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Abstract

A simple, reliable and cost-effective fluidic channel, fabricated by using double-sided

pressure-sensitive tapes, is demonstrated here. A laser-cutting method is applied to engrave

structures in sheets of the tapes. After peeling off the tape liners, the structures could be easily

integrated at room temperature with label-free optical waveguide biochips without further

modifications or additional processing steps. It is shown that the well-defined and controllable

height of the channels is advantageous for stopped-flow measurements of analyte binding.

The easy fabrication of a fully transparent integrated sensor unit – tape cuvette system is also

demonstrated for parallel microscopic investigations. The transparent unit was used to on-line

monitor the surface adhesion of Salmonella  cells on poly-L-lysine-coated biochip surfaces,

followed by the straightforward microscopic visualization of the adhered bacterial cells. The

material of the double sided tape is stable in aqueous solutions. Furthermore, its material is

biocompatible, making it ideal for biological applications. Excellent, stable and reversible

bonding of the microstructured tapes to biocompatible plastic and glass is also demonstrated.

The simplicity of the fabrication at ambient temperatures makes the developed processes

appealing for lab-on-a-chip applications, particularly if the bonded biochips are precious.
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1. Introduction

The need for reliable, cheap, disposable lab-on-a-chip and point-of-care devices is on the rise

[1-5]. These systems are utilized in biotechnology, medical treatment and diagnosis, and in

basic research as well [6,7]. A key issue in all of these developments is to find cost-effective

and reliable methods for handling body fluids, aqueous solutions of biological molecules or

living cells. Decreasing the sample volume is also critical. These needs initiated the

development of microfluidic channels to handle minute quantities of liquid samples. Usually

these channels are made of silicon, glass or polymers, and their fabrication and final

integration involves costly and laboratory-intensive etching, baking or bonding steps [8]. An

important step was the development of PDMS microfluidic channels which enabled rapid

replication from a master [8,9,10]. However, even the fabrication of the master itself is cost

intensive and usually requires a Clean Room. Moreover, the final integration of the PDMS

channels involves plasma treatment or baking, making it difficult to integrate structures which

are pre-coated with sensitive biological materials such as antibodies. It is also time-consuming

to modify the channel design because it requires the fabrication of a new master structure.

In the present contribution we demonstrate the cheap, reliable and rapid fabrication of

microfluidic channels in pressure-sensitive double-sided tapes. The applied tapes are available

in various thicknesses and are biocompatible. Laser engraving was used to fabricate structures

in the tapes. It is demonstrated that these novel cuvettes can be easily integrated with both

polymers and glass. To demonstrate the integration and test the methodology, the cuvettes

were integrated with planar optical waveguide-based sensor chips. The obtained sensing units

were applied to measure the refractive index of aqueous solutions and follow the surface

adsorption of proteins. A completely transparent configuration is also demonstrated. The well-

defined thickness of the fabricated channels was exploited in stopped-flow measurements.

The definitive advantages of the newly-developed fluidic channels are the remarkably short

time and ease of their design, fabricatation and integration. Finally, the fabrication and

integration steps can be carried out at ambient conditions, alleviating the need for difficult

chemical etching, plasma treatment or baking procedures.
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2. Materials and methods

2.1. Double-sided pressure-sensitive tapes

ARcare® 8890 and 90445 (Adhesives research Inc.) clear polyester double sided pressure

sensitive tapes with MA-61 and As-110 acrylic medical grade adhesive coatings were used

with total thicknesses of 50.8 µm and 81.28 µm, respectively. The 12.7 µm and 25,4 µm thick

tape substrates, as well as their adhesive coatings, are biocompatible and insoluble in aqueous

solutions. At both faces of the tapes a 50.8 µm thick polyester release liner is placed by the

manufacturer. These liners were removed before final integration of the structured tapes. For

dissolving the adhesive coatings and removing the tapes from glass and polyether ether ketone

(PEEK) surfaces butanone (Methyl-Ethyl-Ketone or MEK, VWR International, 25654.292),

was used.

2.2. Structural design and laser cutting

The design of the microstructures was first drawn in Corel Draw. The Corel files in vector

mode were printed on an Epilog Mini 18 (25W) CO 2 laser engraver and cutter device. The

laser power was optimized and finally set to 5 W to effectively cut the tapes across with

smooth edges. The lines in the Corel drawing defined the cutting path of the laser beam,

therefore any modifications on the design was straightforward and easy.

2.3. Optical waveguide sensor chips

The fabricated fluidic channels in the double-sided types were integrated with planar optical

waveguide-based sensor chips used for Grating Coupled Interferometry (GCI) and for Optical

Waveguide Lightmode Spectroscopy (OWLS). The GCI sensor was a planar optical

waveguide from Creoptix GmbH with dimensions 8x12x1 mm. The chip consists of a 155-

nm-thick Ta2O5 layer deposited on glass. The sensor had two in- and one outcoupling grating

structures for transferring the GCI signal into a fiber-coupled detector [11]. The OWLS sensor

chip (type OW2400, Microvacuum Ltd., Hungary) was a 16x48x0.5 mm glass substrate

coated with a 176-nm-thick TiO 2-SiO2 sol-gel film. For mode excitation a 1-mm-wide grating

was formed in the film at the center of the chips, in parallel with the shorter edges [12,13]. For

interrogating the waveguide sensors and recording the effective refractive index changes of

the waveguide modes a benchtop GCI setup [11] and a BIOS OWLS system (Microvacuum

Ltd., Hungary) [14] were used. Before integration, the sensor chips were cleaned with
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chromsulfuric acid according to published protocols [15,16] and dried with a stream of clean

nitrogen gas.

2.4. Assembling and sealing the fluidic channels

After mounting the structured tapes onto the sensor chips, they were sealed by using two

types of covering units. The first type was a machined plastic part made of PEEK. Separate

units were made for the GCI and for the OWLS systems. The PEEK parts contained 0.5 mm

i.d. drilled holes for inlet and outlet tubings. The second type was made of a glass plate with

exactly the same dimensions as the GCI chip. Two holes with 1 mm i.d. were drilled through

the glass to enable the connection of inlet and outlet Teflon tubings. The covering units were

carefully cleaned prior to assembly.

2.5. Liquid handling

Teflon tubing with an i.d. of 0.5 mm was used in all of the experiments. The cuvettes were

filled with the solution of interest by using an Ismatec peristaltic pump with 12 rollers. The

0.5-mm-i.d. flanged Tygon tubing positioned on the pump was connected to the Teflon tubing

with linear connectors (Omnifit). To inject minute amounts of samples during stopped-flow

OWLS experiments, a septum injection port was integrated in the inlet of the PEEK covering

unit. A Hamilton syringe was used to inject the investigated solutions through the septum. 5%

glycerol in MQ water (refractive index 1.33676) or 10 µg/mL avidin (Sigma-Aldrich) in

phosphate buffered saline (PBS, pH=7.4, Sigma-Aldrich) were used for testing the devices

and demonstrating their sensing capabilities. Salmonella typhimurium  (SJW2536 Salmonella

typhimurium) suspension was used in the bacterial adhesion tests. The cells were suspended in

PBS (phosphate-buffered saline). The employed GCI chip was coated with poly-L-lysine

(PLL) using PLL (Sigma-Aldrich) dissolved in MQ water at a final concentration of 0.1

mg/mL.
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3. Results and discussions

3.1. Dual-channel tape cuvette: fabrication and integration with GCI sensor chips

In the first experiment, a dual-channel microcuvette was fabricated for the GCI sensor chips.

First, a 15x15-cm sheet of ARcare® 8890 tape was placed into the laser cutting system. Here,

a focused CO2 laser beam (focal length 2.54 cm, spot size around 20-80 µm) cuts across the

tape at pre-defined locations by positioning the beam with a motorized mirror (see Fig. 1a).

Figure 1. (a) The Epilog Mini laser engraver and cutter. The double sided tape as well as the mirror reflecting

the cutting laser beam onto the tape is clearly seen. Motorized stages can move the mirror in x-y directions to

position the beam on the tape. (b) The design of the 24 structures cut out from the tape. (c-d) The final unit, with

and without the cut parts inside the channels.

 During the first demonstration, 24 pieces of dual-channel units were fabricated (the

arrangements of the channels are shown in Fig. 1b). Subsequently, the structured tapes were

taken out of the laser cutter, and the liners of the tapes were removed. Finally, the channels

were placed onto the GCI sensor chip, and the plastic covering unit with inlet and outlet

tubings were used to seal the channels (see Fig. 1b-d and Fig. 2a,b ). For final bonding the

entire assembly was pressed together by hand (see Fig 2a). Images of the assembled device

are shown in Fig. 2b. Importantly, the entire collection of 24 structured tapes shown in Fig.

1b were processed in only about 2 minutes, and the final integration took about another

minute. We note that the narrowest channel which could be fabricated using the ARcare®

8890 tape had a width of around 120µm. Therefore, the developed technology is not

applicable for high-precision nanofluidics, but could be a reasonable cost-effective solution in

several applications, such as the fabrication of fluidic channels for cellular studies.
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Fig 2. (a) The GCI sensor, structured double sided tape and PEEK covering unit before assembly. (b)

Photographs of the assembled module. The two inlet and two outlet tubing are clearly visible.

The GCI sensor with integrated fluidics shown in Fig. 2b was then placed into an optical

arrangement described in ref. [11]. Here the phase shifts of the waveguided mode travelling

under the fluidic channels were recorded with a precision of ~10 -4 rad. In order to test the

fabricated channels (see Fig. 3), MQ water was first injected into both channels, and the phase

signals were recorded as a function of time. No leakage whatsoever was observed. After

recording a stable baseline, 5% glycerol solution was injected into both channels by using the

peristaltic pump. This resulted in a continuous increase in the recorded phases which saturated

after the entire channels were filled with the glycerol solution. Subsequently, pure water was

again injected into the channels. During sample solution change the pump was stopped for 3 s.
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Fig. 3. Phase signals when 5% glycerol was injected into the channels and exchanged back to MQ water. The

experiment was performed with both TE and TM polarized modes. The theoretically higher refractive index

sensitivity of the TM mode is verified by the experiment.

The recorded phases decayed back to the baseline level. The experiment was performed with

both TE and TM polarized light. Fig. 3 demonstrates that the GCI chip with TM polarization

has approximatey three times greater refractive-index sensitivity than the chip using TE-

polarized modes [11]. It is important to stress that the recorded phase shifts were identical in

both channels demonstrating the excellent lateral homogeneity of the GCI sensor chip and the

feasibility of using one of the channels as reference. Furthermore, no drift was observed in the

recorded phase signals; thus, there was no material leakage from the tapes. Notably, the tape

can be removed with butanone, and after standard cleaning processes both the optical chip and

cuvette covering unit can be re-used for further integrations and experiments.

3.2. Single-channel tape cuvette for stopped-flow experiments using OWLS

In the second experiment, a single-channel tape cuvette was fabricated for OWLS. The

double-sided tape #90442 was used in these experiments. A channel with dimensions 9x1.5

mm was cut in the centre of a circle-shaped piece (see Fig. 4a). After removing the liners, the

tape was placed in the center of an OWLS sensor chip. Subsequently, a PEEK covering unit

was pressed on the top of the tape to seal the channel and position the inlets and outlets at its

ends. A septum injection port was integrated at the inlet. The different parts prior to assembly

are shown in Fig. 4a. The assembled device was placed into a BIOS OWLS scanner, where

the effective refractive indices of the modes supported by the waveguide sensor were recorded.
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First, PBS buffer was injected into the cuvette and a baseline signal was recorded. After about

5 minutes, 50 µL of avidin solution was injected into the cuvette with a Hamilton syringe.

This led to a rapid increase in the OWLS signal which saturated after about 10 minutes. The

recorded effective refractive indices can be used to calculate the surface-adsorbed protein

mass [6,12]. The results are shown in Fig. 4b. After the first injection the adsorbed protein

mass saturated at a level of 0.19 mg/cm2. This value is comparable to the total protein amount

present inside the cuvette. Therefore, one can expect that a dynamic equilibrium is reached

when the protein concentration increased at the surface and decreased in the bulk. This

assumption was verified with a second injection. Another bolus of 50µL of avidin solution

was injected into the cuvette, increasing the bulk protein concentration to the initial level,

thereby forcing further proteins to be adsorbed. This adsorption-injection cycle was repeated

six more times. Following the seventh injection the adsorbed protein mass did not increase

singificantly. Thus, the surface reached its maximum coverage at this bulk concentration.

The above type of experiment, in which the adsorption equilibrium is reached with a limited

sample amount in successive injection steps is known as the stopped-flow method [17]. Our

results demonstrate the applicability of the tape channels for stopped-flow experiments and

pave the way for more sophisticated binding experiments.

Fig. 4. (a) Components of the OWLS cuvette system prior to assembly. (b) Stopped-flow experiment using the

assembled sensor unit..Arrows indicate the moments of injection of avidin solution into the channel with a

Hamilton syringe. Maximum surface coverage is reached by seven successive injections of the same avidin

solution.
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3.3. Fully transparent integrated system using a covering glass plate with drilled holes -

application for bacterial adhesion studies

In the previous experiments the unit covering and sealing the tape channels was made of a

non-transparent biocompatible polymer. Lack of transparency limits applicability, because in

many cases it is desirable to investigate the sensor surface by using various modes of optical

microscopy. Here we developed a fully transparent cuvette assembly for GCI. A glass

covering unit was used with holes drilled in the glass for fixing the inlet and outlet tubings

(see Fig. 5a). The Teflon tubing was narrowed by longitudinal stretching. The narrow end of

the tube was then inserted into the inlet (or outlet) and positioned appropriately.

Overextending pieces of the tube were removed with a scalpel.  The assembled sensor-cuvette

system is shown in Fig. 5b. The single fluidic channel and the coupling gratings of the GCI

chip are clearly visible.

Fig. 5. (a) Components of the fully transparent system prior to assembly (GCI chip, tape cuvette, glass substrate

with the two holes). (b) The demonstated fully transparent GCI device.

In order to demonstrate the applicability of the fully transparent integrated, unit a bacterial

adhesion test was conducted using the GCI setup (see Fig. 6). First, the optical chip was

coated with PLL and a baseline signal was recorded under PBS. After recording a stable

baseline, 50 µl bacterial solution was injected into the fluidic channel using a Hamilton

syringe. The adhering bacterial cells increased the phase signal, which was saturated after
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about 3 minutes (see Fig. 6a). After saturation, 50 µ l PBS solution was injected to remove the

reversibly adhering cells. Then, the whole transparent unit was put under a Zeiss Axiovert

microscope to visualize the sensing surface. The adhered Salmonella  cells were clearly visible

(see Fig. 6b).

Fig. 6. (a) GCI phase shift signal during bacterial adsorption and desorption.. (b) Microscope image of the

sensor surface after the GCI experiment. The adhered bacterial cells are clearly seen. The edge of the SiO2 layer

is also visible at the right hand side of the image.

The demonstrated fully transparent arrangement can find further applications in parallel

morphological investigations such as different modes of conventional light microscopy,

Raman and infrared microscopies and spectroscopies.

4. Conclusions

The design, assembly and applicability of a simple, cheap and biocompatible microcuvette

system based on ARcare® pressure sensitive double sided tapes was demonstrated in the

present work. Channel structures in the tapes were cut with a laser engraver and cutter device.

These types of biocompatible tapes are commercially available in various pre-defined

thicknesses. The fabricated structured tapes were integrated with GCI and OWLS optical

waveguide sensor chips, and the assembled units were tested by using various solutions.

Stopped-flow measurement of protein adsorption and a fully transparent integrated device

were also demonstrated using proteins and living bacterial cells. The developed tape cuvettes

can find applications where rapid design and integration are priorities. A further advantage is

that the integration of the channels does not require any plasma, heat or additional chemical
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treatment. Therefore, sensing units with pre-coated biological materials could be easily

integrated with the proposed fluidic solutions. Future development may involve the

application of double sided tapes with thinner liners in order to fabricate narrower channels.
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