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Abstract This article reviews state-of-the-art microflu-

idic biosensors of nucleic acids and proteins for point-

of-care (POC) diagnostics. Microfluidics is capable of

analyzing small sample volumes (10-9–10-18 l) and min-

imizing costly reagent consumption as well as automating

sample preparation and reducing processing time. The

merger of microfluidics and advanced biosensor technolo-

gies offers new promises for POC diagnostics, including

high-throughput analysis, portability and disposability.

However, this merger also imposes technological chal-

lenges on biosensors, such as high sensitivity and selectivity

requirements with sample volumes orders of magnitude

smaller than those of conventional practices, false response

errors due to non-specific adsorption, and integrability with

other necessary modules. There have been many prior

review articles on microfluidic-based biosensors, and this

review focuses on the recent progress in last 5 years.

Herein, we review general technologies of DNA and protein

biosensors. Then, recent advances on the coupling of the

biosensors to microfluidics are highlighted. Finally, we

discuss the key challenges and potential solutions for

transforming microfluidic biosensors into POC diagnostic

applications.

Keywords Microfluidics � Biosensor �
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1 Introduction

Biosensors combine a molecular recognition element with

a signal conversion unit (Mohanty and Kougianos 2006).

Some biosensors have been successfully commercialized

for clinical applications such as electrochemical blood

glucose sensors (Kissinger 2005). Molecular biosensors

are more preferred as a clinical diagnostic tool than other

methods partially because of real-time measurement,

rapid diagnosis, multi-target analyses, automation, and

reduced costs (Luong et al. 2008). As a recent advance in

molecular biology has led to our better understanding of

potential disease-related protein biomarkers and DNA

mutations, biosensors became a promising technology for

early diagnosis (Teles and Fonseca 2008; Schasfoort

2004; Wang 2006). The spatio-temporally regulated gene

is a critical process for proper functions of all living

organisms. Genetic and epi-genetic modifications of the

regulatory processes are the underlying causes in many

diseases (Situma et al. 2006). Therefore, monitoring the

mutation and modification of DNA and the expres-

sion level of protein biomarkers is critical for the

early diagnosis of diseases (Wang 2006). Recently, there

has been an increasing interest to integrate advanced

biosensors into lab-on-a-chip systems by introducing

microfluidics (Haeberle and Zengerle 2007). The lab-on-

a-chip systems take advantage of several intrinsic char-

acteristics of microfluidics including laminar flow, low

consumption of costly reagents, minimal handling of

hazardous materials, short reaction time required for

analysis, multiple sample detection in parallel, portability,

and versatility in design (Choi and Chae 2009a). With

microscale fluid regulators (e.g. valves, mixers, and

pumps) integrated on the lab-on-a-chip platform, the

analytical performance of biosensors toward point-of-care
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(POC) diagnostics can be greatly enhanced (Henares

et al. 2008).

POC testing is one of the most promising areas for

biosensor applications and readily provides the clinician

essential information of proper treatments. In developing

areas and disaster scenes where only very limited resources

are readily accessible, POC system is an attractive tool to

diagnose patients for proper clinical management (Yager

et al. 2006; Rasooly 2006). Nevertheless, the stringent

requirement of POC diagnostics presents new challenges

for biosensor technologies. For instance, detecting target

analytes with high sensitivity and selectivity is a key

challenge in microfluidic-based POC because of the ultra-

small sample volumes. Another challenge is to merge the

detection component with other fluid regulatory elements

on a single platform. There are many prior art on micro-

fluidic-based biosensors and this article does not review all.

For those who are interested in microfluidic applications

and POC systems, developed before 2005, the authors

suggest them to read the following review articles (Ahn

et al. 2004; Bashir 2004; Yager et al. 2006; Lee and Lee

2004; Sanders and Manz 2000; Jakeway et al. 2000;

Chovan and Guttman 2002; Colyer et al. 1997; Vilkner

et al. 2004; Feng et al. 2009; Crevillen et al. 2007; Henares

et al. 2008; Abgrall and Gue 2007; Situma et al. 2006). In

this article, we focus reviewing recently reported biosen-

sors within past 5 years that are integrated with micro-

fluidics for detecting DNAs and proteins toward POC

applications. We will also address challenges in the

development of the microfluidic-based biosensors and their

system level integration.

2 Promises

2.1 DNA biosensor

2.1.1 Why DNA for diagnostics?

DNA detection of POC systems facilitates ‘‘personalized’’

healthcare. If the sequence of a complete genome of an

individual is available, for instance, the patient can adapt

the prescriptions pharmacogenomically and set up a per-

sonalized treatment plan that maximizes the efficiency of

the treatment. Besides the whole genome sequencing,

DNA-based diagnostics allow tumor mutation profiling

(Milos 2009) as well as identifying highly specific disease

markers. In this section, we will provide a brief overview

of the current methods used for DNA-based diagnostics

and elaborate on their potential for microfluidic integration.

In addition, we will point out what current limitations on

integrating DNA biosensors are and which of the new

approaches in DNA analysis has the potential to transform

POC microfluidic diagnosis.

2.1.2 General DNA sensing technique for diagnostics

There is a significant demand in high-throughput DNA

analysis tools to assist diagnostics in research and clinical

applications. The ‘‘standard’’ approach involves the mul-

tiplication of the sample DNA via polymerase chain reac-

tion (PCR) and the subsequent fluorescence detection of

DNA fragments based on their electrophoretic mobility on

a gel substrate (Ugaz et al. 2004). This protocol requires

the use of individual facilities for each of the steps

involved, which needs well-equipped laboratory and highly

trained operators. A different approach, which is valuable

for DNA sequencing, is the use of fluorescence hybrid-

ization assays. Such assays are performed by selectively

immobilizing single-stranded DNA (ssDNA) or RNA

strands on a solid substrate, typically glass. The immobi-

lized ssDNA fragments are complementary to the ssDNA

to be probed. The probe DNA is tagged with fluorescent

markers and added to the chip carrying the immobilized

test DNA. Since the probe DNA carries fluorescent tags,

hybridization events can be detected via optical interro-

gation and probing. Fluorescence hybridization assays are

very well automated, requiring little manual operation. A

detailed overview covering the commercially available

screening tools with their respective detection limits, lat-

eral resolution, and detection technology used is provided

by Bally et al. (2006).

2.1.3 Microfluidic DNA sensor for POC diagnostics

The main reason why DNA-based diagnostics has not

found more widespread use is the requirement of a com-

plete tool-chain (PCR, electrophoresis, and fluorescence

scanner) and the high cost of integrated tools for hybrid-

ization assays. Gascoyne et al. (2004) compared different

methods including DNA hybridization for Malaria detec-

tion. It was noted that genetic detection methods would

offer significant advantages over microscopy assays if they

would be implemented in a micro total analysis format.

Learning from the success of the ‘‘standard’’ approach in

DNA-based analysis, the development of microfluidic lab-

on-a-chip for DNA-based diagnostics has focused mainly

on replicating the standard approach, involving PCR and

gel electrophoresis, by integrating the different steps into a

microfluidic platform for POC applications. Miniaturiza-

tion in the small-size platform is useful since the classic

macroscopic liquid handling leads to sample dilution and

the use of multiple instruments causes sample loss and

bears the risk of contamination (Liu and Mathies 2009).

Several extensive reviews on these microfluidic devices
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exist, involving PCR and eventually with an integrated

capillary electrophoresis step (Zhang et al. 2006, Pereira

et al. 2008; Liu and Mathies 2009). Microfluidic devices

based on PCR and fluorescence detection have led to a

significant improvement in total processing time, while

featuring low limits of detection. For example, Easley et al.

(2006) reported a fivefold reduction in assay time, reducing

the total essay time to 30 min. Another approach using

centrifugal flow reports an assay time of only 15 min

(Peytavi et al. 2005). Microfluidic on-chip PCR has

recently demonstrated an enhanced sensitivity over con-

ventional methods for the detection of fetal chromosomal

aneuplodies, a clinically relevant diagnostic (Lun et al.

2008). However, a complete micro total analysis platform

for DNA diagnostics has not been successfully commer-

cialized for a POC diagnostic device. A probable reason for

the limited commercial success of the PCR-based micro-

fluidic total analysis platforms is that they rely on a fluo-

rescence assay, which requires optical excitation, involving

gas lasers or high-power broadband sources. The detection

of the fluorescence is performed using confocal micro-

scopes, all involving classic Abbe optics which is limited

in resolution by the numerical aperture. In addition,

detectors such as photomultipliers or charge-coupled

devices (CCDs) have to be used to provide a sufficient limit

of detection. Thus, integrating the optical readout into the

microfluidic platform is a very difficult challenge. Recent

approaches using optical excitation by light emitting diodes

(LEDs) and detection using photodiodes (PDs) are very

promising (Kaigala et al. 2008; Ramalingam et al. 2009;

Pjescic et al. 2010). Kaigala et al. reported on a fully

integrated analysis system involving PCR and capillary

electrophoresis, enabling a detection limit of 465 nM RNA

in solution with a signal-to-noise ratio (SNR) of 23. They

specified that the cost of the components used in their setup

is approximately US$1,000, reasonable for a POC device.

A device that relies on the capillary drive rather than

electrophoresis was demonstrated by Ramalingam et al.

showing pM detection limits on DNA fragments originat-

ing from the severe acute respiratory syndrome (SARS)

virus genome. Pjescic et al. demonstrated that SNR of 200

can be accomplished using an LED/CCD combination for

fluorescence detection, which is comparable to that from a

confocal microscope setup, with a limit of detection of

166 pM and an assay time of only 15 min.

Despite the advanced development of microfluidic DNA

assays involving on-chip PCR and capillary electrophore-

sis, recent reviews are very skeptical about the market

potential of such devices for POC diagnostics (Milos

2009). They are perceived to be very complicated inte-

grated devices (Andresen et al. 2009), requiring unique and

expensive reagents for the PCR steps (Sabounchi et al.

2008). Thus, recent efforts have focused on technologies

that allow a lower limit of detection, reduce the number of

PCR cycles or even relax the need of a PCR step com-

pletely. Such devices should be capable of detecting a

single molecule or performing direct sequencing, using

‘‘circulating’’ DNA, i.e. DNA at concentration levels nat-

urally occurring in body fluids (Milos 2009). On the line of

such effort, recent studies focused on label-free technolo-

gies by replacing the readout of fluorescence intensity with

electrical readout (Meller et al. 2001; Howorka and Bayley

2002).

The label-free DNA hybridization detection techniques

can be divided into two main approaches. The first is based

on the detection of the change in surface charge upon

ssDNA hybridization. DNA strands are negatively charged

due to the phosphate ions in their backbone (Nair and Alam

2007). Since the initial ssDNA strand is immobilized on a

surface, hybridization of a second ssDNA strand leads to a

charge accumulation at the site of the immobilized initial

strand. This change in the spatial charge distribution can be

detected electrically either using a semiconducting nano-

wire-based transistor (Fig. 1) or a planar field-effect tran-

sistor (Fig. 2a). The second hybridization detection method

utilizes the change in diameter of the hybridized DNA

strand when compared to the original ssDNA (Fig. 2b).

Natural or artificial nanometer-sized pores or channels can

be used as constrictions, which will limit the ionic current

between two electrolytic baths. If the DNA strand passes

through such an aperture, it will further reduce the ionic

current, based on its diameter, allowing determining which

part of the original single strand is hybridized.

Direct detection of DNA hybridization is an elegant

method with the potential of being able to quantify the

amount of mismatched base pairs. When the assay is per-

formed on a Metal-Oxide-Semiconductor Field Effect

Transistor (MOSFET) gate, it is possible to estimate the

amount of the drain current change upon a hybridization

event (Barbaro et al. 2006; Ingebrandt and Offenhausser

2006; Landheer et al. 2007; Sakata et al. 2004). Experi-

mental results, however, show that the drift of the operating

point of the MOSFET and the expected signature of the

DNA hybridization are on the same order of magnitude,

complicating a straightforward evaluation of the electrical

signal. Nanowire-based charge detection appears to be

more robust (Curreli et al. 2008; Gao et al. 2007; He et al.

2008; Li et al. 2004; Nair and Alam 2007; Stern et al.

2007a; Tolani et al. 2009; Wang 2005; Zhang et al. 2008),

since nanowires offer a higher sensitivity toward changes

in surface charge than classical Ion-Sensitive Field Effect

Transistor (ISFET) structures. ISFET-based sensors can

sense as small as 1 lM analyte concentration (Ingebrandt

and Offenhausser 2006), whereas nanowire-based sen-

sors can detect as low as 10 fM (Patolsky et al. 2006).

Electrochemical impedance spectroscopy offers robust
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detection, less sensitivity to baseline drift, and can be

applied to planar and nanowire devices (Gebala et al. 2009;

Ghoshmoulick et al. 2009; Ingebrandt et al. 2007; Ito et al.

2007; Kafka et al. 2008; Peng et al. 2007; Vamvakaki and

Chaniotakis 2008). Electrochemical detection of the

hybridization reaction monitors the direct oxidation of the

DNA bases and records surface properties such as capac-

itance and resistance by adding a redox-active compound,

such as ferri/ferrocyanide to the DNA-modified electrode

(Peng et al. 2007; Kafka et al. 2008; Gebala et al. 2009).

Detection limits in the range between 1 lM down to

100 pM were reported using electrochemical impedance

spectroscopy. All the surface-sensitive label-free DNA

hybridization methods, however, suffer from the fact that

in order to detect the difference in charging state upon

hybridization, the charges must not be screened by the

solution, i.e. the Debye length must exceed that of the

DNA strand, in order to detect the difference in charging

state upon hybridization.

This limits the salt concentration in solution to values of

0.0059 phosphate buffered saline (PBS) which is signifi-

cantly below the physiological concentration, making it

impossible to work with clinically relevant fluids. Even in

low ionic strength solutions, the maximum DNA strand

length is limited by the Debye length, irrespective of the

transduction technology used (Stern et al. 2007b, 2008).

The benefit of all the charge-based measurement technol-

ogies described is that they are easily integrated with

microfluidic systems. In most studies, this has been suc-

cessfully demonstrated or is feasible without degrading the

sensor performance, which is what makes the technology

easy to use and low-cost diagnostic tools enabled by

microfluidics.

Rather than probing the charge associated with DNA

hybridization, the combination of two strands causes the

molecule to expand. This geometric change can be

observed electrically by the Coulter effect, which relies on

the reduction of an ionic current through an aperture upon

translocation of a particle of a size that is comparable with

that of the aperture (DeBlois and Bean 1977). Coulter

counting usually employs micron-sized apertures for the

counting and sizing of cells. In order to apply this principle

to the sizing of single- and dual-stranded DNA, the aper-

ture must be of comparable dimensions since the current

reduction upon translocation scales proportionally to d3/D4;

where d is the diameter of the cell or molecule and D

is the diameter of the aperture. This in consequence

requires nanometer-size apertures with a known dimension.

Fig. 1 Examples of microfluidic biosensors using semiconductor

nanowires. a Prototype nanowire sensor biochip with integrated

microfluidic sample delivery (Patolsky et al. 2006). b The experiment

by Stern et al. demonstrated that nanowires can be used to detect

DNA hybridization. In panel A, a cross section schematic of the

device shows the immobilized DNA on top of the nanowire with its

source and drain contacts. Panels B and C show the source drain

current change for two devices that have been functionalized with

specific probe DNA strands upon addition of target DNA. The device

in Panel B has been functionalized with probe 1, the one in C with

probe 2, respectively. If 10 pM of the respective complementary

target is added to the solution, the drain current increases (bottom
trace), while the current stays constant if a non-complementary strand

is introduced (top trace). The DNA sequences used were DNA-T(1):

50-CCT GCA GTG ACG CAG TGGCG-30; DNA-T(2): 50-AAG GTG

GAA AAT GTA ATC TA-30;DNA-P(1): 50-CGC CAC TGC GTC

ACT GCA GG-30; DNAP(2): 50-TAG ATT ACA TTT TCC ACC TT-30.
In order to observe the drain current change, the solution has to be of

a low ionic concentration, 5 mM, that the Debye length is larger than

the length of the DNA fragment (Stern et al. 2007b)
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Initially, natural nanopores were used to detect DNA

translocation events (Howorka and Bayley 2002; Meller

et al. 2001). Here, the natural nanopore a-Haemolysin

showed that the diameter of its lumen is suitable for pro-

viding measurable differences in current upon DNA

translocation (Fig. 2) (Maglia et al. 2008; Purnell et al.

2008; Butler et al. 2008; Purnell and Schmidt 2009).

Nanopore-based sequencing methods are able to detect

single DNA strands, and the signal can be distinguished

from the background noise. The limit of detection in case

of translocation-based sensors is thus not determined by the

SNR, but rather by the probability of DNA reaching the

pore and starting translocation. However, we can deduce

the limit of detection from the concentration used in the

experiments at which translocation events were observed

and they lie in the range between 500 (Maglia et al. 2008)

and 200 nM (Stoddart et al. 2009). The drawback of using

a natural nanopore is that it is a biological entity with

limited lifetime. In addition, the channel protein has to be

incorporated in a lipid bilayer membrane, which itself is a

challenging effort, maintaining a consistent and stable

bilayer as a host environment. It is not necessary to use

natural pores; artificial solid-state nanopores can be used to

replace the channel proteins as apertures. Such apertures

were successfully fabricated in a variety of materials, with

plastic, glass, and silicon being prevalent (Joshi et al. 2010;

Kim et al. 2006; Martin and Siwy 2007; Petrossian et al.

2007; Smeets et al. 2006; White et al. 2006). Translocation

through plastic apertures has been studied in detail with

very promising results (Harrell et al. 2006; Schiedt et al.

2005), with a reported detection limit of 10 nM. Glass

pores are of high interest as well since they allow different

surface functionalization chemistry, enabling temporary

docking events. The biggest issue, however, is threading a

long DNA strand through an aperture without the DNA

molecule folding, risking an irreversible block of the

aperture (Chen et al. 2004). Moreover, nanopores are very

prone to blockage by particulates in solution. In compari-

son to nanopores, nanochannels exhibit a lower risk of the

DNA strand agglomerating, allowing the measurement

more probable (Mannion et al. 2006), which demonstrated

sequencing at concentration as low as 58 pM. The direct

DNA sequencing methods appear to be very promising;

however, technology with the best potential for mass pro-

duction is yet to emerge. Similar to the charge detection

techniques, the size-based hybridization detection methods

integrate well with microfluidics. Given the early stages of

the research on nanopore-based particle sizing, the efforts

have been mainly focused on nanopore fabrication and/or

characterization. However, the use of microfluidics is

Fig. 2 a A Schematic diagram for measurements of electrical

characteristics of a genetic field effect transistor (FET). The FET

can be integrated into a microfluidic channel to allow in situ

detection. B Electrical signal of immobilization of oligonucleotide

probes, hybridization with target DNA on the FET (Sakata et al.

2004). b Direct DNA sequence readout using a natural nanopore

(a-Haemolysin). The current versus time traces on the right show that

a poly(dC) strand exhibits a different current signature when

compared to a poly(dA) strand, allowing to draw a conclusions of

which bases are present. By modifying the lumen of the a-HL pore the

current signal can be improved (Stoddart et al. 2009; Copyright

(2009) National Academy of Sciences, U.S.A)
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indispensable since fluid management (filtering, pressure,

and exact flow control) is of extreme importance for the

success of these approaches. Although no complete

microfluidic device exists yet that provides fluid handling,

pre-concentration, and electrical sequence detection all on

one chip, the individual building blocks have been suc-

cessfully demonstrated (Kovarik and Jacobson 2009). Such

an integrated microfluidic device has a promising potential

to change DNA-based POC diagnostics. The DNA detec-

tion method and specifications reviewed here are summa-

rized in Table 1.

2.2 Protein biosensor

2.2.1 Why protein for diagnostics?

In contrast to the highly sophisticated DNA biosensors

reviewed in the previous section, protein biosensors, e.g.

immunosensors, are more straightforward to implement.

Although both DNAs and proteins are used to correlate

biomarkers to specific diseases, DNAs are often limited in

providing a predictable and reliable diagnosis. This is

because the correlation in the levels of expression between

mRNAs and corresponding proteins is further regulated at

the translation level (Huber 2002). Moreover, one gene

may express multiple proteins with variable biological

function, and the proteins expressed from the genes may

undergo a number of post-translational modifications

which may be important in various pathological processes.

Proteins, on the other hand, are considered as effective

diagnostic sources. This is because proteins are the final

form of the gene product and hence directly associated with

biological functions. Many protein biomarkers have been

discovered for aid of early diagnosis (Sahab et al. 2007).

Protein biosensors thus have a profound significance for

POC diagnostic, and portable/disposable POC applications

facilitate integration of the biosensors with microfluidics.

In this section, we will introduce technologies for protein

biosensing and discuss their strengths and challenges.

2.2.2 General protein sensing technique for diagnostics

The current standard in immunoassays is the Enzyme-

Linked Immuno-Sorbent Assay (ELISA) (Lequin 2005). It

has been in use for more than last three decades and proven

very robust and reliable. However, ELISA suffers from

several drawbacks such as a large sample volume of 50 ll

per microwell, resulting in long diffusion and thus long

incubation times on the order of days (Sato et al. 2000) as

well as the need for specific enzyme-fluorophore combi-

nations that do not interfere the antibody–antigen reaction

(Bange et al. 2005). This has led to search for improved

immunoassays, using either advanced labels or being

completely label-free. Classic ELISA assays do not involve

microfluidics; the sample and reagent dispense is per-

formed either via manual pipetting or via pipetting robots.

While the pipetting robot technology is well accepted in

the field, microfluidics offers quantifiable benefits over

existing procedures. It turns out that microfluidics, in fact,

can improve the sensitivity, speed, and reduce costs of an

immunoassay over ELISA by overcoming the issues of the

large sample volume. For example, Sato et al. (2000)

quoted a time reduction for an immunoglobulin assay by a

factor of 90 over the classical ELISA, resulting in an assay

time of less than 1 h with a limit of detection of 1 lg/ml

when employing a bead-based immunoassay in a micro-

fluidic channel. Emerging label-free approaches have dri-

ven the research on improving immunoassays (Bange et al.

2005; Daniels and Pourmand 2007). These can be classified

into direct assays using evanescent wave sensors (inter-

ferometry, surface plasmon resonance (SPR)) (Fan et al.

2008; Ince and Narayanaswamy 2006) and direct assays

based on electrical impedance spectroscopy (Dong et al.

2007; Paenke et al. 2008; Yang et al. 2007).

2.2.3 Microfluidic protein sensor for POC diagnostics

Optical techniques are prevalent, which rely on the inter-

action between light and an adsorbed immunoselective

adlayer. SPR is one of the most promising optical tech-

niques, which relies on the measurement of the attenuated

total reflection at the boundary between different refractive

index materials. It is extremely sensitive to surface phe-

nomena, making it a viable label-free sensor to probe

small changes in monolayer properties. SPR sensors can

be integrated into microfluidic devices; however, the

requirements originating from the optical components

mainly limit the miniaturization of the classical prism

couplers. Fiber-, waveguide-based SPR, and SPR imaging

are alternative approaches that bring bench-top prism-

based SPR biosensor to miniaturized, integrated, and

portable SPR devices. Fiber-based SPR sensors are an

interesting approach and recent publications show that

these sensors have a high potential for in situ measure-

ments. Jang et al. detected prostate specific antigen (PSA)

by using optical fiber SPR sensor (Jang et al. 2009) and the

Fabry–Perot setup was embedded in a microfluidic channel

(Lin et al. 2009). Waveguide-based SPR can also be built

using various geometries, which can be integrated with

microfluidics. A Mach–Zehnder waveguide SPR was fab-

ricated in a planar process using established materials and

MEMS (Micro-Electro-Mechanical-Systems) fabrication

technology (Blanco et al. 2006; Sepulveda et al. 2006;

Suzuki et al. 2005). SPR imaging (SPRi) is attractive

because it allows simultaneous analysis of multiple bimo-

lecular interactions. SPRi has been successful to detect
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adsorption and desorption of multiple proteins (Hook et al.

2009), monitor real-time reactions of antigen–antibody in

arrayed format (Xinglong et al. 2005). Detecting breast

cancer biomarkers have been demonstrated using SPRi

(Ladd et al. 2009). Lee et al. developed an automatic, chip-

based microfluidic device that has a multi-channel config-

uration to detect microarray immunoassay samples based

on a SPRi detection system (Lee et al. 2007). However, the

key challenge in all the SPR biosensor development lies

not in the integration of the various components of the

biosensors including sampling handling and electronics but

maintaining sensitivity and robustness of the integrated

SPR biosensors simultaneously (Hoa et al. 2007).

Besides optical detection of surface immunoreactions,

impedance spectroscopy is a very interesting approach for a

label-free immunoassay. Similar to the technology for DNA

hybridization detection, a molecular linkage reaction in an

immunoassay changes the capacitance of the adsorbed layer

on the surface of an electrode or a Metal-Oxide-Semi-

conductor (MOS) transistor. Recently, the use of porous

materials on top of an electrode has shown to significantly

enhance the signal originating from an immunological

linkage reaction, making it one of the future pathways

toward improvement of an immunosensor. The electrical

detection has benefits over a combined electro-optical

technique: no optical transducers are necessary, which

increase the cost and the complexity of the system. Recently,

development on complete Complementary Metal-Oxide-

Semiconductor (CMOS) circuits coupled with a immuno-

assay has also been reported, which are specifically designed

to detect signals originating during an immunoassay. These

circuits are based on well-established silicon device

technology (Ghafar-Zadeh et al. 2009). Despite all the pro-

gress on label-free immunoassays and the unprecedented

benefit on reagent consumption, a recent comparative study

on the performance of label-free immunoassays provides a

very critical outlook; the selectivity of label-free assays is

still inferior to that of the classical ELISA (Daniels and

Pourmand 2007).

Besides the use of labels, one of the issues with ELISA

is that it is performed in microtiter well plates, usually

containing 96 or 384 wells per plate. These wells have a

volume of 50 ll, which can lead to a substantial dilution of

the initial sample, degrading the lower limit of detection. In

addition, since the assay is driven by diffusion of the

reactants to the antibodies immobilized on the microwell

surface, the incubation times are comparably long, often up

to a few days per assay. A strategy to reduce the assay time

lies in reducing the well volume while increasing its sur-

face area, which leads directly to miniaturization and

microfluidic integration (Fig. 3) (Yang et al. 2007; Blagoi

et al. 2008; Gao et al. 2005; Hoegger et al. 2007; Lin et al.

2004; Yu et al. 2009; Zhao and Shippy 2004).

One method to increase the surface area of the assay is

to use a bead-based assay. Instead of functionalizing the

well surface with antibodies, micron-sized beads can be

functionalized to capture the antigen. A benefit here is that

beads can be transported by a fluid flow, while the well

plate surface remains static and the sensor has to be

movable or being able to provide addressability (Fig. 4)

(Holmes et al. 2007). By using magnetic beads, the beads

can be separated from the initial testing medium, allowing

the immunoassay to be performed in a different solution

under more reproducible conditions (Fig. 5) (Do and Ahn

Fig. 3 Example of a micro-

ELISA in microwells fabricated

using SU-8 epoxy patterned on

silicon. An IgG immunoassay

has been performed inside of

these microwells. a A schematic

of the microwell chip,

b a fluorescence image

(top view) of the microwell

plate, c a scanning electron

micrograph of a single well and

d a fluorescence microscopy

image of the immunoassay

on a part of the chip (C-reactive

protein, Cy5 fluorescent dyes).

The detection limit was reported

to be 30 ng/ml and the assay

time was 4 h. The microfluidic

approach helps to reduce the

solution volume, consequently

reducing assay time (Blagoi

et al. 2008)
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2008). Besides using beads to capture the antigen, an

alternative to the enzyme-linked secondary antibody is the

use of fluorescent beads that are linked to these secondary

antibodies. By using labels with different fluorophores, a

multiplex assay can be accomplished, reducing the number

of wells needed on a microtiter plate since every secondary

antibody carries its own ‘‘barcode’’ label (Derveaux et al.

2008; Earle et al. 2007; Rauf et al. 2009). This label can

then be read out optically, allowing an independent quan-

tification of concentration and type of antigen. Combining

fluid flow of fluorescent beads with localized fluorescence

quenching, the beads can be labeled ‘‘in situ’’ while flow-

ing through a microfluidic channel (Birtwell and Morgan

2009). This allows a lab-on-a-chip without the need to

provide beads with different fluorophores. Here, micro-

fluidics is used to harvest the benefits of a bead-based

immunoassay.

Bead-based immunoassays, however, do not necessarily

have to rely on optical detection (Fig. 5) (de la Escosura-

Muniz et al. 2008). Since the beads are micron sized, the

resistive pulse detection technique can be used, similar to

the classical Coulter counting setup for cell-based assays

(Sexton et al. 2007; Uram et al. 2006a; Uram et al. 2006b;

Uram and Mayer 2007). By using a pore size that matches

size of the bead, minute changes in the bead diameter based

on an immunological linkage reaction at the surface of the

Fig. 4 a A microbead-based immunoassay, performed inside of a

microfluidic chip. Polystyrene beads are used to immobilize antibod-

ies. The dam structure inside the channel prevents the beads from

entering the measurement site (Kakuta et al. 2006). b ImmuChip,

implementing a miniaturized enzyme-linked immunoassay on a

microfluidic chip, thereby reducing the sample volume. The inte-

grated gold working electrode and Ag/AgCl reference electrodes

allow an electrochemical readout of the immunoreaction (Hoegger

et al. 2007)

Fig. 5 Microfluidic immunosensor based on the separation of

magnetic microbeads, using impedance spectroscopy for detection.

a The assembly of the microfluidic chip, consisting of a microfluidic

bottom layer containing 7 parallel channels, an interdigitated array

(IDA) middle layer providing electrical contact to the microchannels

and a top layer containing a patterned permalloy to allow magnetic

bead separation. All parts were fabricated using injection molding and

bonded using an UV-curable adhesive. b The complete assembly with

a magnified view of the electrode array and the permalloy magnetic

bead separator (Do and Ahn 2008)
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bead can be detected via the pulse amplitude. The resistive

pulse sensing technique can be applied even for large

particles such as pollen, which themselves can act as beads

that capture antibodies and thereby increase their size

(Fig. 6) (Zhe et al. 2007). Microfluidic integration of a pore

array for this kind of pollen detection has been successfully

demonstrated, enabling low-cost POC devices, including

the supporting electronics (Jagtiani et al. 2006a, b).

Looking at the recent accomplishments on the bead-based

immunoassays, microfluidics has the potential to make a

difference in the field of immunoassays. The challenge,

however, that all immunoassay-based sensors face, inde-

pendent of being classical ELISA or microfluidic-based

assay, is the availability of a specific immunoreaction that

allows selective detection of target analyte.

The indicator displacement assay has also been used to

detect target proteins (Wilson 2009). While immunoassay

techniques are based on specific recognition of antibody

and antigen, the displacement assays is the pattern-based

recognition of composite signal constructed from multiple

differential binding interactions (Wright and Anslyn 2006).

De et al. detected five proteins in undiluted human serum

by using the competitive adsorption between green fluo-

rescent proteins on gold nanoparticles and the target pro-

teins (De et al. 2009). Choi et al. detected a cancer

biomarker, Thyroglobulin, in a cocktailed protein mixture

using the competitive protein adsorptions (Fig. 7) (Choi

and Chae 2009b). Implemented in a microfluidic system,

the target protein (thyroglobulin, Tg) displaces a pre-

adsorbed weak-affinity protein, IgG, on one surface, while

a pre-adsorbed strong-affinity protein, fibrinogen, is not

displaced by the target protein on the other surface. Dif-

ferential measurement using SPR allows the detection of

thyroglobulin (Choi et al. 2008; Choi and Chae 2009b).

While immunosensing technologies have to go through

time-consuming and labor intensive immobilization pro-

cesses, the sensor utilizing the competitive adsorption of

proteins themselves can avoid the need to rely on biore-

ceptors as a capture probe and their attachment to trans-

ducers. This uniqueness can be a complementary solution

to the conventional immunosensors.

Microfluidic paper-based analytical devices (lPADs)

are a new class of POC diagnostic devices (Fu et al. 2010;

Martinez et al. 2010). Paper is thin, flexible, light weight,

flammable (disposable), compatible with biological sam-

ples, and can be easily modified by chemicals. Microfluidic

channels are defined by hydrophobic barriers which are

patterned by impregnating the paper with photoresist and

exposing it to UV light (Martinez et al. 2007). Since fluids

flow by capillary force, a bulky and complicated supporting

pump is not necessary, which allows biosensors to be more

readily transformed in lab-on-a-chip with capillary micro-

fluidics (Fig. 8). lPADs has demonstrated clinically rele-

vant concentrations of glucose and proteins in artificial

urine quantitatively (Martinez et al. 2008, 2010). However,

the application should be limited because the immobiliza-

tion techniques on a paper are yet immature and dried bio-

receptors could lose their activity with time (Mitchell

2002).

In spite of many studies in microfluidic-based protein

biosensors, the robustness and reliability of them have not

been fully explored yet, partially because of the complex

three-dimensional protein conformation and the relatively

poor knowledge of protein-to-surface interactions. Given

that proteins have been more favorable as a diagnostic tool,

clearly substantial amount of work needs to be per-

formed in the development of microfluidic-based protein

sensors.

3 Challenges

3.1 Non-specific adsorption (NSA)

Physiological samples consist of a complex mixture of

compounds, including abundant proteins (on the order of

mg/ml) that tend to adsorb nonspecifically to surfaces. It

is extremely challenging to detect target biomarkers at

concentrations on the order of, typically, ng/ml or less

when other abundant nonspecific proteins are present.

Reduction of non-specific adsorption (NSA) of biomole-

cules is crucial in biosensor developments especially for

Fig. 6 Parallel microchannel

device for the detection and

determination of pollen. Due to

the different surface charge of

pollen and polystyrene test

particles, the Coulter signature

is different between the two

types of particles, despite of

similar sizes (Zhe et al. 2007)
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clinical diagnostics. Any biomolecular NSA provokes

overestimation of the affinity value and consequently

‘‘false positive’’ errors in detection (Ogi et al. 2009). In

addition, NSA masks the signal from analytes of interest,

reducing sensitivity of the sensor (Masson et al. 2006).

Various approaches have been exploited to reduce NSA

on biosensing surfaces (Lahiri et al. 1999; Chapman et al.

2000; Israelachvili 2005). Polyethylene glycol (PEG) or

OH-terminated SAM (Self-assembled monolayer) has

been used as a one of the most promising blocking

materials but it has been reported that detectable levels of

NSA was observed after the modification (Munson et al.

2004). An alternative to minimize NSA includes blocking

the vacant sites using bovine serum albumin (BSA). BSA,

however, may limit interactions between the biosensor

and biological samples, thereby causing false negative

responses (Bolduc and Masson 2008) or can be displaced

by other proteins, or form a multilayer with oppositely

charged proteins (Choi and Chae 2010). Although many

research groups have reported methods to reduce NSA in

the biosensing devices by using various functionally

modified chemicals at the biosensing surface (Wang et al.

2010; Chang et al. 2010; Masson et al. 2006), NSA is still

an enduring problem in commercializing biosensors.

Besides, NSA becomes much more severe when the

biosensors are integrated with microfluidics which typi-

cally uses a hydrophobic material, PDMS (Poly-

dimethylsiloxane) (Wong and Ho 2009). This is because

NSA easily occurs on the PDMS walls, leading to

masking samples, which consequently force analysis

useless. For example, adsorption of fluorescent markers

can cause a drift in the background fluorescence intensity,

failing optical analysis (Munson et al. 2004). Prior-

reported methods to reduce NSA have been implemented

in the microfluidic channels such as chemical surface

modification (PEG, OH-SAM, and zwitterionic) and

Fig. 7 a A custom-made microfluidic device to demonstrate the

Vroman effect-based protein biosensor. b A schematic of operating

principle. (1) IgG is injected from the inlet 1 to cover both surfaces,

(2) washing process to remove unbound IgG, (3) fibrinogen flows

from inlet 2 and displaces the pre-adsorbed IgG on one surface, (4)

washing process to remove any residue on the surface, (5) a mixture

of albumin, haptoglobin and Tg flows from inlet 1, (6) only Tg

displaces IgG in channel 1 while any of proteins does not displace

fibrinogen in channel 2. c SPR sensorgram of the displacement event;

Tg detection of two engineered surfaces, pre-adsorbed by IgG and

fibrinogen. d Normalized close-up SPR sensorgram after the Tg

injection, e final angle changes (%) on both surfaces (angle change/

previous angle value 9 100). Each has selectivity to a specific protein

to be detected (Choi and Chae 2009b)
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physical adsorption (BSA). However, NSA in microflu-

idic-based biosensors remains to be addressed for clinical

POC diagnostics.

3.2 System integration

Another challenge in POC diagnostics is to develop a fully

integrated biochemical analysis system that is capable of

performing all procedures on a single platform. Fluid

delivery, mixing, separation, and concentration are some of

the fundamental sample preparation steps often required in

a typical biomedical assay. The requirement of bulky sup-

porting equipments, the difficulty in miniaturization of the

fluidic operation modules, and most importantly the inte-

gration of these modules present key technological chal-

lenges that hinder the integration of sample preparation

modules into a POC device (Mariella 2008). Recently,

several microfluidic platforms are emerging for effective

integration of multiple sample preparation modules toward

fully automated biomedical analysis. Multilayer soft

lithography (Fig. 9a), digital microfluidics (Fig 9b), multi-

phase flow systems (Fig. 9c), and electrokinetic micro-

electrode arrays (Fig. 9d) are some of the promising

platforms for POC diagnostics. Multilayer soft lithography

is a technique extended from soft lithography, in which

devices consisting of multiple layers are fabricated by

bonding layers of elastomeric materials (Unger et al. 2000).

The deformability of the elastomeric materials allows a

large actuation of the PDMS membrane with pneumatic

control, which allows several fundamental microfluidic

operations, such as on–off valves, peristaltic pumps, and

Fig. 8 lPADs for analysis of glucose and protein in urine.

a Patterned paper after distributing 5 ll of red ink to show the

integrity of the hydrophilic channel. b Complete lPADs after spotting

the reagents. c Positive assays for glucose and protein using 5 ll of a

solution that contained glucose and BSA in an artificial urine solution.

d Results of paper-based glucose and protein assays using a range of

concentrations of glucose and BSA in artificial urine (Martinez et al.

2010)

Fig. 9 a An integrated

microfluidic platform fabricated

by multilayer soft lithography

(Grover et al. 2006).

b Schematic of the digital

microfluidic platform

(Lienemann et al. 2006).

c Formation of water-in-silicone

oil droplets with an embedded

circular orifice (Yobas et al.

2006). d A microelectrode array

device (Krishnan et al. 2008;

Copyright Wiley-VCH Verlag

GmbH & Co. KGaA.

Reproduced with permission)
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mixers, for integrating large-scale microfluidic networks

(Melin and Quake 2007). However, to implement the

pneumatic-controlled microfluidic network at POC, exter-

nal pneumatic sources, and multiplexed gas valves are

required to be integrated into the final system, which could

present a technological hurdle for system integration. Dig-

ital microfluidics is another promising technology for

developing microfluidic systems with precise and active

control of the fluid in the form of droplet (Lawi et al. 2009).

Droplet motion in digital microfluidics can be driven by the

electrowetting mechanism, which is a result of the surface

energy change due to the applied potential. However, sur-

face fouling presents a challenge in the operation and a

large array of microelectrodes needs to be independently

addressed for high-throughput applications. Multi-phase

flow of immiscible fluids, or droplet microfluidics, repre-

sents another promising technique for implementing the

necessary sample preparation procedures. Droplets or bio-

reactors in sub-nanoliter volume can be formed spontane-

ously in microchannels when two immiscible fluid streams

merge (Griffiths and Tawfik 2006).

Various droplet processes such as formation, sorting,

storage, fusion, and manipulation have been demonstrated

toward biomedical analysis (Teh et al. 2008). To imple-

ment droplet-based bioreactors, precise controls over the

surface properties of the channel are required as the wetting

property of the fluid with respect to the channel wall is

important in determining the droplet production (Dreyfus

et al. 2003). Finally, microelectrode arrays for AC or DC

electrokinetic sample preparation is an emerging lab-on-a-

chip platform for POC diagnostic (Wong et al. 2004a).

Electrokinetic sample preparation is especially suitable for

POC diagnostic application, since electrokinetics biochips

require only low-power electronic interfaces, which can be

integrated and implemented effectively in portable sys-

tems. In particular, microfluidic operations such as mixing,

pumping, concentration, and separation based on AC

electrokinetic can be performed with low applied AC

potential (\10 Vpp) (Sigurdson et al. 2005; Feldman et al.

2007; Gregersen et al. 2007; Wong et al. 2004b; Sin et al.

2009a, b). The low voltage requirement of AC electroki-

netics not only prevents electrolysis but also facilitate the

implementation at POC. However, electrokinetic phenom-

ena are sensitive to buffer conductivity, which may results

in large performance fluctuations for the POC devices. A

built-in impedance measurement device for testing the

buffer conductivity is required to optimize the performance

of electrokinetics sample preparation systems.

A large number of ongoing research work focuses on

developing new research tools for biomedical or pharma-

ceutical applications by means of microfluidics. In addition

to the above-mentioned technology, other promising

approaches, such as acoustic actuation, inertial microfluidic

devices, and optoelectronic manipulation, are also emerg-

ing and could play an essential role in the future POC

diagnostic systems (Chiou et al. 2005; Shah et al. 2009;

Chung and Cho 2008; Shi et al. 2009; Hur et al. 2010;

Williams et al. 2008). The stringent requirements of POC

diagnostics represent unique challenges for sample prepa-

ration. As one of the ultimate goals is to develop fully

automated POC devices that enable medical diagnostics to

be performed, low-cost, effective system integration strat-

egies will likely become a key area of microfluidic

development in the future.

4 Conclusion

This review presents an overview on recent advances in the

development and the application of microfluidic-based

biosensors; nucleic acid and protein sensors. Such devices

are extremely useful for delivering clinically relevant

information in a simple, fast- and low-cost fashion, and are

thus uniquely qualified for meeting the demands of POC

testing. One of the challenges is to avoid NSA which

causes false response errors and decrease sensitivity.

Another issue to be addressed is the integration and auto-

mation of the technology as well as development of

appropriate sample preparation methods. Moreover, suc-

cessful development of POC systems will require contin-

ued improvement and validation of biomarkers and

development of bioreceptors for those biomarkers. In short,

while there is still a long way to go for POC testing,

microfluidic biosensors will eventually become one of the

strongest candidates for a real-world tool.
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