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In addition to habitat loss and fragmentation, behavioral traits and the deterioration
of water environments also contribute to the local extinction of amphibians. Abundant
microflora in urban ponds may cause fatal diseases, whereas symbiotic bacteria may
protect the host from pathogens; these effects may vary with group size. In this study, I
monitored the growth of Japanese common toad (Bufo japonicus) larvae in Tokyo using
three different group sizes: 1 (solitary), 2 (pair), and 15. Although there was no genetic
bias in the major histocompatibility complex (MHC) class II genes or microsatellite loci
to the survival of the larvae, the mortality risk of the larvae reared in pond water was
higher than that of those reared in tap water. According to the survival analysis, the risk
was more significant when the group size was 15. This result would be unwelcomed for
the B. japonicus tadpoles, which have habits of social aggregation. Furthermore, larval
metamorphosis took longer to complete in pond than tap water without any difference in
body length or mass. These findings provide fundamental insight into the impact of the
aquatic environment and the effect of the group size on animal health and conservation.

Keywords: amphibian larvae, infection disease, population decline, major histocompatibility complex (MHC),
urban pond, wild animal health, Bufo japonicus, group size

INTRODUCTION

Wildlife disease management is an important global issue. Two-thirds of mammals, birds, reptiles,
and fish, and amphibians face global declines, driven by habitat loss and infectious diseases (WWF,
2020). Local extinctions of wild animals alter ecosystems; this is linked to human activity, animal
health, and interactions with microorganisms (Fisher et al., 2012; Rabinowitz and Conti, 2013; Mills
et al., 2019; Ode Sang et al., 2022).

In amphibians, fungal pathogens can cause disease-driven extinction; for example,
Batrachochytrium dendrobatidis has caused or threatened the local extinctions of more than
200 species (Daszak et al., 1999; Skerratt et al., 2007). This has encouraged research on disease
management and microorganism diversity in amphibians (Harris et al., 2009; Mcfall-Ngai et al.,
2013; Walke et al., 2014; Bataille et al., 2016; Rebollar et al., 2016; Walke and Belden, 2016;
Bletz et al., 2017; Jani et al., 2021), where the composition of microbial communities is
linked to host resistance to fungal pathogens (Harris et al., 2009; Becker et al., 2015; Rebollar
et al., 2016; Bates et al., 2018). Symbiotic bacteria vary by host species, host age, and site
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(Kueneman et al., 2014; Walke et al., 2014; Hernández-Gómez
et al., 2017; Jiménez and Sommer, 2017). In addition,
temperature, humidity, water characteristics, and landscape
influence host–microbiota interactions, i.e., the spread of fungal
pathogens is related to both biotic and abiotic factors (Beyer
et al., 2015; Krynak et al., 2016; Bernardo-Cravo et al., 2020).
Environmental well-being is important for wild animal health.
The aquatic environment is critical for the growth of aquatic
organisms, such as amphibian larvae. Moreover, ponds are crucial
for aquatic biodiversity, and urban ponds can maintain the same
level of biodiversity as rural ponds (Hill et al., 2017). Finally,
managing urban ponds is essential for public health (Lambert
and Donihue, 2020) and studying amphibians is necessary to
understand pond environments (Menetrey et al., 2005).

The larvae of the Japanese common toad, Bufo japonicus
Temminck and Schlegel, 1838, exhibit a strong schooling
tendency, often aggregating cohesively (Wells, 2010).
Aggregation is beneficial in the presence of predators (Watt
et al., 1997), whereas it has costs when infectious diseases
occur because it prevents social distancing (Sandel et al., 2020;
Stockmaier et al., 2021). Generally, grouping increases the risk
of transmission of infectious disease through social interactions
(Kappeler et al., 2015; Pinter-Wollman et al., 2018; Stockmaier
et al., 2021). Furthermore, highly transmissible pathogens can
spread more easily, and over longer periods, in gregarious than
socially hierarchical species (Sah et al., 2018).

Ponds that are home to B. japonicus larvae contain many
microorganisms, some of which are pathogenic. This supports
the hypothesis that growing in pond water would be more
costly for larvae than growing in water without microorganisms.
The risk of mortality due to infection may also be greater for
larger than smaller groups. To test this, I conducted a rearing
experiment using three different group sizes of B. japonicus
larvae from an urban pond, Ichiniro-ike (at The University
of Tokyo). The number of B. japonicus in the Ichiniro pond
population has decreased—10 years ago, 120 mating pairs
were observed (Hase and Shimada, 2014), compared to fewer
than 10 in the last few years (Hase, personal observation). I
investigated the influence of water environment and group size
on the decline in this local population. In addition, to ascertain
whether the genetic background contributed to differences in
larval viability, I proceeded with population genetic analyses
using the major histocompatibility complex (MHC) class II gene
(as an assessment for the immunity against pathogens) and
microsatellite loci (as a neutral marker).

METHODS

Rearing Experiment
The rearing experiment was conducted using B. japonicus larvae
from a field-captured egg string laid by one female in Ichiniro-
ike at The University of Tokyo in February, 2021. Only one
egg string was available at the time of sampling, which limited
replication to the rearing experiment of the present study. Two
types of water were used for rearing: dechlorinated tap water
and pond water. Figure 1 shows the rearing experiment. To

measure the effect of group size in a limited sample size, I
focused on three levels: 1 (solitary, no interaction), 2 (pair,
smallest size in which interaction can occur), and 15 (large
enough to observe group effects). Bufo japonicus larvae were
raised in three groups at 18◦C with a 12:12 h dark:light
cycle. Larval development was monitored for 50 days: survival,
hindlimb emergence [developmental stage 38 (Gosner, 1960)],
forelimb emergence [stage 42 (Gosner, 1960)], and completion
of metamorphosis [i.e., toadlet, stage 46 (Gosner, 1960)] were
recorded. Finally, the snout-vent lengths (hereafter, SVL) and
body masses of the toadlets were measured. The daily records
and developmental data on the reared larvae are listed in
Supplementary Tables 1, 2, respectively.

Assessment for Water Characteristics
The chemical composition of the tap and pond water was
evaluated using a water quality test (Supplementary Table 3).
The microflora of pond water was analyzed by 16S-rRNA gene-
targeted amplicon sequencing. I have prepared two samples
of 2 L of environmental water collected from the Ichiniro-
ike (Supplementary Figure 1) and filtered through membranes
(0.22 µm, MF-MilliporeTM). The water samples underwent
Next generation sequencing of 16S ribosomal RNA gene PCR
amplicons (16S-rRNA gene-targeted amplicon sequencing) at
FASMAC Co., Ltd. (Kanagawa, Japan). Bacterial taxonomy
(phylum/division) was analyzed using QIIME [ver. 1.9.0,
(Caporaso et al., 2010)] based on the representative sequence
of operational taxonomic units formed by 97% homology. The
result of bacteria taxonomy analysis at the phylum level is shown
in Figure 1B.

DNA Extract and Genotyping
For dead individuals of the rearing experiment, total DNA
content was extracted from the tail-tips (2–3 mm) using DNeasy
Blood & Tissue Kits (Qiagen, Inc., Valencia, CA, United States)
following the product protocol. For the alive toadlets, toe
tips (approximately 1 mm) were left to digest overnight in
ethylenediaminetetraacetic acid–sodium dodecyl sulfate (EDTA-
SDS) solution (0.3% SDS, 400 mmol/L NaCl, 5 mmol/L EDTA,
20 mmol/L Tris–HCl, pH 8.0) containing 200 µg/mL proteinase
K at 55◦C.

To evaluate whether the genetic background of immunity
links to the survivorship, MHC class II antigen (partial exon)
polymorphism of the reared larvae was ascertained. MHC
allele sequences were amplified by PCR using locus-specific
two primers from previous study (May et al., 2011; Bataille
et al., 2015), 2F347 (5′-GTGACCCTCTGCTCTCCATT-3′)
and 2R307b (5′-ATAATTCAGTATATACAGGGTCTCACC-3′),
and a newly developed primer for Bufo japonicus, R_BjMHCII
(CCATAGTTG TRTTTACAGWATSTCTCC). PCR was
performed according to the product protocol using KAPA2G
Fast HotStart Ready Mix (Kapa Biosystems, Inc., Wilmington,
MA, United States) to obtain amplified fragments. Sequencing
was performed with a newly developed primer, F_BjMHCII
(CCTCTGCTCTCCATTACAGATGC), located inside of
the fragment. For neutral genetic markers, I selected four
microsatellite loci regarding previous studies: Bbufu23, Bbufu39,
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Bbufu62 (Brede et al., 2001), and Bjap14 (Hase et al., 2013).
Following a method described previously (Hase et al., 2013),
the loci were amplified with two multiplex reactions using a
KAPA2G Fast Multiplex PCR Kits (NIPPON Genetics Co., Ltd.)
according to the manufacturer’s protocol. The sequencing and
fragment size analysis of the PCR products were conducted
by 3130xl Genetic Analyzer. In addition, I tried to check
for infection with Batrachochytrium dendrobatidis of the
larvae, referring to the previous study (Goka et al., 2009),
but no chytrid presence was detected. All genotype data for
72 individuals are available in Supplementary Table 4, and
sequences of detected unique MHC alleles are deposited in

GenBank (accession number: OM994394–OM994396). Results
of the phylogenetic relationship for MHC alleles and genetic
clustering for the genotype of microsatellite loci are shown in
Supplementary Figure 2.

Data Analysis
To evaluate survival in each group, I created Kaplan–Meier
survival curves between tap and pond water using log-rank tests.
The effect on development was investigated by applying a general
linear mixed model (GLMM) with a binomial error distribution.
Survival days, days to hindlimb emergence, forelimb emergence,
and metamorphosis (toadlet) were used as response variables.

FIGURE 1 | (A) Diagram of the rearing experiment. Bufo japonicus larvae reared in three group sizes, 1, 2, and 15 were prepared. The length, width, and height (mm)
of the plastic containers were 80 × 80 × 53, 80 × 156 × 53, and 156 × 235 × 83, respectively. Before use, tap water was dechlorinated, and pond water was
filtered through a polyethylene net (100 mesh). The amount of water per larva was kept the same at 100 mL, and the water was changed every 2 days in all
containers simultaneously. When the larvae began to swim [stage 25 (Gosner, 1960)], I started feeding them with food pellets (PLECO; Kyorin, Inc., Ltd., Hyogo,
Japan). After the forelimbs grew out, the amount of water was reduced by half, and the container was slanted to make space for the toadlets to land. (B) Relative
abundances of bacterial taxonomy at phylum level of Ichiniro pond water. Points 1 and 2 correspond to the rearing water’s sampling location at Ichiniro-ike
(Supplementary Figure 1).

TABLE 1 | Summary of the rearing experiment.

Water Group size Survival Days to development of SVL (mm ± SD) Mass (mg ± SD)

Rate Days Hindlimb Forelimb Toadlet

Tap 1 0.58 39.1 ± 14.8 28.3 ± 1.6 35.2 ± 2.2 42.0 ± 1.2 11.1 ± 0.8 157.1 ± 71.7

2 0.75 44.8 ± 10.0 27.7 ± 0.6 34.3 ± 1.0 41.4 ± 1.2 11.7 ± 1.3 178.7 ± 90.8

15 0.87 41.9 ± 8.4 29.6 ± 2.1 36.1 ± 1.7 44.1 ± 1.4 12.5 ± 1.2 262.1 ± 51.8

Total 0.81 45.8 ± 10.1*** 29.1 ± 2.0* 35.6 ± 1.8*** 43.4 ± 1.7*** 12.2 ± 1.3 198.2 ± 60.6

Pond 1 0.58 35.1 ± 18.0 30.0 ± 0.0 36.4 ± 0.8 43.6 ± 1.1 11.7 ± 0.6 197.6 ± 68.2

2 0.67 38.3 ± 17.6 30.6 ± 3.3 37.8 ± 4.4 43.9 ± 1.7 12.2 ± 0.4 194.3 ± 70.7

15 0.53 26.5 ± 14.5 30.8 ± 1.2 38.2 ± 1.0 46.4 ± 1.0 13.0 ± 1.0 238.6 ± 44.5

Total 0.56 37.6 ± 15.4*** 30.6 ± 1.7* 37.8 ± 2.1*** 45.6 ± 1.7*** 12.4 ± 0.9 199.2 ± 72.8

Water, type of rearing water; group size, classification of rearing group; survival rate, alive days (mean ± SD, ends in 50 days). Days to development (mean ± SD):
hindlimb, hindlimb emergence (stage 38, Gosner, 1960); forelimb, forelimb emergence (stage 42, Gosner, 1960); toadlet, metamorphosis completion (stage 46, Gosner,
1960). SVL, mean snout-vent length as a toadlet. Mass, mean body mass as a toadlet.*p < 0.05; ***p < 0.001 (GLMM).
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FIGURE 2 | Kaplan-Meier Curves of rearing tadpoles over 50 days for group sizes 1 (A), 2 (B), and 15 (C). Dashed lines represent 95% confidence intervals.
(D) Violin plot with mean and standard deviation for the days taken to develop between tap (N = 72) and pond (N = 47) waters, from left to right, hindlimbs
emergence, forelimbs emergence, and completion of metamorphosis (toadlets). SVL (E) and mass (F) of toadlets. (G) Allelic patterns by category: Ta, tap water and
alive; Td, tap water and dead; Pa, pond water and alive; Pd, pond water and dead. NS, not significant; *p < 0.05; ***p < 0.001. Detailed information on allele
frequency is presented in Supplementary Table 5.
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Group size was used as a random variable, while water type was
a fixed explanatory variable. SVL and body mass were evaluated
using a GLMM with Gaussian distribution and were used as
response variables. The statistical analysis was performed using
R 4.1.2 (R Core Team, 2021). The population genetic analyses
between dead and alive individuals were carried out based on the
MHC class II exon and four microsatellite loci by the program
GenALEx v. 6 (Peakall and Smouse, 2006).

RESULTS

Table 1 shows the results of the rearing experiment. Water
quality was significantly related to differences in larval survival:
B. japonicus larvae were alive better when raised in tap water than
in pond water (z = 19.37, p < 0.001). However, Kaplan-Meier
estimator, the group size effect was evident only for group 15:
the results of the log-rank test for group sizes 1, 2, and 15 were
p = 0.8, p = 0.8, and p < 0.001, respectively (Figures 2A–C). The
development rate was significantly lower in pond water (days to
hindlimb, z = −2.38, p = 0.017; forelimb, z = −3.83, p < 0.001;
toadlet, z =−5.07, p< 0.001; Figure 2D). Neither the SVL nor the
body mass of the toadlets differed according to water type (SVL,
df = 107.17, t = −1.20, p = 0.23; mass, df = 103.42, t = −1.903,
p = 0.06; Figures 2E,F).

There was no association between genotype and the results
of the rearing experiment (Figure 2G). The unique MHC
alleles were not explicitly relevant to larval survival and the
microsatellite genotype did not explain the differences according
to viability and water type (Figure 2G, Supplementary Figure 2,
and Supplementary Table 5).

DISCUSSION

Bufo japonicus larvae reared in pond water were more likely
to die and developed more slowly than their siblings in tap
water (Table 1). Large groups of tadpoles in pond water were
at greater risk of death (Figures 2A–C). Changes in larval
growth depended only on the water conditions (Figure 2D); no
distinctive genotypes were detected in the individuals that died
(Figure 2G). Two factors likely contributed to these results.

First, the pond water did not inherently favor the development
of the larvae. Ichiniro pond water contains abundant microflora,
particularly Proteobacteria and Bacteroidetes (Figure 1B). Some
deaths may be attributable to the same disease because deaths
in the group 15 often occurred in succession, suggesting them
to be infection-related (Figure 2C and Supplementary Table 1).
Twenty-one bacterial taxa were detected (Figure 1B); even if
bacteria are linked to the cause of death, the bacteria responsible
are likely to vary among groups, containers, and individuals.
A wide variety of causes of death would also make it even
more difficult to assess the association with genetic background,
especially in the immune system associated locus, i.e., MHC
genes. In addition, microflora can alter the chemical composition
of the water (Garcia-Ochoa and Gomez, 2009; Garcia-Ochoa
et al., 2010). The water quality testing showed that the biological

oxygen demand of pond water was three times higher than
that of tap water (Supplementary Table 3), which indicates the
possibility of microbial modification. Deterioration of the quality
of the pond water would delay the development of larvae.

Second, a local population decline could debilitate larvae. The
number of B. japonicus in Ichiniro pond is decreasing rapidly,
and at the time of sampling for this study, only one egg string
was found. Therefore, the genetic diversity of toads at this site
has decreased. In a previous rearing experiment using tap water
conducted at the same site, the larvae had a higher survival
rate [99% (Hase et al., 2022)] than in the present study (81%;
Table 1). Even in the absence of pathogenic microorganisms,
larval viability has decreased. Genetic deterioration is likely
occurring in B. japonicus in this area due to the rapid population
decline (Willi et al., 2006).

More research is needed to reveal the link between
environmental microflora and animal health. Under optimal
conditions, animals grown with symbiotic bacteria are protected
from pathogens (Sommer and Bäckhed, 2013). Even in animal
taxa that are not highly hierarchical, disease management efforts
should consider behavioral traits such as grouping.
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