, CA) driven at 250 mA to a 3-mm sapphire ball
lens (manufacturer’s specification on this LED: typical luminous
flux 4 lm when driven at 350 mA with a junction temperature of
25 C). The LED was placed in an opaque holder such that light
was emitted only through the lens. The LED, with its holder,
was placed on a small piece of blue plastic filter (# 863, Edmund
Scientific, Barrington, NJ). This assembly was placed on the
wafer at the channel location with an optical aperture created
by black electrical tape, locatedmm from the light collection
fiber optic bundle inserted into the channel. The distal end of
the bundle was connected to a miniature photomultiplier tube
(PMT, H5784, Hamamatsu Co.) covered with a filter stack. A
combination of a yellow plastic filter (#809, Edmund) and a
long-pass glass filter (KV500, Schott Glass Technologies. 50%
cut off at 500 nm) was used to limit the wavelength range passed
to the PMT. Flow injection was carried out by injecting L
of fluorescein, at specified concentrations, with 1 mM NaOH
carrier fluid flowing at 70 L min.

III. RESULTS AND DISCUSSION

A. Light Throughput

Compared to the 5–7 mm path lengths used by Tiggelaaret al.
[3], we tested the light throughput under the following condi-
tions: a) straight channels, 23 mm; b) curved channel 1

cm , fiber-to-fiber path length 19.5 mm; c) curved channel 2
cm , fiber-to-fiber path length 19.9 mm; and d) curved

channel 2 cm , fiber-to-fiber path length 10.4 mm.
The light throughput cross section is 0.067 mmfor the con-
trol wafer and 0.062 mmfor the LCW wafer. The results, that
include the relative standard deviation (RSD) of triplicate mea-
surements in each case, are shown in Table II. The LCW ef-
fect is apparent in both the straight and the curved channel with

cm. The results for the highly curved channel with
cm are significantly poorer. The commercial LCW

tube demonstrated nearly constant throughput for curvatures
down to cm. Below this curvature, geometric de-
formations occur in these tubes and tests could not be con-
ducted. It may be noted that with a 19-mm source-detector sep-
aration, standard laboratory polyethyelene tubing showed neg-
ligible throughput regardless of curvature.

For the transverse illumination studies, we measured the flu-
orescein emission peak intensity (at 540 nm) versus distance be-
tween illumination point and tube/channel end for straight chan-



792 IEEE SENSORS JOURNAL, VOL. 3, NO. 6, DECEMBER 2003

nels. In all cases, the data fit well an exponential decay pattern
according to where and are the transmitted
and incident light intensities, L is the lateral distance between
the transverse illumination source and the detector andis the
attenuation coefficient. Values of, corrected for the attenua-
tion of the fluorescein solution (measured to be 180 Mcm )
were , , and cm for the
commercial tube, the coated channel and the uncoated channel,
respectively. While the coated microchannels are not as good
light conduits as the extruded tubes, they are substantially su-
perior to the uncoated channels, as found in the longitudinally
launched absorption measurements, summarized in Table II (b).

There is a greater light loss in the coated micro-channels
compared to an extruded Teflon AF tube because a) the chan-
nels are not of cylindrical shape which will lead to the lowest
losses; in fact, the etched channels may not have exactly uniform
cross-section due to variations in the etching and deposition pro-
cessing over a long etching period, b) etching deep channels in
silicon in this manner results in surface irregularities and all the
roughness may not be entirely removed by the coating. While
the postbake procedure appears to smoothen the coating, micro-
scopic observations suggest that the surface finish is still not as
good as that of extruded tubes. In any case, the light throughput
in the coated case is good enough to obtain excellent analytical
results as demonstrated in the following sections. It is to be also
noted that for the straight channel, even though we have less than
half the light throughput cross section and nearly four times the
path length, the photocurrent for our straight path LCW cell is
still an order of magnitude greater compared to that reported by
Tiggelaaret al. [3], both cases using comparable LED sources.

B. FIA Signals and Absorbance Detection Performance

Fig. 5 shows response of the system to repeated injections of
the BTB solution into a flowing carrier of 1 mM NaOH. The
results are shown both for the Teflon AF-coated wafer and the
control wafer, offset for clarity. Approximately 1% of the signal
that is observed for the LCW is observed with the control (ob-
servable only after a large magnification). This suggests that
whatever light does pass through the channels probably does
so by grazing angle propagation along the walls and has little
relationship with the liquid core. For the LCW cell, the repro-
ducibility of the response is good (0.9% RSD).

Without offset and at the same photodiode amplifier gain, the
baseline signal in the LCW case shown in Fig. 5 would lie at

V. The baseline noise that we observe, part of which is
clearly attributable to the A/D conversion noise (for the 12-bit
A/D used in the V scale, 1-bit noise is equivalent to 4.9 mV)
is 7.6 mV. This translates to a transmittance noise of 0.025%
T and in terms of absorbance, 1.1 absorbance units, re-
spectable for the simple circuit and the miniature cell.

The linearity and adherence to Beer’s law was studied over
a range of 2–100 M BTB injected. The linearity is excellent
over this orders of magnitude span, with a linearvalue of
0.9993. The results are shown in Fig. 6.

Fluorescence detection was investigated to ascertain prac-
tical limits of fluorescence detection limits that can be attained
by presently available inexpensive solid-state sources. One
interesting aspect of transverse fluorescence detection in this

(a)

(b)

Fig. 5. Flow injection system output for repeated injections of 70�M
Bromthymol Blue(� 8 �L) in a 1 mM NaOH carrier (47�L=min). (a) Upper
trace shows results for Teflon AF-coated channels; (b) the lower trace the same
for uncoated channels, 50� amplified and appropriately offset.

Fig. 6. Beer’s law plot for different concentrations of dye injected.

manner with solid state sources is that sources emitting at dif-
ferent wavelengths can be aligned in an array along a channel
and the excitation wavelength can be temporally scanned
by serially turning on each emitter. For the present purpose
of dedicated wavelength fluorescence detection, we chose
fluorescein because it is an inexpensive common fluorescent
tag that is used widely. The results are shown in Fig. 7 for
single digit nM concentrations of fluorescein injected. We con-
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(a)

(b)

Fig. 7. Flow injection system output for repeated injections(�20 �L) of (a)
9-nM and (b) 3-nM Fluorescein sample in a 1 mM NaOH carrier (70�L=min).

servatively estimate that the LOD is nM (inset,
Fig. 7). The illuminated volume is about 0.14L; this results
in a mass detection limit of 410 attomoles, or million
molecules. Given the capital cost with which this detection can
be performed, we deem it to be excellent.

IV. SUMMARY

We have developed a process for coating flat glass surfaces
and etched microchannels in silicon with low R. I. Teflon AF,
and successfully bonded the respective wafers to form sealed
microchannels. When filled with aqueous solutions, the chan-
nels demonstrated significantly enhanced optical waveguide
properties when compared to control channels identically
fabricated but left uncoated. The microfabricated LCW can be
used for high sensitivity measurements. Future work will refine
the fabrication process to yield smoother channels for complete
analysis devices.
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