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Microfabrication of Palladium–Silver Alloy
Membranes for Hydrogen Separation
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Abstract—In this paper, a process for the microfabrication of
a wafer-scale palladium—silver alloy membrane (Pd–Ag) is pre-
sented. Pd–Ag alloy films containing 23 wt% Ag were prepared
by co-sputtering from pure Pd and Ag targets. The films were de-
posited on the unetched side of a110 -oriented silicon wafer in
which deep grooves were etched in a concentrated KOH solution,
leaving silicon membranes with a thickness of ca. 50m. After
alloy deposition, the silicon membranes were removed by etching,
leaving Pd–Ag membranes. Anodic bonding of thick glass plates
(containing powder blasted flow channels) to both sides of the sil-
icon substrate was used to package the membranes and create a ro-
bust module. The hydrogen permeability of the Pd–Ag membranes
was determined to be typically 0.5 molH2 m

2
s with a min-

imal selectivity of 550 forH2 with respect to He. The mechanical
strength of the membrane was found to be adequate, pressures of
up to 4 bars at room temperature did not break the membrane.
The results indicate that the membranes are suitable for applica-
tion in hydrogen purification or in dehydrogenation reactors. The
presented fabrication method allows the development of a module
for industrial applications that consists of a stack of a large number
of glass/membrane plates. [901]

Index Terms—110 wafers, co-sputtering membrane module,
hydrogen separation, microfabrication technology, palla-
dium–silver (Pd–Ag) membrane.

I. INTRODUCTION

T HE increased demand for hydrogen in recent years in
many industrial applications, like petroleum refinement,

petrochemical and semiconductor processing and sustainable
energy (fuel cells) has led to a revival of interest in methods
for separation and purification of hydrogen from gas mixtures
[1]–[3]. In particular, palladium (Pd)-based membranes have
been the subject of many studies, due largely to their unmatched
potential as hydrogen-selective membranes for gas separation
or purification. In most cases, palladium is alloyed with
silver (Ag) to overcome the well-known problem of hydrogen
embrittlement [4], [5]. Comprehensive reviews of Pd-based
membranes and their applications have recently been provided
by Shuet al. [6] and Dittmeyeret al. [7].
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However, conventional technology is limited by the high cost
of palladium combined with fabrication methods resulting in
thick Pd films. For instance, relatively expensive Pd–Ag mul-
titubular assemblies with a membrane thickness of 50or
more have been used for many years in the laboratory for the pu-
rification of hydrogen [8], [9]. The wall thickness of these tubes
incorporated in such assemblies reduces the hydrogen flux and
inhibits their application for large-scale chemical production.

During the last decade it was attempted to achieve higher
hydrogen fluxes by depositing thin Pd or Pd–Ag films on
porous supports [10]–[12]. However, the selectivity of such
membranes is often poor due to the fact that the used deposition
method render insufficient step coverage, i.e., the inner walls
of the pores of the support are not well covered by the film
[10]–[12], leading to pin-holes in the membranes that give rise
to gas leakage.

Recently it was demonstrated that methods originating from
the field of microfabrication technology offer a novel approach
for the fabrication of very thin, pin-hole free Pd-composite
membranes [13], [14]. Such thin films dramatically increase
the achievable hydrogen flux as well as the selectivity of the
membrane, and possibly decreasing the costs, if the batch
fabrication possibilities of microfabrication technology can
be exploited. For example, a microfabricated Pd membrane
reported by Franket al. [13] achieved a high flux and high
selectivity and is suitable for hydrogen purification in the
laboratory, where normally a small, high quality amount of
hydrogen is required.

However, most of the microfabricated Pd membranes re-
ported up to now only have a limited size. Suchmicro units
[13], [14] are unsuitable for the separation of high volumes
of hydrogen. Furthermore, the reported micromachined Pd
membranes were packaged with a PDMS polymer, which does
not survive the high temperatures that are applied in industrial
hydrogen separation, where hydrogen is normally extracted
from a synthesis gas (a mixture of CO and) at temperatures
above about 400 . The study presented in this paper focuses
on the fabrication of a wafer-scale micromachined separation
membrane module—macro unit, which is suitable for larger
volume hydrogen separation in industry. The performance with
respect to mechanical strength, hydrogen flux and selectivity
of the Pd–Ag membranes in such a module was characterized
and will be discussed in detail in this paper.

II. FABRICATION OF THE MEMBRANE MODULE

A. Pd–Ag Membranes on a Silicon Frame

A cross section of the Pd–Ag membrane module is shown in
Fig. 1. It consists of a silicon wafer and two glass wafers. The
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Fig. 1. Cross section of the separation membrane module.

Fig. 2. Fabrication process of the Pd–Ag membrane.

sequence of process steps that was applied to achieve the mem-
brane module is outlined in Fig. 2. In brief, the sequence runs
as follows: A 3 inch double-side polished, -oriented sil-
icon wafer ( -Si) is coated with 1 ìm of wet-thermally oxi-
dized silicon dioxide , which is used as a protective layer
during subsequent etching steps. To fabricate high-aspect-ratio
features by anisotropic etching of -Si, precise alignment
of the features to the planes is of critical importance. To
reveal the planes in the -Si, fan-shaped structures
are first imprinted on the silicon wafer by standard photolithog-
raphy, followed by removal of in a commercial buffered
oxide etch (BOE), and a short etch in a concentrated KOH so-
lution. More details can be found in refs. [15], [16]. Next, long
narrow slits of 23 by 1500 are aligned to the revealed
planes and lithographically patterned using the steps mentioned
above. The design consists of 1000 of such slits, which are di-
vided into 8 ranges on a square area of 18 by 18 mm. The wafer
is immersed in 25% KOH solution at 75 to etch the silicon
until about 50 of silicon is left at the bottom of the etched
slits. As a result, etched structure or a silicon frame is created
and shown in Fig. 3.

At this stage, an alloy film of Pd77-Ag23 at wt% with a
thickness of 1 is deposited by co-sputtering [17] through
a shadow mask on the flat side of the etched silicon frame,
using titanium (Ti) as an adhesion layer. The co-sputtering pro-

Fig. 3. SEM pictures of the silicon frame, narrow slits were etched in the
h110i-oriented silicon wafer.

Fig. 4. Close-up of the Pd–Ag membrane across one etched slit.

cedure to deposit a homogenous Pd–Ag alloy film will be dis-
cussed in detail in Section II-B. Obviously, an advantage of this
fabrication method is that Pd–Ag film is deposited onto a flat
and smooth surface, therewith avoiding possible step coverage
problems that may arise during deposition on a porous or pat-
terned substrate. Thus, a very thin Pd–Ag film, potentially free
of pin-holes will be obtained.

After alloy deposition, the concentrated KOH solution men-
tioned above is used to remove the remaining 50of silicon in
the trenches. Etching in KOH is continued until the layer
is reached. Finally, this oxide layer and the Ti film are removed
in BOE to uncover the back surface of the Pd–Ag membranes.
It should be mentioned here that the BOE removes Ti, but does
not affect Pd, Ag or Pd–Ag. A close up of the Pd–Ag membrane
across one etched slit is depicted in Fig. 4, while Fig. 5 shows
a top view of an array of long narrow etched slits on the silicon
wafer. In Fig. 5, the gray parts are unpatterned silicon, the black
areas are oblique planes appearing inside the etched slits,
and the whitish parts are free Pd–Ag areas as seen through the
etched slits.

B. Deposition of Pd–Ag Alloy Film by DC Co-Sputtering

Due to the high accuracy of the deposition rate, sputtering
has frequently been used to fabricate micron-thick Pd–Ag alloy
layers [11], [12]. Mostly, such layers are obtained by sputtering
from a single composite target of Pd–Ag. However, it was found
that the sputtered layers have a significantly lower Ag content
than the original target, due to short target equilibration times
[12], [18]. For instance, Xomeritakis and Lin [18] found a silver
concentration of 15% for a film sputtered from a Pd75-Ag25 at
wt% target. To avoid this compositional control problem, we
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Fig. 5. Top view picture of long narrow etched slits and free areas of Pd–Ag on
the silicon wafer. The Pd–Ag layer is deposited on the other side of the silicon
wafer.

Fig. 6. XPS depth profile of the co-sputtering Pd–Ag film. Ti was detected but
it was not show in the graph.

have deposited Pd–Ag alloy films by a co-sputtering method
using two pure metal targets.

Experiments have been carried out in a dc sputtering system
that accommodates three targets, of pure Pd, Ag, and Ti (Ti is
used as an adhesion material), each target having its own con-
trollable power source. Films were deposited at temperatures
between 300 K and 700 K at an Ar pressure of 5 .
To know the individual sputtered rate of Pd and Ag at certain
sputtering conditions, several single sputtering runs of Pd and
Ag were done on silicon wafers with photoresist patterns. After
sputtering, the resist was removed by acetone in an ultrasonic
bath, leaving a patterned metal layer of which the thickness was
measured with a Dektak Surface Profiler. From these data, the
sputter rate of each metal can be calculated determined. Pd–Ag
alloy films were achieved by simultaneously sputtering from
pure targets of Pd and Ag on the silicon structure described in
the previous section, which contained a 20 nm thick adhesion
layer of Ti sputtered just before. By controlling the power sup-
plied to each target, the sputtered rates were adjusted at 50 and
17 nm/min for Pd and Ag, respectively. If these numbers are
converted to weight concentrations, using (bulk) densities of the
metals, an alloy composition of Pd77-Ag23 at wt% is expected.
The sputtering time was used to get the desired film thickness,
e.g., 15 min are needed to achieve a 1--thick alloy film.

The compositions of the Pd–Ag alloy films were checked by
X-ray Photoelectron Spectroscopy (XPS). A representative ex-
ample is shown in Fig. 6. It can be seen that the compositions
are constant throughout the alloy film, and that the Ag content
is just a little lower than expected, which might be due to the
fact that the deposition rates of the metals in the co-sputtering

Fig. 7. XRD pattern of the deposited Pd–Ag layer on a thin layer ofSiO on
a silicon wafer. The substrate temperature was 400C during sputtering.

state are slightly different from those in the calibration runs in
which only one target was used (perhaps due to a slight inter-
ference of the plasma fields on the two targets during co-sput-
tering). Furthermore, using bulk metal densities to calculate the
composition of the thin film could also be a reason for the lower
Ag concentration. It has often been reported that, depending on
the deposition conditions, the density of sputtered films is lower
than that of bulk material [17].

The crystalline properties of the deposited Pd–Ag layer were
investigated by X-Ray Diffraction (XRD) (Philips, CuKá radia-
tion). The results are shown in Fig. 7. The XRD pattern consists
of (111) and (222) diffraction peaks, where the (111) peak cor-
responds to a lattice spacing of 2.268, to be compared with
the corresponding lattice spacing of pure Pd and pure Ag
of 2.246 and 2.359 [18], respectively. The results indicate
that the deposited Pd–Ag layer exhibits a preferential orienta-
tion in the direction.

The average crystallite size was calculated by applying
Scherrer’s equation to the (111) peak and found to be about 35
nm, which is quite consistent with the grain size of sputtered
Pd–Ag layer reported by Xomeritakiset al. [18]. A more
detailed XRD study of our sputtered Pd–Ag alloy films will be
reported shortly [19].

In conclusion, it was found that an alloy of composition
Pd77-Ag 23 at wt% can be deposited by co-sputtering from
separate pure metal targets, which is a powerful method that
can be used to fabricate many other types of alloy films with
highly accurate compositional control, see also [20].

C. Flow Channels in Glass by Powder Blasting

Powder blasting was used to create a flow channel in a 5 mm
thick borosilicate glass wafer. The method consists in directing
particles with a high velocity toward a substrate, from which
material will be removed by mechanical corrosion. Advantages
of the method are: simplicity, low-cost and high etch rate [21].
The process steps used in powder blasting of thick glass plates
are outlined in Fig. 8. In brief, two glass wafers were covered
with an Ordyl BF 410 photosensitive foil, which acts as a pro-
tective layer during powder blasting. After a photolithography
process as described in [21], powder blasting was applied to ob-
tain a 1-mm-deep gas buffer zone on each of two glass wafers
(see Fig. 1). These buffer zones are used to distribute the flow
uniformly over the membrane surface. Without them, most of
the gas would flow along the center of the membrane, there-
with limiting the effective working area of the membrane. A
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Fig. 8. Process-outline of fabrication of flow channels by powder blasting.

Fig. 9. Four electrode anodic bonding setup for glass-silicon-glass packaging.

second powder blasting step is performed in order to create a
0.2-mm-deep flow channel, which is connected to the periph-
eral equipment via holes previously drilled in the glass wafers.

D. Assembly of the Membrane

In the last process step, the silicon wafer is bonded between
the two thick glass wafers by a four-electrode anodic bonding
technique (see Fig. 9). This process is performed in two steps,
because adequate bonding requires that a positive electrical
voltage has to be applied to the silicon and a negative voltage
to the glass. The process resulted in a tight seal between each
glass wafer and the silicon wafer. Furthermore, the bonding
process as it was performed here creates a membrane module
which is robust enough for practical use, e.g., in this form it
could be integrated in a stainless steel membrane holder (see
Fig. 10) to have connections to a gas manifold and analysis
equipment. In the used membrane holder, high forces, exerted
by screws, are needed to press membrane module and stainless
steel plates tightly together, without leakage. In our set-up,
flexible graphite rings were applied in between the holder and
the membrane module to make a gas-tight connection.

Although not tested here, the bonding method discussed
above would allow the construction of a stack that consists of a
large number of silicon wafers separated by glass plates. Such a
stack would be suitable for industrial applications where a high
volume of hydrogen needs to be extracted from a gas mixture.

III. RESULTS AND DISCUSSION

A. Etching of Silicon

Fig. 4 shows a SEM micrograph of the cross-section of sev-
eral narrow parallel slits, etched in a 350 thick -Si and
having a periodicity of 90 . A similar pattern might also be
obtained with Deep Reactive Ion Etching (DRIE) [22], how-
ever, with that method only one wafer at the time can be pro-

Fig. 10. Membrane holder, the upper part can move up and down and is pressed
to the lower part by screws and springs.

cessed, while KOH etching allows a large number of wafers
to be etched simultaneously. More details on high-aspect-ratio
etching in -Si wafers can be found elsewhere [23]–[26].

From Fig. 4 the width of the etched slit is estimated to be
about 28 , while its initial width was defined by lithography
to be 23 . This widening of the etched slit should be char-
acterized exactly and taken into account during the design, for
two main reasons: 1) a wider slit would imply a wider mem-
brane, which would have a lower mechanical strength (mem-
brane strength strongly depends on membrane width [27]) and
2) unexpected widening of the slits would make the determina-
tion of the total free membrane area, i.e., the separation area,
difficult. Slit widening is due to a nonzero etch rate of the ver-
tical formula planes, which depends on the accuracy of
alignment of the mask patterns to the planes (this factor
was reduced to a minimum in our work by using the previously
described fan-shaped pattern to find the exact planes),
but also on etching conditions [25], [26]. In our work, the ratio
of the etch rates of the to the planes is estimated
to be about 140, which is comparable to data reported by Holke
and Henderson [26].

These data can be used to calculate the substrate porosity, de-
fined here as the relative area of the substrate that is available for
hydrogen permeation. To define the hydrogen separation mem-
brane area, the length of the free area created by KOH
etching of one slit through a (110) silicon substrate should be
known (see Fig. 3). Using simple geometrical considerations,
this length is given by [23]

(1)

with the length and the width of the opening slit, and the
thickness of silicon wafer. Applying (1) with ,

and , gives a length of 317 . As
a result, etching one slit per area of 1500 by 90 through
a -Si creates an effective separation area of 317by 28

.
In the first study, much attention was directed to exploring

the microfabrication technology as a novel method to fabricate
thin, strong and pin-hole free membranes to gain high hydrogen
permeation and high selectivity, a membrane porosity (an area
percentage to allow hydrogen permeation) has not been studied
in detail. In the following paragraph, the membrane porosity
aspect is discussed.

By making the slit broader (increasing) or longer (increasing
) or using a thinner wafer [see (1)] will give a larger effec-

tive area for hydrogen separation and will increase the porosity.
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However, as will be shown in the next section, the mechanical
strength of the membranes strongly depends on their shortest di-
mension [27], therefore increasing their width will result in
weaker membranes. An alternative way to increase the porosity
is to decrease the pitch of the slits. Taking all the above into ac-
count, the optimized design of the separation module will con-
sist of slits of 3000 by 23 with a periodicity of 50 ,
giving a porosity of about 20%.

The porosity can be increased even further, by using deep-re-
active ion etching (DRIE) [22]. DRIE of silicon is not restricted
by silicon planes and therefore it is possible to achieve
slits with . However, the drawback of using the reac-
tive ion etching method is that wafer throughput is much lower
than that obtainable with KOH etching.

B. Mechanical Strength of the Membranes

The mechanical strength of the membranes is an important as-
pect, as the hydrogen flux is driven by a (partial) pressure differ-
ence across the membrane. Predicting the mechanical strength
of the membranes is however quite complicated, as it depends on
various factors like membrane construction, thickness and mate-
rial properties (which for thin films may be difficult to estimate
or measure). Therefore, the strength of membranes is normally
determined experimentally. Nevertheless, a rough estimation of
the strength is very valuable during the design phase, and there-
fore we started our work with an estimation of the strength of
our microfabricated membranes based on the originally chosen
design parameters width and length (defined by the lithographic
process), thickness and (bulk) material properties.

As can be seen in Figs. 1 and 5, the microfabricated mem-
brane module is composed of many smaller Pd–Ag membranes
acting in parallel, of which a single one is formed by a Pd–Ag
membrane spanning across one etched slit. It can safely be as-
sumed that the mechanical strength of the silicon support that
surrounds the Pd–Ag membranes is much higher than that of
a single Pd–Ag membrane, therefore the strength of the whole
membrane module will be mainly determined by that of a single
membrane. Van Rijnet al. [27] derived an equation that can be
used to estimate the maximum transmembrane pressure
for a thin membrane of composed of a ductile material

(2)

where is the thickness of the membrane,the length of the
shortest side of the membrane, the yield stress and the
Young’s modulus of the membrane material. Several values of

and for thick foils of Pd and Ag are given in Table I [28].
However, the values of and for sputtered Pd77-Ag23
wt% alloy film have not been reported yet. Besides that, the
mechanical properties of thin may differ for different deposi-
tion methods and conditions [17], so that film property data ob-
tained from literature cannot be taken for granted. Very critical
is the temperature at which the membrane will have to operate.
In general, both and are temperature dependent and
typically a higher temperature will lower . If it is assumed
that the material properties of an alloy can be interpolated from
the properties of the individual metal elements, we arrive at a
yield strength of 80 MPa and a Young’s modulus of 150 GPa

TABLE I
MECHANICAL PROPERTIES OFPD, AG, AND THE POSTULATED DATA FOR THE

SPUTTEREDPd–Ag ALLOY

for the deposited Pd–Ag alloy film. Applying (2) for a single 1
thick Pd–Ag membrane spanning across a 28wide slit,

we find a of 4.1 bars.
The rupture strength of the Pd–Ag membrane was

measured at room temperature in the setup described by van
Rijn et al. [27]. It was found that the Pd–Ag membranes did not
break at a pressure difference of 4 bars over the membrane, but
some of the membranes broke at a pressure difference of about
5 bars. Tests at higher pressure could not be carried out with
the setup used. Nevertheless, as was expected, the membranes
that broke ruptured on the Pd–Ag membranes and not on the sil-
icon support. Although the rupture strength of the membranes
was not measured at higher temperatures, the room temperature
tests show that the microfabricated membrane is mechanically
strong enough to operate under the desired pressure gradient.

C. Hydrogen Permeation and Selectivity of the Membranes

To determine the hydrogen permeation and selectivity of the
membranes, they were positioned in the previously described
stainless steel membrane holder and heated up to the desired
temperature. Membrane permeabilities and selectivities for hy-
drogen were determined as a function of hydrogen partial pres-
sure (0–0.3 bars) and temperature (350–450).

Although the mechanical strength tests at room temperature
have shown that the membranes can withstand a pressure of at
least 4 bars, up to this point no experiments had been carried
out at high temperatures in the presence of hydrogen gas. It has
to be taken into account that under such conditions the yield
strength of the Pd–Ag film may be completely different and
perhaps drops to lower values. In addition, the yield strength
of the materials may decrease after repetitive loading cycles.
Therefore, for safety reasons the membranes were only tested
at hydrogen pressures of up to 0.3 bars.

During these experiments the retentate and permeate sides of
the membrane were continuously flushed at atmospheric pres-
sure, the retentate side with a mixture of hydrogen and helium,
the permeate side with pure nitrogen. The flux and selectivity
were determined by measuring the hydrogen and helium con-
centration in the nitrogen stream with a gas chromatograph,
equipped with a thermal conductivity detector (TCD). Details
of the measurement set-up have been reported by Gielenset al.
[31].

The hydrogen flow rate through the membrane versus the du-
ration of the experiment is given in Fig. 11. It should be noted
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TABLE II
COMPARISON OF THEPERMEATION RESULT TO THELITERATURE DATA OF THIN SPUTTEREDPd-AND Pd-ALLOY MEMBRANES ONPOROUSSUBSTRATES

Fig. 11. Hydrogen flow rate through the membrane as a function of time
at temperature of 450C. The measurement started, when the membrane
temperature was at 350C in hydrogen environment.

that the measurement started when the membrane temperature
was 350 . At a membrane temperature of 450 and a hy-
drogen partial pressure of 0.2 bar at the retentate side, a hy-
drogen flux of 0.5 mol .s was achieved. Testing the mem-
branes at higher hydrogen pressure will probably give higher hy-
drogen fluxes through the membranes, this will be carried out
in a next study.

The dependence of hydrogen flux on temperature was also
investigated. Fig. 12 shows the hydrogen flow rates through the
membrane at different temperatures from 350to 450 . It
can be seen that the hydrogen flow rate increases with increasing

Fig. 12. Dependence of hydrogen flow rate through the microfabricated
Pd–Ag membrane on temperature.

temperature, however, the dependence is larger than expected
from theory [32]. More experiments are currently being carried
out in our laboratory to elucidate this effect and have a better
understanding of membrane performance. Nevertheless it can
be said that in the temperature range considered here the ob-
tained fluxes are high in comparison with reported values for
thin sputter-deposited Pd–Ag membranes on porous substrates
(see Table II).

For each of the samples that were investigated, we measured
the helium concentration at the permeate side during the perme-
ation experiment. A significant helium concentration would in-
dicate a leak or pin-holes in the Pd–Ag membranes, but in none
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of the cases helium was detected. Based on the helium detection
limit of the gas chromatograph, a minimal separation selectivity
of 550 for hydrogen to helium can be calculated. This selectivity
is relatively high in comparison with that of conventional mem-
branes fabricated by sputtering Pd–Ag on porous substrates (see
Table II). The measurements thus indicate that the microma-
chined Pd–Ag membranes are virtually pin-hole free.

IV. CONCLUSION

Wafer-scale Pd–Ag alloy membrane modules were micro-
machined and tested. KOH etching of -Si was utilized
to fabricate a supporting structure for a sputtered Pd–Ag film.
This micron thick Pd–Ag layer was deposited by co-sputtering,
which is a powerful method to make thin alloy film with highly
homogeneous compositions. Anodic bonding of thick glass to
silicon was used to package the membrane and create a robust
module.

The membranes were found to have adequate mechanical
strength and were capable of withstanding a pressure difference
of 4 to 5 bars at room temperature. The microfabricated Pd–Ag
membranes obtained a high permeation rate and high selectivity
for hydrogen. Typical flow rates of 0.5 mol were
measured at the hydrogen pressure of 0.2 bars at 450with a
minimal selectivity of 550 for to He.

The reported membranes may be applied for hydrogen sepa-
ration or purification from gas mixtures or in membrane reac-
tors for dehydrogenation. The results indicate that an industrial
module that consists of a stack of a number of glass/membrane
plates with a higher throughput of hydrogen is feasible.
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