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Abstract Microfluidic devices are ideally suited for the

study of complex fluids undergoing large deformation

rates in the absence of inertial complications. In partic-

ular, a microfluidic contraction geometry can be utilized

to characterize the material response of complex fluids

in an extensionally-dominated flow, but the mixed nature

of the flow kinematics makes quantitative measurements

of material functions such as the true extensional viscos-

ity challenging. In this paper, we introduce the ‘exten-

sional viscometer-rheometer-on-a-chip’ (EVROC), which

is a hyperbolically-shaped contraction-expansion geometry

fabricated using microfluidic technology for characterizing

the importance of viscoelastic effects in an extensionally-

dominated flow at large extension rates (λε̇a ≫ 1, where

λ is the characteristic relaxation time, or for many indus-

trial processes ε̇a ≫ 1 s−1). We combine measurements of

the flow kinematics, the mechanical pressure drop across

the contraction and spatially-resolved flow-induced bire-

fringence to study a number of model rheological fluids,

as well as several representative liquid consumer products,

in order to assess the utility of EVROC as an extensional

viscosity indexer.
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Introduction

Microfluidic devices are invaluable for many rheometric

experiments because they can be easily designed to mimic

the micron-sized features of geometries that are found in

many industrial applications, (e.g., in fiber extrusion spin-

nerets, ink jet printer nozzles and as model porous media

Ferer et al. 2011). Such devices are also inexpensive and

easy to fabricate, they require only small sample volumes

and allow the rheologist to impose large deformation rates in

complex fluids without complications from inertial effects.

Large deformation rates may be found, for example, in the

chewing of foodstuffs in the mouth, where the closing speed

of the jaw may be of order V ∼ 1 cm.s−1 and the small-

est passages between teeth may be ℓ ∼ 100 µm, making

for characteristic deformation rates of at least ε̇c ∼ V/ℓ ∼

100 s−1. Furthermore, microfluidic devices can be used to

generate mixed flows that have shear as well as extensional

components, which are more realistic for many real world

applications.

The use of microfluidic technology for rheometry has

recently been reviewed by Pipe and McKinley (2009) and

Galindo-Rosales et al. (2013). To generate an internal exten-

sional flow, the test fluid typically travels through a con-

verging region or a contraction such that the mean axial

velocity ux of a fluid element changes in the flow direc-

tion as the sample travels through the device, (i.e., so that

∂ux/∂x �= 0). Careful consideration must be given to the

shape of the contraction in order to realize the desired

extensional deformation. Many of the earliest studies with

mailto:gareth@mit.edu
mailto:tober@mit.edu


530 Rheol Acta (2013) 52:529–546

converging geometries utilized abrupt or constant-angle,

tapered macroscale contractions (Cogswell 1978; Binding

and Walters 1988). The hyperbolically-shaped contraction is

unique in that it can be used to impose a nominally constant

extension rate along its centerline for a given volumetric

flow rate, as discussed by James (1991). It was first studied

in an axisymmetric configuration by Everage and Ballman

(1978), but the corresponding planar configuration, was

first studied only recently by Oliveira et al. (2007). These

authors studied the detailed kinematics of planar hyperbolic

contraction flows both experimentally and numerically for

Newtonian fluids, noting that for creeping flow, the effects

of viscous shearing are the dominant contribution to the total

pressure drop along the contraction and that it is difficult to

isolate purely extensional effects.

For viscoelastic fluids, however, there can be a signifi-

cant additional elastic contribution to the total pressure drop

as a result of the transient elongational flow experienced

by the fluid elements passing through the contraction. This

facilitates the measurement of an effective extensional vis-

cosity using a hyperbolic contraction device. Many studies

using a range of model fluids and viscoelastic constitutive

models have been performed to assess the suitability of con-

verging dies for measuring extensional viscosity, typically

by attempting to decouple the viscous and elastic contri-

butions to the measured pressure drop (James and Saringer

1982; Rajagopalan 2000; Feigl et al. 2003; Pandey and Lele

2007; Oliveira et al. 2008; Wang et al. 2010; Sousa et al.

2011). In the computational study of Rajagopalan (2000),

for example, the Phan-Thien-Tanner (PTT) model was used

to predict the pressure field in the flow through both abrupt

and tapered contractions, from which an extensional vis-

cosity was calculated using different analytical techniques

and compared against the predicted extensional viscosity

for the PTT model in a homogeneous extensional flow.

In general it was found that the analytical procedures for

extracting an extensional viscosity from the inhomogeneous

flow field gave results that were in agreement with the

true extensional viscosity expected in a homogeneous exten-

sional flow, provided the extension rates were sufficiently

large. Furthermore, for the range of PTT model parame-

ters considered, Hencky strains of at most εH = 4.5 were

required to attain steady state, and with decreasing strain

rates, the minimum Hencky strain required to attain steady

state decreased. Tamaddon-Jahromi et al. (2011) performed

a parametric study using the PTT and the Bautista–Manero

models for simulating the flows of worm-like micellar sys-

tems in steady shear and homogeneous extensional flows,

as well as flow through an abrupt contraction. In this

study, it was found that the respective predictions of vor-

tex growth and pressure drop values in the contraction flow

differed most between the two models for fluids exhibit-

ing increasing levels of strain hardening in homogeneous

extensional flow. Nyström et al. (2012) used the FENE-CR

model to study a range of axisymmetric abrupt, hyperbolic

and tapered contractions to determine the optimal geometry

for generating a constant extension rate along the center-

line of the contraction. The hyperbolic geometry was found

to be best for imposing a spatially uniform extension rate

and no upstream vortices were observed in this geome-

try. In the numerical study of Afonso et al. (2011), the

Oldroyd-B and PTT models were used to simulate flows

through axisymmetric and three-dimensional square abrupt

contractions at Deborah numbers up to O(104). The for-

mation of upstream vortices was observed as flow rate was

increased, along with a transition to unsteady flow at a crit-

ical Deborah number and a frequency-doubling behavior

with further increases in flow rate ultimately leading to a

chaotic regime.

For the experimentalist studying contraction flows, the

challenge lies in using kinematic and pressure measure-

ments to extract a quantitative measure of the extensional

flow resistance of the test fluid. To illustrate this point, we

consider the pressure drop measurements for a range of

polyethylene oxide (PEO) solutions in the same Newtonian

solvent across a planar hyperbolic contraction-expansion at

different low Reynolds number flow rates shown in Fig. 1.

For all of the PEO solutions, the pressure drop increases

non-linearly with flow rate, and it can be many times larger

than the corresponding Newtonian value at a given flow

rate. Therefore, it would be valuable to have a method for
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Fig. 1 Measured pressure drop �P23 across the planar 7.75:1 hyper-

bolic contraction-expansion as a function of flow rate Q for low

viscosity solutions of high molecular weight PEO (2 × 106 g.mol−1,

overlap concentration c∗ = 8.58 × 10−4 g.mL−1; Sigma–Aldrich)

in a water:glycerol solvent (µ = 8.2 mPa.s). The solid black line

has been added to guide the eye for the results of the Newtonian sol-

vent. Inset figure is a streakline image of the creeping flow (Re ≪ 1

and De ≪ 1) through the hyperbolic contraction-expansion (chan-

nel thickness h = 200 µm, inlet width wu = 3100 µm, throat width

wc = 400 µm and contraction length lc = 825 µm)



Rheol Acta (2013) 52:529–546 531

systematically quantifying the importance of viscoelastic

contributions in these total pressure drops in order to quanti-

tatively compare the rheological behavior of different fluids

in an extension-dominated mixed flow.

To that end, within the last decade, there have been

many experimental studies of extension-dominated mixed

flows of non-Newtonian fluids in microfluidic devices.

The small length scales of these test geometries facilitate

flows at low Reynolds number but large deformation rates,

enabling experimentalists to study the importance of vis-

coelastic effects in high Weissenberg number extensional

flows. The viscoelastic flow of polyacrylamide solutions

through a series of contraction-expansions has been sug-

gested as a novel way to create a microfluidic rectifier

(Groisman and Quake 2004). Recently, Sousa et al. (2012)

compared the flow of a Newtonian fluid with a high molec-

ular weight PEO solution in a microfluidic rectifier device

composed of a series of hyperbolic contractions and dif-

ferent channel depths, finding that diodicity ratios as high

as 6.4 could be achieved using the viscoelastic fluid even

at very low Reynolds numbers. The competing roles of

fluid inertia and viscoelasticity on the kinematics and pres-

sure drop in the flow of PEO solutions through a planar

abrupt contraction were studied by Rodd et al. (2005, 2007).

PEO and hydroxyethyl cellulose solutions were used to

study the importance of end effects in the pressure drop

across a straight microchannel by Kang et al. (2006). They

found that for these fluids the dominant contribution to the

Bagley correction came from the flow in contraction and

expansion regions upstream and downstream of the chan-

nel, rather than from the development region in the straight

channel itself. Experiments with xanthan gum flowing in

a T-channel have also been studied by Bandalusena et al.

(2009) and corresponding computational studies have been

preformed by Bandalusena et al. (2010). Microfluidic ana-

logues of the four-roll mill have been studied for imposing

mixed extensional and shear flows (Hudson et al. 2004; Lee

et al. 2007).

Recently, Wang and James (2011) studied the flow of

Newtonian and PEO solutions in a planar microfluidic

hyperbolic contraction (19:1 contraction ratio) by using

both miscible and immiscible, low viscosity Newtonian

lubricating fluids to facilitate a more homogeneous elon-

gational flow in the inner viscoelastic fluid. In calibra-

tion experiments with a Newtonian fluid, but no lubri-

cating fluid, very good agreement was found between

the velocimetry and pressure measurements and analyti-

cal predictions based on the lubrication approximation. In

the lubricated experiments with a viscoelastic core fluid,

the flow was found to be stable only if an immisci-

ble fluid was used as the lubricating fluid. However, the

location of the fluid-fluid interfaces was dependent on

flow rate and thus flow visualization measurements were

necessary to complement the pressure measurement for

accurate determination of the extensional viscosity.

Worm-like micellar (WLM) fluids have also been stud-

ied in millifluidic and microfluidic extension-dominated

flows (Hashimoto et al. 2006; Stone et al. 2006; Pathak

and Hudson 2006; Marı́n-Santibáñez et al. 2009; Haward

et al. 2012a; Dubash et al. 2012; Haward and McKinley

2012). Microfluidic devices are well-suited for studies of

WLM fluids, because the small length scales can be used

to explore the role of non-local effects in the stress field

(Masselon et al. 2008). Furthermore, the ability of these

fluids to shear band enables the formation of effective lubri-

cation layers at the channel walls, facilitating a plug-like

flow in the core of the fluid that can be beneficial for

obtaining a more homogeneous extensional flow field in a

contraction geometry.

From all of these prior studies, it is clear that for

extension-dominated flows in microfluidic devices, vis-

coelasticity plays a crucial role in the resulting kinematic

and stress fields, making determination of the extensional

viscosity challenging. Therefore, a valuable complement to

pressure and velocimetry measurements are flow-induced

birefringence measurements, which can be used to observe

the degree of molecular alignment and stretching in mate-

rial elements as they flow through the device. In certain

cases these measurements can be related to the stress dif-

ference in the material with a stress-optical rule (Fuller

1990). Such measurements have been used extensively

for polymeric and WLM fluids in macroscale geometries,

(Fuller 1990; Lerouge and Berret 2010), including contrac-

tion flows, (Adams et al. 1965; Han and Drexler 1973a,

b; Schuberth and Münstedt 2008). Recent studies of bire-

fringence in microchannels have focused on WLM fluids

(Pathak and Hudson 2006; Haward et al. 2012a; Dubash

et al. 2012; Haward and McKinley 2012). This is because

WLM systems are typically around one hundred times

more birefringent than polymeric systems, consequently

the small optical path lengths associated with microflu-

idic devices can still provide a strong enough signal for

experimental measurements. In these studies, birefringence

and velocimetry measurements were used to characterize

the flow instabilities and conformational hysteresis of shear

banding WLM fluids undergoing extensional deformations

in microfluidic cross-slot geometries.

Typically, studies of extension-dominated flows in

microfluidic devices have been limited to model rhe-

ological fluids such as dilute polymer solutions and

worm-like micellar fluids. Ultimately, it would be desir-

able to develop a device that can be used with both

model fluids and more complex commercially relevant

materials to rapidly and quantitatively characterize their

behavior in internal, microscale extensional flows, repre-

sentative of real engineering flows through nozzles and
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porous media, for example, as well as flows in the

digestive and circulatory systems in the body. In this regard

we follow in the spirit of Binding and Walters (1988) who

note that “generating a purely extensional flow in the case

of mobile liquids is virtually impossible. The most that one

can hope to do is to generate flows with a high extensional

component and to interpret the data in a way which (hope-

fully) captures that extensional component in a convenient

and consistent way through a suitably defined extensional

viscosity and strain rate. The philosophy is not without its

difficulties and is somewhat controversial. However, given

the practical importance of the subject and the expecta-

tion that there will be at least semi-quantitative predictive

capacity, it is our contention that the pursuit is eminently

worthwhile, especially since there is no alternative if one

requires some indication of the extensional viscosity levels

in the flow of non-Newtonian elastic liquids.”

In this paper, we consider an ‘extensional viscometer-

rheometer-on-a-chip’ (EVROC) for use as a microfluidic

extensional viscosity indexer to quantify the rheological

behavior of complex fluids in an extension-dominated

mixed flow. We combine (1) mechanical pressure drop

measurements, with highly-resolved measurements of (2)

flow kinematics as well as (3) flow-induced birefringence

(FIB) to understand the rheological response of a range

of Newtonian and non-Newtonian sample fluids to an

extension-dominated deformation. The combination of bire-

fringence and velocimetry measurements in microfluidic

devices offers the experimental rheologist the ability to

obtain spatially resolved measurements of the state of stress

as well as the molecular stretching in elastically-dominated

flows of complex fluids.

Experimental methods

Channel fabrication and hyperbolic geometry

The microfluidic planar hyperbolic contractions were fab-

ricated in Pyrex using standard wet-etching techniques by

RheoSense (San Ramon CA, USA) as described elsewhere

(Pipe et al. 2008). The pressure measurements were made

with a chip constructed by anodically bonding the Pyrex

contraction-expansion to a silicon wafer with four flush

mounted microelectromechanical systems (MEMS) based

pressure sensors. This fabrication technique, however, pro-

duces a chip with an opaque black plane, and therefore it

could not be used for flow visualization. Accordingly, a

second, transparent contraction-expansion geometry of the

same dimensions was fabricated from Pyrex and sealed to

a 150 µm thick microscope coverslip to enable direct flow

visualization experiments. An optical microscopy image

and a schematic diagram of the contraction are shown in

Fig. 2, with channel dimensions given in the figure caption.
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Fig. 2 a Optical transmission microscope image of the planar hyper-

bolic contraction-expansion geometry. Two curves outlining the con-

traction walls are superimposed on the image. The origin of the

experimental coordinate system lies along the contraction centerline

and at the contraction inlet as shown by the dashed white line. b

Schematic diagram of the hyperbolic planar contraction and represen-

tative pressure profile, showing the coordinate system and variables

used throughout the text. The contraction dimensions are h = 200 µm,

lc = 400 µm, wc = 400 µm and wu = 2920 µm. The solid

squares indicate the approximate size and location of the flush-

mounted MEMS pressure transducers. The schematic depiction is

approximately to scale

The throat of the contraction was positioned at the mid-

plane of the entire length of the channel (L = 13 mm), but

we define the origin of our experimental coordinate system

to lie along the contraction centerline and at the beginning

of the contraction inlet as shown in Fig. 2a. The hyperbolic

contraction is a unique geometry because it can be used,

in principle, to impose a constant, nominal extension rate,

owing to the fact that its cross-sectional area varies inversely

with axial position. Indeed, if the flow is inviscid, or perfect

slip at the wall occurs, for example if the flow is lubricated,

then ε̇xx = ∂ux/∂x = const for a given volumetric flow
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rate. For real fluids, however, the no-slip boundary condi-

tion at the wall cannot be circumvented and a more detailed

analysis of the kinematics is required.

For the contraction depicted in Fig. 2 having length,

lc, height, h, upstream width, wu, width at the contrac-

tion throat, wc, the width, w(x), at any x takes the form

w(x) = K/(x0 + x), where x0 = lcwc/(wu − wc) and K =

x0wu. Given a constant volumetric flow rate, Q, through

the contraction, the average velocity at any x-position is

ux = Q/hw(x), and so the apparent or nominal exten-

sion rate, ε̇a , neglecting any shearing flow induced by the

bounding walls is

ε̇a =
Q

lch

(

1

wc

−
1

wu

)

(1)

The Hencky strain experienced by a fluid element, εH ,

flowing into the contraction is given by the equation

εH (x) =

∫ t

0

ε̇adt ′ = ln

(

wu

w(x)

)

(2)

The maximum Hencky strain occurs at the throat of the con-

traction and is therefore equal to εH = ln(wu/wc). For the

specific channel geometry considered here wu = 2920 µm

and wc = 400 µm, so the total Hencky strain is εH = 2.

Subsequent to the hyperbolic contraction region is a

symmetric hyperbolic expansion (lc ≤ x ≤ 2lc). This con-

figuration has been designed to generate a kinematically

reversible flow for Newtonian fluids at low Reynolds num-

bers and thus equal energy dissipation in the contraction and

expansion sections. There is a major difference between the

contraction and expansion, however, in that the direction of

molecular extension is aligned with the flow through the

contraction, but perpendicular to the primary flow direction

in the expansion.

Experimental techniques

Pressure drop measurements were made with the EVROC,

which was fabricated with four inline, 800 × 800 µm2

MEMS-based pressure transducers along the centerline, fol-

lowing the construction methods described in Baek and

Magda (2003). The maximum measurable pressure of the

device was Pmax = 40 kPa, corresponding to the maxi-

mum allowable deflection of the membrane of the MEMS

transducer. Measurement precision is approximately 100 Pa

(0.2 %Pmax). The temperature of the chip was controlled by

a thermal jacket (RheoSense Inc.), and an F12-ED Refrig-

erated/Heating Circulator (Julabo Inc.). Before each test,

the EVROC contraction geometry was washed with ethanol

and deionized water and then a sufficiently large amount of

the test fluid was flushed through the contraction to ensure

that there were no air bubbles remaining in the contraction.

The test fluid was then allowed to rest in the microchannel

for around 15 min, to allow the pressure field to equili-

brate, after which the baseline pressure was measured. All

tests were completed with a 2.5 mL Hamilton Gastight glass

syringe (Reno, NV). For a given test fluid, a set of flow

rates was selected so as to yield pressure drops spanning

the entire dynamic range of the pressure transducers or to

maximize the pump flow rate (Qmax = 5.2 mL.min−1),

whichever occurred first. The sampling period of each flow

rate was selected such that the pressure profile attained a

steady state value. Typically the lowest flow rates required

on the order of minutes to become steady and the highest

flow rates required only seconds. Hence, multiple tests were

completed for each fluid to determine the necessary duration

of each flow rate and to ensure repeatability.

Representative pressure profiles along the microchan-

nel are depicted schematically in Fig. 2b. The line

labelled ‘Plane Poiseuille P -Profile’ represents the hypo-

thetical pressure profile that would be measured without

a contraction-expansion using an equivalent microfluidic

chip designed for shear rheometry. The profile labelled

‘Measured Planar Extensional P -Profile’ indicates a typ-

ical non-linear profile that is measured using the hyper-

bolic contraction-expansion geometry. The pressure drop

between transducers 2 and 3 is denoted �P23. The pressure

drop that is of interest for extensional rheology measure-

ments is the pressure drop associated with the contraction

alone, �Pc, which is somewhat different from �P23. This

difference arises because the MEMS transducers 2 and 3

are located some distance upstream and downstream of the

contraction entrance and exit. This extra distance is a result

of fabrication constraints on the minimum relative spacing

between each transducer. It also is designed to ensure that

both transducers lie far enough up and downstream of the

contraction that they are located in regions of the chan-

nel where the rectilinear shear flow provides the dominant

contribution to the pressure gradient. To calculate the value

of �Pc, one can use the average of the pressure gradients

for X1 < X < X2 and X3 < X < X4 to extrapo-

late the fully-developed shear flow pressure profile in the

upstream and downstream channels to the inlet and outlet

of the contraction, similar to the analysis of Wang et al.

(2010). In making this extrapolation, fully-developed, rec-

tilinear shear flow at low Reynolds number is assumed to

dominate between the second transducer and the contraction

inlet and between the contraction outlet and the third trans-

ducer. Accordingly, under the assumption that any possible

inertial contributions to the pressure drop in the contraction

region can be neglected, the true pressure drop across the

contraction, �Pc, is related to the measured pressured drop,

�P23, by the relation

�Pc = �P23

{

1 −
1

2

(

1

P
− 1

)

L23 − 2lc

L

}

(3)
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where L23 = 3.8 mm, L ≡ L12 = L34 = 2.5 mm and

lc = 400 µm.

A useful dimensionless pressure coefficient is defined

in Eq. 3 as P ≡ �P23/�P14 where �P14 is the pressure

drop between transducers 1 and 4. The pressure coefficient

is positive, and for inertialess flow it is less than unity.

It is a measure of the relative importance of the pressure

drop in the extension-dominated region of the contraction-

expansion geometry compared to the overall pressure drop

across the entire microchannel. For low Reynolds number

flows, this ratio is a constant independent of flow rate for

Newtonian fluids, but it can vary with flow rate for non-

Newtonian fluids, reflecting the role of viscoelastic effects

in the extension-dominated flow through the contraction.

Therefore, this pressure coefficient serves as a simple met-

ric by which to gauge the relative importance of viscoelastic

effects in the contraction, and its use will be explained in

more detail below.

The µ-PIV experiments were performed in a climate-

controlled room in which the temperature was 24 ± 1 ◦C.

The flow rate was controlled with a PHD Ultra syringe

pump (Harvard Apparatus). For streakline movies the test

fluids were seeded at 0.02 wt.% with fluorescent parti-

cles of diameter dp = 8 µm (Invitrogen), having exci-

tation/emission wavelengths of 520/580 nm. Images were

recorded with a (640×480 pixels) CCD camera (Blue FOX,

Matrix Vision) and a continuous illumination mercury lamp

with peak emission at 532 nm. In order to visualize the

entire contraction region, the images were recorded with a

low magnification 2×, NA = 0.06 objective, correspond-

ing to a depth of measurement, δzm = 938 µm, using the

formulae in Meinhart et al. (2000). This depth is greater

than the channel thickness, h = 200 µm, and accordingly

flow across the entire channel height was observed. Higher

resolution images are readily possible with a high mag-

nification objective, but it is then not possible to observe

the full upstream and downstream flow in a single streak

image.

The µ-PIV system used in this study has been described

elsewhere, (Rodd et al. 2005), and so it is only briefly

reviewed here. Velocimetry measurements were taken with

a 10 × 0.25 NA objective with the PIV-Cam 14-10 (1376 ×

1024 pixels) CCD camera (TSI Instruments,) and a double-

pulsed 532 nm Nd:YAG laser. Test fluids were seeded

at 0.02 wt.% with monodisperse fluorescent particles of

diameter dp = 1.1 µm (Invitrogen). At this magnifi-

cation, the depth of measurement was δzm = 47 µm,

and hence roughly one quarter of the contraction thick-

ness was resolved in the velocimetry measurements. Full-

field velocity maps were measured at the centerplane of

the contraction, and these were ensemble-averaged using a

conventional cross-correlation PIV algorithm (TSI Insight

software). The x-component of the centerline velocity at

a particular x-position was taken as the average of the

x-component of the velocity vectors in the middle third of

the throat width of the contraction (i.e., −wc

6
= −67 ≤ y ≤

67 = wc

6
µm). Error bars in the axial velocity profile plot

shown in Fig. 5a correspond to the standard deviation of

those data points. All post-processing of the velocity vector

fields was performed in MATLAB with a script written by

the authors.

Measurements of flow-induced birefringence in the

hyperbolic contraction geometry were completed using the

ABRIO™ microscopy imaging system (CRi, Inc., Woburn,

MA) described in Ober et al. (2011). This system acquires

a sequence of recorded images with a liquid-crystal-based

optical polarizer, to produce spatially-resolved pixelwise

measurements of retardance, δ(x, y), of the imaged speci-

men or flow field. For microfluidic flow of a complex fluid,

this retardance is related to the local degree of stretching and

orientation of the macromolecules in the fluid, and assum-

ing the validity of the stress-optical rule it can be used

to evaluate the principal stress difference in the material.

Additional details are provided in Ober et al. (2011).

Test fluids

Five Newtonian calibration fluids of different dynamic vis-

cosities, µ, but similar densities, ρ, were first studied.

Deionized water was used for flow visualization experi-

ments, and two mixtures of water and glycerol and two

silicone-based calibration oils of different viscosities (S60

and N1000, Cannon Inst. Co) were used for pressure cali-

bration measurements in the EVROC device. The rheolog-

ical properties of these fluids are listed in Table 1. This

selection of Newtonian fluids allowed for pressure mea-

surements over nearly eight decades of Reynolds number

(10−5 < Re0 < 103).

The model non-Newtonian fluids studied were 3000 ppm

(2 × 106 g. mol−1) polyethylene oxide (PEO) in 34:66 wt%

water:glycerol, and the same shear-banding worm-like

micellar solution, consisting of 100 mM cetylpyridinium

chloride (CPyCl) (Alfa Aesar) and 60 mM sodium salicylate

Table 1 Newtonian fluid properties at 25 ◦C

Fluid ρ [kg/m3] µ [Pa.s]

Deionized H2O 1000 0.001

44:56 wt% H2O:Gly 1130 0.0085

34:66 wt% H2O:Gly 1160 0.0122

S60 oil 877 0.102

N1000 oil 846 2.0

Viscosities measured with a cone-and-plate rotational rheometer.
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(NaSal) (Alfa Aesar) in de-ionized water, that was stud-

ied by Ober et al. (2011) and Haward et al. (2012a). This

system exhibits single-mode Maxwellian behavior in small

amplitude oscillatory shear (SAOS). Above shear rates γ̇ >

0.5 s−1 this fluid exhibits a pronounced stress plateau, a fea-

ture which is indicative of shear banding (Cates and Fielding

2006). Other commercial fluids that were studied include

Herbal Essence shampoo (Procter & Gamble) containing

the surfactants sodium dodecyl sulfate (SDS) and sodium

laureth sulfate (SLES), DayQuil (Vicks) containing water-

borne carboxymethycellulose thickener and, finally, sweet

chili sauce (Thai Kitchen) containing xanthan gum. The

sweet chili sauce was first filtered to remove food partic-

ulates and this filtrate showed features of a critical gel in

small amplitude oscillatory shear. The flow curves of these

fluids were measured using a cone-and-plate geometry on a

DHR3 rheometer (TA Instruments) and are shown in Fig. 3.

All of these fluids exhibited a shear-thinning regime

which has been fit with the power-law model (Bird et al.

1987), for which the shear viscosity is given by η = mγ̇ n−1,

where m is the consistency index and n is the dimension-

less exponent. The rheological properties of the test fluids
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Fig. 3 Steady flow curves of the non-Newtonian test fluids at 25 ◦C

measured with a cone-and-plate rotational rheometer. The dashed line

shows the stress/shear rate relationship for a Newtonian fluid with µ =
10−3 Pa.s

Table 2 Non-Newtonian fluid properties at 25 ◦C measured with a

cone-and-plate rotational rheometer

Fluid ρ η0 G0 λ m n

[kg/m3] [Pa.s] [Pa] [s] [Pa.sn]

CPyCl:NaSal 1000 40 26 1.5 15 0.01

PEO 1160a 0.080 0.076b 0.080 0.92

Herbal Essence 1000a 15 240 0.062 86 0.027

DayQuil 1000a 0.06 0.021b 0.1 0.8

Chili Sauce 1000a – 0.56 0.83 0.57

aAssumed.
bMeasured using a capillary break-up extensional rheometer (CaBER).

are given in Table 2. The linear viscoelastic properties of the

CPyCl:NaSal solution and the Herbal Essence fluid were

obtained by fitting a single mode Maxwell model to the

storage and loss moduli measured in SAOS. The relaxation

times of the PEO solution and DayQuil were measured

using a capillary break-up extensional rheometer (CaBER)

(McKinley and Tripathi 2000). Because the chili sauce

exhibited a yield stress, its relaxation time was not measured

with CaBER, but instead was taken to be the inverse of the

cross-over frequency in SAOS.

Dimensional analysis

The relative importance of inertial effects in the device

compared to viscous effects is quantified by the Reynolds

number

Re0 =
ρdhlcε̇a

η0

(4)

where ρ is the fluid density and η0 is the zero-shear-rate

viscosity of the test fluid, or equivalently the dynamic vis-

cosity, µ, if the fluid is Newtonian. For the flow in the

hyperbolic contraction, we take as the characteristic length

scale the hydraulic diameter defined at the throat of the con-

traction as dh = 2hwc/(h + wc) = 267 µm. The hydraulic

diameter is the most appropriate length scale because it

accounts for the two-dimensionality of the channel cross-

section, being calculated from both the height and width of

the contraction simultaneously. The characteristic velocity

is taken to be Uchar = lc ε̇a , which reflects the change in the

average velocity from the inlet to the throat of the contrac-

tion. For large contraction ratios, however, the magnitude of

the change in the velocity through the contraction is of the

same order as the average velocity at the throat of the con-

traction (for the contraction used in this study Q/hwc =
1.16lcε̇a). From either viewpoint Uchar = lc ε̇a is the most

appropriate velocity scale for defining the Reynolds number

for the contraction used in this study.
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Table 3 Range of dimensional and dimensionless parameters

explored in this study

Fluid ε̇a [s−1] Re0 Dea El0

H2O 102 − 103 102 − 103 – –

S60 1 − 102 10−2 − 1 – –

N1000 0.1 − 10 10−5 − 10−3 – –

CPyCl 0.1 − 102 10−7 − 10−4 0.1 − 102 6.5 × 105

PEO 10 − 102 10−3 − 1 0.1 − 102 66

Herbal Ess. 0.1 − 102 10−6 − 10−3 10−2 − 10 1.4 × 104

DayQuil 10 − 103 10−2 − 1 0.1 − 10 12

Chili Sauce 10 − 103 – 1 − 102 –

The Deborah number is defined as the ratio of the fluid

relaxation time to a time scale of observation. For the steady

converging flow in the EVROC, this is taken as the time

required for a material element to travel through the con-

traction, which is proportional to ε̇−1
a , as defined in Eq. 1.

Accordingly, the apparent or nominal Deborah number,

Dea , based on Eq. 1 is defined

Dea = λε̇a (5)

The elasticity number, which characterizes the relative

importance of elastic stresses to inertial stresses is defined

as

El0 =
Dea

Re0

=
λη0

ρlcdh

(6)

The range of magnitudes of these dimensionless groups

experimentally realized in the study of flow through a hyper-

bolic contraction are given in Table 3. For all the fluids,

El0 ≫ 1, indicating that in the experiments with non-

Newtonian fluids discussed below inertial stresses were not

of importance.

Flow of Newtonian fluids

Pressure measurements

Experimentally measured pressure profiles for the N1000

calibration fluid are shown in Fig. 4a as the flow rate is pro-

gressively increased. The flow is viscously dominated and

the profiles are self-similar with a pressure drop �P23 ∼ ε̇a .

For a Newtonian fluid at Re0 < 1, the value of pressure

coefficient, PN ≈ 0.71, shown in the inset plot of Fig. 4a,

is independent of the viscosity or flow rate, and only a func-

tion of the channel geometry. The pressure drop across the

contraction alone, �Pc is calculated using Eq. 3. The val-

ues of the dimensionless pressure drop �Pc/µε̇a measured

with all Newtonian test fluids are plotted against Reynolds

number in Fig. 4b. The onset of inertially-driven secondary

a

b

Fig. 4 a Pressure measurements as a function of streamwise dis-

tance along the microchannel at different ε̇a for the N1000 calibration

oil. The dashed line indicates the anticipated pressure gradient in the

downstream section of the channel based on Eq. 16 for a Newtonian

fluid (n = 1) of the same viscosity as the N1000 calibration oil given

in Table 1 (m = µ = 2.0 Pa.s). The inset plot shows the evolution

of the pressure coefficient, P , defined for Eq. 3 in the text above. b

Measured dimensionless pressure drop for Newtonian fluids at varying

Reynolds number. The dashed horizontal line indicates the anticipated

dimensionless pressure drop based on Eq. 8

flow begins around Re0 ≈ 10, coinciding with a non-linear

increase in �Pc with increasing ε̇a .

The governing equations for the steady flow of an incom-

pressible Newtonian fluid through the contraction geometry

are the continuity equation, ∇·
v = 0, and the steady Navier-

Stokes equation, ρ
v · ∇
v = −∇p + µ∇2
v, with the no-slip

boundary condition on the walls. The inertial non-linearity

in the momentum equation requires the exact equations to

be solved numerically (Oliveira et al. 2007), but for the case

of highly viscous Newtonian flow kinematics in the contrac-

tion, the momentum equation can be simplified to obtain an

approximate solution using the lubrication approximation,

provided Re0
wu

lc
≪ 1. Since w(x) ≥ lc > h, we approxi-

mate the governing momentum equation by the equation for

two-dimensional Stokes flow which is dP
dx

= µ ∂2u

∂z2 . Here p

is the pressure, x and z follow the coordinate system given in

Fig. 2b and u = u(x, z) is the x-component of the velocity

field. Using the lubrication approximation, the relationship



Rheol Acta (2013) 52:529–546 537

between the pressure gradient and the volumetric flow rate

appropriate for h < w(x) is given by

dPc

dx
= −

12µQ

h3w(x)
= −

12lc

h2w(x)

(

wcwu

wu − wc

)

µε̇a (7)

Substituting the expression for w(x), therefore the antici-

pated pressure drop across the contraction-expansion from

x = 0 to x = 2lc is

�Pc = 12

(

lc

h

)2 (

wu + wc

wu − wc

)

µε̇a (8)

The expected pressure drop given by Eq. 8 for the

contraction-expansion used in this study is �Pc/µε̇a = 63,

which is indicated by the dashed horizontal line in Fig. 4b.

For Re0 ≪ 1, however, experimental pressure measure-

ments give �Pc/µε̇a ≈ 200, hence the 2D lubrication

approximation underpredicts the measured pressure drop

by roughly a factor of three, for reasons that can be bet-

ter understood by observing the flow kinematics in the

microchannel directly, as discussed below.

Flow kinematics

To understand the discrepancy between the simple two-

dimensional calculation of the expected pressure drop

across the contraction-expansion given by Eq. 8 and the

experimental measurements, we compare the measured

axial velocity profile against three different characteristic

axial velocity profiles. For the hyperbolically shaped planar

contraction in this study, the cross-sectional area is A(x) =

hw(x) ∼ x−1. Therefore, the simplest expected axial

velocity profile is the nominal plug-like centerline velocity

u1D
cl (x) = Q/A(x), on which the apparent extension rate is

based (i.e., ε̇a = du1D
cl /dx). Thus in the contraction region

(0 ≤ x ≤ lc), the average axial velocity profile is given by

u1D
cl (x) = (x0 + x)ε̇a (9)

The anticipated centerline velocity in the contraction region

consistent with the two-dimensional lubrication approxima-

tion from Eq. 7 is given by

ũ2D
cl (x) =

3

2
(x0 + x)ε̇a (10)

where the tilde denotes a locally fully developed velocity

consistent with the lubrication approximation. Finally, the

most accurate centerline velocity is given by the lubrication

approximation together with the expression for the velocity

field in a rectangular channel of finite aspect ratio, which

can be found in White (2006), and for this contraction is

ũ3D
cl (x) = K(x)(x0 + x)ε̇a (11)

where K(x) is defined

K(x) =
48

π3

∞
∑

j=odd

(−1)
j−1

2

j3

⎡

⎣1 −
1

cosh
(

jπw(x)
2h

)

⎤

⎦

1 −
192

π5

h

w(x)

∞
∑

j=odd

tanh
(

jπw(x)
2h

)

j5

(12)

The expected velocity profiles in the expansion region are

mirror images of the profiles in the contraction due to

the channel symmetry. Upstream of the contraction inlet

(x < 0), the cross-sectional area is constant, so the approxi-

mate velocities to be matched to these profiles are

u1D
cl (x < 0) = x0ε̇a

u2D
cl (x < 0) =

3

2
x0ε̇a

u3D
cl (x < 0) = K0x0ε̇a

(13)

where K0 is defined

K0 =
48

π3

∞
∑

j=odd

(−1)
j−1

2

j3

[

1 −
1

cosh
( jπwu

2h

)

]

1 −
192

π5

h

wu

∞
∑

j=odd

tanh
(

jπwu

2h

)

j5

(14)

For the microchannel used in this study, K0 = 1.567.

The expected axial velocity profiles in the contraction-

expansion region given by Eqs. 9, 10 and 11 are com-

pared with the centerline velocity measured using µ-PIV

in Fig. 5a. Although the measured profile is qualitatively

described by ũ3D
cl (x), it differs from the lubrication solution

in two ways. Firstly, the measured centerline velocity pro-

file begins to exceed the anticipated profile starting roughly

three contraction lengths upstream of the contraction inlet,

as indicated by the horizontal black arrow in Fig. 5a. This

initial deviation can be attributed to the abruptness of the

contraction seen in Fig. 2a. The importance of sudden

changes in cross-section on the kinematics and pressure

field in viscously-dominated flows through microfluidic

devices was also previously noted in Oliveira et al. (2007).

Secondly, the measured velocity exceeds ũ3D
cl (x) in the con-

traction region (0 ≤ x ≤ 2lc), due to a “scalloping” feature

of the wet etching process which causes the idealized sharp

corners to in fact be rounded so that the cross-sectional area

of the channel in the contraction region is 10–20 % less

than the anticipated rectangular cross-sectional area. The

true extension rate ε̇t experimentally realized in the hyper-

bolic contraction can be calculated from the slope of the

best-fit line to the measured velocity profile in the contrac-

tion region, and the resulting values are plotted against the

nominal extension rate ε̇a given by Eq. 1 in Fig. 5b. The

true extension rate is roughly 66 % greater than the nominal

value based on a linear regression to the measured extension
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a

b

Fig. 5 a Experimentally measured (uexp) and anticipated velocity

profiles along the centerline of the contraction ucl(x) = u(x, 0, 0) in a

Newtonian fluid at Q = 10 µL/min, Re0 ≃ 0.5. The dashed solid line

is the linear best-fit to the measured velocity profile in the converging

section of the contraction (0 ≤ x ≤ lc) whose slope equals the experi-

mentally realized extension rate in the contraction, ε̇t . b True extension

rate ε̇t determined from the slope of the best-fit line to the measured

velocity profile as a function of the imposed ε̇a . The solid line indi-

cates the ideal result of ε̇t = ε̇a , whereas the dashed line indicates the

result of a least squares fit to the measured extension rate given by the

equation ε̇t = 1.66ε̇a

rate. These discrepancies between the measured and antici-

pated kinematics reveal why the lubrication approximation

cannot accurately predict the measured pressure drop shown

in Fig. 4b. The precise form and extent of the deviations can

only be understood using full 3D finite volume simulations,

which will be considered in future work.

Flow of non-Newtonian fluids

Pressure measurements

Measured pressure profiles for one of the non-Newtonian

test fluids are shown in Fig. 6a. As in the Newtonian case,

the dominant contribution to the overall pressure drop in

the entire microchannel is �P23, and this quantity is plot-

ted in Fig. 6b as a function of nominal extension rate for

each fluid tested. This apparent flow curve of pressure drop

verses flow rate, however, does not provide an immediately

a

b

Fig. 6 Pressure measurements in the microfluidic contraction at dif-

ferent nominal extension rates for the 100 : 60 mM CPyCl:NaSal

system. a Measured pressure as a function of streamwise distance

along the microchannel. b Measured pressure drop �P23 for each fluid

as a function of the nominal extension rate

useful metric of the contribution of viscoelastic effects in

this mixed flow. One possible metric for quantifying these

effects in the contraction is the ‘excess pressure drop’ (EPD)

(Aguayo et al. 2008), which is the ratio of the pressure

drop across the contraction for a non-Newtonian fluid to the

pressure drop for a Newtonian fluid with the same shear

viscosity at a given flow rate. With the exception of Boger

fluids (whose shear viscosity is constant), the shear viscos-

ity of most non-Newtonian fluids is rate dependent, and

therefore without assuming a constitutive relationship for

the shear viscosity of the fluid (e.g., a power-law model

as utilized in this work) the calculation and interpretation

of the EPD for most viscoelastic materials is ambiguous.

An alternative metric for gauging the relative importance

of non-Newtonian effects is the pressure coefficient P ≡
�P23/�P14, that was introduced previously in Eq. 3. This

quantity is plotted in Fig. 7a and has the advantage that

it is based on the uncorrected pressure drop measurements

alone and therefore its value can be determined unambigu-

ously. As the fractional contribution of the pressure drop

in the contraction to the overall pressure drop in the entire

channel increases, the viscoelastic resistance to stretching
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a

b

Fig. 7 a Pressure coefficient plot for different fluids. The black curve

corresponds to the minimum predicted value of the pressure coefficient

for a power-law fluid with index 0 ≤ n ≤ 1 using Eq. (18). Each of

the five points on the curve indicates the predicted minimum value of

P corresponding to the value of n for each test fluid listed in Table 2.

b Corrected pressure drop �Pc for each test fluid using Eq. 3

becomes increasingly important and the pressure coefficient

P approaches unity.

It is important to note that for the non-Newtonian test flu-

ids the value of P may be lower than the respective value

for Newtonian fluids, and also that the value does not nec-

essarily asymptote to a constant value at low flow rates.

Therefore, it is helpful to make an estimate of the value of

P at the limiting flow rates for which viscous shear effects

would constitute the predominant contribution to the pres-

sure drop. It is common to assume that the overall pressure

drop in the device can be decomposed as �Pc = �Pe +

�Pv, whereby the total pressure drop is the superposition

of a viscoelastic component �Pe and a viscous component

�Pv due to shearing at the walls, (Cogswell 1972). Without

complementary numerical simulations, however, it is diffi-

cult to ascertain the viscous contribution to the pressure drop

with great precision, but for the flow of a shear-thinning

non-Newtonian fluid one can estimate the value of �Pv

using the phenomenological power-law model (Bird et al.

1987) provided the flow is inertialess and the shear stresses

in the fluid are independent of net accumulated strain. This

approach for calculating �Pv is consistent with other recent

analyses for planar contraction flows (Wang et al. 2010).

Since the thickness of the hyperbolic contraction flow chan-

nel is always less than its width, h < wc < wu, in our

analysis we assume that the dominant velocity gradient will

be across the channel height (i.e., in the z-direction), and

therefore in the 2D approximation, velocity gradients across

the channel width (i.e., in the y-direction) are neglected. For

a power law fluid (denoted PL), the resulting pressure gra-

dient due to the viscous shearing component of the flow is

related to the nominal extension rate ε̇a by the equation

dP PL
v

dx
= −2n+1

(

2n + 1

n

)n (

lc

h

)n (

wcwu

wu − wc

)n
mε̇n

a

hw(x)n

(15)

Upstream and downstream of the contraction, w(x) = wu,

and thus the magnitude of the pressure gradient in these

regions of the channel is constant with value

�P PL
v

�x
= 2n+1

(

2n + 1

n

)n (

lc

h

)n (

wc

wu − wc

)n (

1

h

)

mε̇n
a

(16)

The approximate contribution to the pressure drop across

the contraction and expansion from x = 0 to x = 2lc due to

viscous shear stresses is found by integration of Eq. 15 to be

�P PL
c,v =

2n+2

n + 1

(

2n + 1

n

)n (

lc

h

)n+1

×
{

(

wu

wu − wc

)n+1

−

(

wc

wu − wc

)n+1
}

mε̇n
a

(17)

In the limiting case of a Newtonian fluid, m = µ and

n = 1, and Eq. 17 reduces to the result for simple 2D plane

Poiseuille flow in Eq. 8. Therefore, the estimated value of

P for a power-law fluid is

P
PL =

�P PL
v

�x
(L23 − 2lc) + �P PL

c,v

�P PL
v

�x
(L14 − 2lc) + �P PL

c,v

(18)

where L23 and L14 are the distances between transducers 2

and 3, and 1 and 4 respectively. The result given in Eq. 18

is independent of m and ε̇a , but depends on the value of the

power-law index n. This predicted variation in the pressure

coefficient for power-law fluids, PPL(n) is shown as the

black curve in Fig. 7a for index values in the range 0 ≤ n ≤

1. The curve represents a lower bound for the pressure ratio,

because it does not account for any elastic contribution to

the pressure drop and it is based on only a 2D approxima-

tion to the flow. Even for a Newtonian fluid, the prediction
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of Eq. 18 is PPL(n = 1) = 0.56, which is lower than

the typically observed experimental value of PN ≈ 0.71.

This remaining difference arises from the three dimensional

effects in the flow field. Nevertheless, the utility of the

dimensionless pressure coefficient P lies in the fact that it is

a primary measure of the relative importance of viscoelastic

contributions to the stresses which can be evaluated inde-

pendently of the constitutive model of the fluid. Indeed, in

assessing the value of P with increasing ε̇a , it becomes clear

that the pressure profiles for the non-Newtonian fluids dif-

fer qualitatively from the Newtonian profiles in Fig. 4b, and

the contribution of viscoelastic effects generally increases

with increasing flow rates for the non-Newtonian test flu-

ids. The two exceptions to this general trend occur for the

CPyCl system and Herbal Essence shampoo which both

exhibit strongly shear thinning viscosities. For the CPyCl

system, the small drop in the pressure coefficient coincides

approximately with the onset of a time-varying flow, which

affects the pressure profile along the entire channel. For

the shampoo, the initial decrease in the pressure coefficient

for ε̇a < 3 s−1 results from shear thinning that becomes

more important as the flow rate increases. Because of this

thinning, the estimate for the minimum pressure coeffi-

cient (based on the power-law model) becomes increasingly

accurate. The eventual increase in the pressure coefficient

indicates that viscoelasticity dominates the pressure drop

across the contraction with increasing values of ε̇a .

The apparent extensional viscosity in an elongational

flow is

ηE,a ≡
N1

ε̇a

(19)

where N1 ≡ τxx − τyy is the first normal stress differ-

ence. An approximate measure for the value of N1 can be

determined from the elastic contribution to the pressure drop

(after subtracting the viscous contribution), �Pe = �Pc −

�P PL
c,v and then calculated using the following energy

argument. For a two-dimensional, incompressible flow, the

continuity equation requires that ε̇xx = −ε̇yy at each point

in the flow. Furthermore, the net rate of work per unit vol-

ume associated with a purely extensional deformation is

Ẇ ′′′ = τxx ε̇xx + τyy ε̇yy , or equivalently

D

Dt

(∂W

∂V

)

=
(

τxx − τyy

)

ε̇xx (20)

where V denotes a unit volume. The incremental work must

be equal to the external mechanical work acting on the

material, ∂W = −P∂V where P is pressure, or alter-

natively ∂W/∂V = −P . Substituting this result and the

definition into Eq. 20 and equating ε̇xx = ε̇a , one obtains

DP/Dt = −N1ε̇a . Integration of this equation across

the length of the contraction under the assumption that

N1 is constant and using the result of Eq. 2, one obtains

N1 = �P/εH , and hence the approximate viscoelastic

contribution to the apparent extensional viscosity for fully

developed extensional flow in the hyperbolic contraction is

ηE,a =
1

εH

�Pe

ε̇a

(21)

This result has previously been derived in Collier et al.

(1998) and it is only valid for an ideal planar elongational

flow, provided the value of N1 is constant for the entire

duration of the deformation. Such an assumption does not

capture the variation in the normal stresses with net accu-

mulated strain, εH (x), and it also neglects experimental

transients. Furthermore, this derivation is only appropriate

for a flow field in which the net accumulated Hencky strain

εH is independent of the streamline followed by a mate-

rial element in the flow, or equivalently for the contraction

here εH (x, y, z) = εH (x). Note that the expression for

ηE,a given by Eq. 21 is specific to the contraction-expansion

geometry used here, and that it differs from the expression

for extensional viscosity given for the cross-slot geome-

try studied by Haward et al. (2012a). This difference arises

because the cross-slot flow contains a stagnation point at

which the theoretical Hencky strain diverges and the net

accumulated strain varies across streamlines. Accordingly,

it is not possible to calculate a unique value of N1 for the

entire flow field in the cross-slot, but only an average value.

This average value is taken to be approximately equal to the

measured excess pressure drop N1 ≈ �Pexcess. Ultimately,

however, the two respective expressions for apparent exten-

sional viscosity are consistent, because they are based on the

same definition for ηE,a given by Eq. 19.

To evaluate ηE,a(ε̇a), the corrected pressure drop �Pc

must first be determined using Eq. 3. The values of �Pc

are plotted against ε̇a in Fig. 7b for each fluid. The appar-

ent first normal stress difference and extensional viscosity,

calculated from Eq. 21 (based on the corrected elonga-

tional contribution to the pressure drop �Pe), are shown

in Fig. 8. For all fluids, the apparent first normal stress

difference N1,a increases with ε̇a . When N1,a is normal-

ized by ε̇a to calculate the apparent extensional viscosity

defined in Eq. 21, three classes of response emerge. The

DayQuil (carboxymethycellulose) and chili sauce (xan-

than gum) both exhibit a nearly constant value of ηE,a ,

whereas the two surfactant systems (CPyCl and shampoo)

show extensional thinning. Lastly, the PEO system shows

extensional-thickening, similar to the behavior of the high-

est concentration PEO solutions shown in Fig. 1, for which

the measured pressure drop increases superlinearly with

flow rate.

The Trouton ratio is defined as the ratio of the extensional

viscosity to the shear viscosity, and for a planar elongational

flow for simple fluids at small extension rates this limiting

value is T rε̇→0 ≡ ηE

η0
= 4. In our experiments, however,
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a

b

Fig. 8 Calculated values of (a) apparent normal stress difference

N1,a = �Pe/εH and (b) apparent extensional viscosity ηE,a based on

Eq. 21

with the exception of the CPyCl system, the Trouton ratios

are notably higher, and their values based on the zero-shear-

rate viscosities given in Table 2 at the smallest values of ε̇a

for each fluid are (a) CPyCl: T r ≈ 2, (b) PEO: T r ≈ 22,

(c) Herbal Essence: T r ≈ 14, (d) DayQuil: T r = 29. Such

large Trouton ratios have also been reported previously for

flow through a hyperbolic contraction, (Wang et al. 2010).

It is important to recall that this simple analysis assumes an

ideal fully-developed planar elongational flow, whereas the

apparent extensional-thinning/thickening behavior and the

experimental values of the Trouton ratio are based on mea-

surements of a transient extension-dominated mixed flow.

These metrics are therefore best considered as a relevant

measure of viscoelastic resistance to stretching in a mixed

flow that is characteristic of what would be encountered in

an industrial application (such as flow through a nozzle), but

not in an ideal homogeneous extensional flow.

Flow kinematics

The deviations between the flow kinematics of the non-

Newtonian test fluids in the EVROC device and those

expected in an ideal homogeneous extensional flow can

be investigated with velocimetry measurements. Accord-

ingly, streakline images for all non-Newtonian test fluids

are shown together with complementary pseudocolor opti-

cal retardance images of the flow-induced birefringence in

Fig. 9. The experimental extension rates measured at the

contraction mid-plane have been determined from the slope

of a linear regression to the centerline axial velocity profiles

along the length of the contraction as discussed previously

for Newtonian fluids (cf. Fig. 5). The true extension rate,

ε̇t , realized experimentally is plotted against the nominal

extension rate, ε̇a , in Fig. 10.

For most of the test fluids, at least two qualitatively dif-

ferent regimes of behavior are observed with increasing

flow rate. At sufficiently small rates, Dea < O(1), all of

the non-Newtonian fluid systems exhibit kinematics that are

qualitatively similar to the behavior seen at low Reynolds

number in Newtonian fluids. The true extension rate in the

contraction is roughly constant and greater than the nom-

inal value as previously noted for the Newtonian case (cf.

Fig. 5b). Additionally, the streaklines generally follow the

contours of the contraction sidewalls as shown in Fig. 9.

At intermediate rates, Dea ∼ O(10), vortices in the

upstream corners of the contraction emerge as is evident

for the CPyCl micellar fluid, PEO solution and DayQuil in

Fig. 9. The distortion of the streamlines from those observed

in the Newtonian case clearly indicates the influence of fluid

elasticity on the flow kinematics even at vanishingly small

Re0. Such vortices are well-known to occur in flows of

viscoelastic fluids through contractions (Rodd et al. 2005;

Rodd et al. 2007). Typically, the presence of vortices also

results in the onset of a non-linear dependency of the true

extension rate ε̇t , on the nominal value, ε̇a as shown in

Fig. 10.

Amongst these fluids, the behavior of the CPyCl worm-

like micellar system is unique. For this fluid, at Dea >O(1),

the images presented in Fig. 9a show that the streamlines in

the contraction region become increasing constricted near

the throat resulting in a nearly constant value of ε̇t across

approximately one order of magnitude of apparent strain

rate, 1 < ε̇a < 10 s−1. This is also reflected in the weak

increase in true extension rate ε̇t with increasing flow rate

shown in Fig. 10. It is the ability of this fluid to shear band

(i.e., support localized regions of high shear rate) which

causes the value of ε̇t to plateau, since the shear bands

function effectively as moveable internal slip layers. The

narrowing of the streamlines also reduces streamwise curva-

ture, thereby allowing the flow to remain steady up to large

values of the apparent Deborah number (Dea < O(30)),

before becoming time-varying. In this unsteady regime,

measurement of the true extension rate in the contraction

was not possible. It is noteworthy that the plateau in the

experimentally realized extension rate, ε̇t for the CPyCl

system roughly occurs conjointly with a plateau in the
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a

b

c

d

e

Fig. 9 Streakline images (upper half ) and pseudocolor retardance

maps (lower half ) of flow-induced birefringence for non-Newtonian

test fluids flowing through the hyperbolic contraction (wc = 400 µm).

In all cases, the kinematics and retardance images are symmetrical

about the contraction centerline and flow is from left to right. White

curves have been overlaid to indicate the location of the contraction

walls. The colorscale is in units of radians. Note that birefringence

in the PEO solution was too weak to be observable and therefore no

pseudocolor retardance images have been included

a

b

Fig. 10 True extension rate ε̇t determined from the slope of the best

linear fit ux = ε̇tx line to the measured centerline velocity near the

contraction plane as a function of apparent extension rate ε̇a given by

Eq. (1). The solid black line indicates the ideal result of ε̇t = ε̇a . Note

that the same data are displayed on (a) linear and (b) log scales

apparent value of N1,a shown in Fig. 8. We also note that

although other micellar systems have been shown to exhibit

irreversible flow-induced gelation in extension-dominated

flows (Vasudevan et al. 2010), we have not observed the for-

mation of any such permanent flow-induced structures with

this surfactant system over the the range of Hencky strains

and strain rates attained.

The superlinear increase in the apparent normal stress

difference N1,a with ε̇a for the PEO solution shown in

Fig. 8 coincides with the measured rapid increase in the

true extension rate ε̇t with flow rate. Therefore, it is impor-

tant to recognize that evidence for extensional thinning or

thickening based on pressure measurements with EVROC,

may in fact be indicative of the onset of viscoelastic sec-

ondary flows such as the upstream vortices seen in Fig. 9b.

As with virtually every rheometer, it is a challenge with

the EVROC to ensure that the flow kinematics remain self-

similar and unchanged across all experimentally accessible

flow rates, ε̇a . Accordingly this microfluidic device should

not be viewed as a true extensional rheometer, per se, since

the realized flow kinematics can vary with both the test fluid

and the flow rate, even in the inertialess flow regime. Instead

the EVROC device is best employed as a microfluidic vis-

cosity indexer from which a semi-quantitative estimate of
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the extensional rheology of the test sample can be ascer-

tained in an extension-dominated flow at high deformation

rates (1 ≤ ε̇a ≤ 103 s−1).

Flow-induced birefringence and stress

Spatially resolved FIB measurements complement the

streakline images by providing optically non-invasive mea-

surements of local flow-induced molecular anisotropy.

Pseudocolor retardance images at different flow rates are

shown in the lower halves of each image in Fig. 9. Provided

the optical anisotropy, �n, (i.e., the difference between

the ordinary and extraordinary indices of refraction) in the

sample can be assumed constant along the direction of

light propagation, then the optical retardance is given by

δ = 2π�nh/λℓ, where h is the height of the contraction as

before and λℓ = 546 nm is the wavelength of the incident

light.

Under the appropriate circumstances, �n can be related

to the principal stress difference, �σ , in the sample by

the stress-optical rule, (Fuller 1990). This rule is given by

the relation �n = C�σ , where C is the stress optical

coefficient, which is typically determined experimentally

(Janeschitz-Kriegl 1983). In a purely extensional flow, free

from shear stresses, the principal stress difference is equal

to the first normal stress difference, �σ = N1. Under

the assumption of a purely two-dimensional, planar elonga-

tional deformation, and the applicability of the stress optical

rule, the normal stress difference in the fluid is thus related

to the measured optical retardance by the relationship

N1 =
δ

2πC

λℓ

h
(22)

In reality, the fluid kinematics are not uniform along the

direction of light propagation (due to the presence of the

bounding end walls), and therefore the retardance images

in Fig. 9 are useful primarily for qualitatively assessing the

stress field in the geometry. The retardance fields exhibit

qualitatively similar trends as those seen in the flow kine-

matics measurements, especially with regard to the emer-

gence of the upstream vortices which are characterized by

slowly moving regions of low stress and low birefringence

that appear dark blue in Fig. 9. It is also noteworthy that for

flow rates large enough to produce detectable levels of bire-

fringence, (typically Dea > O(1)), the optical retardance

does not exhibit fore-aft symmetry about the throat of the

contraction (located at x = lc), indicating the importance of

tensile viscoelastic stresses as fluid elements are convected

and stretched through the converging section of the contrac-

tion. Furthermore, for essentially all of the values of ε̇a for

which the flow is steady in time, the centerline retardance

profile in the converging half of the contraction continues to

grow monotonically with x-position as fluid elements travel

towards the throat of the contraction x → lc. This result

suggests that the Hencky strain for this channel, εH = 2,

is not sufficiently large to provide sufficient time for the

extensional stress in the fluid element to attain its steady

state value. This was a central assumption of the energy

analysis presented in Eq. 20–21 and thus provides an a pos-

teriori rationalization for the fact that only an approximate

value of the planar extensional viscosity can be measured

with a hyperbolic microfluidic device such as EVROC that

develops a Hencky strain εH = 2.

Conclusions

In this study, the extensional flows of a range of Newtonian

and non-Newtonian fluids through a microfluidic hyper-

bolic contraction have been studied using local pressure

field measurements, kinematic measurements (using µ-PIV

and streakline imaging) and full-field FIB measurements.

We have shown that this device can be used for indexing and

comparing the behavior of a wide range of complex fluids

in an extension-dominated flow; however, careful measure-

ments of both the pressure field and flow kinematics are

important for accurate interpretation of the results.

For the flows of Newtonian liquids at low Reynolds num-

ber, Re0 < O(10), the measured pressure drop across the

contraction, �P23, increases linearly with apparent exten-

sion rate ε̇a . Furthermore, provided one accounts for the

position of the MEMS transducers, one can estimate the

pressure drop across the contraction alone, �Pc, which can

be predicted using a 2D lubrication approximation for vis-

cous Newtonian flow to within a constant numerical factor

of around three. This residual discrepancy can be attributed

to the inadequacy of a 2D approximation in capturing a truly

3D flow within this shallow microfludic device, as well as

additional complicating effects arising from the geometric

abruptness of the contraction and the non-rectangular cross-

section of the contraction region (caused by the wet etching

fabrication process).

Flow velocimetry measurements confirm that the hyper-

bolic contraction imposes an extension rate along the cen-

terline that is approximately uniform spatially, but roughly

66 % larger than the nominal value, ε̇t ≈ 1.66ε̇a, based

on a least squares linear fit to the measured extension rates.

These measurements also reveal the onset of initial exten-

sional effects as much as three contraction lengths upstream

of the contraction entrance as a result of the abruptness

of the hyperbolic contraction. These non-idealities in the

extensional flow kinematics are the cause of the larger

than anticipated pressure drop based on the lubrication

approximation. We have recently shown (for an alternative

cross-slot extensional flow configuration), however, that the

extensional kinematics can be optimized with numerical
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simulations (Haward et al. 2012b). Accordingly, we plan to

use similar numerical kinematic optimization simulations to

further enhance the capabilities of the EVROC microfluidic

extensional viscometer in future studies.

Two model viscoelastic liquids and three commercially

available complex fluid formulations have been tested in

the EVROC. For viscoelastic materials it is assumed that

the pressure drop in the contraction, �Pc, is a superposi-

tion of a pressure drop due to viscous shear stresses, �Pv,

and an extra pressure drop due to elastic stresses, �Pe,

hence �Pc = �Pv + �Pe. The value of �Pv is esti-

mated using a 2D lubrication analysis for a power-law fluid

and the remaining elastic contribution to the pressure drop

�Pe is used to calculate an apparent extensional viscosity

ηE,a . Typical Trouton ratios when referenced to the zero-

shear-rate viscosity are O(10), but the values of this ratio

should not be interpreted as a true Trouton ratio measured in

homogeneous extensional flow, since the flow through this

contraction has mixed shear and extensional components.

Flow velocimetry measurements and streakline images

demonstrate that typically for Dea < O(1) the flow field

remains largely unchanged from the low Reynolds number

flow field expected for a Newtonian fluid in a planar hyper-

bolic contraction, with the experimentally-realized exten-

sion rate along the contraction centerline proportional to the

flow rate. For Dea > O(1), an elastically-driven secondary

flow emerges which results in upstream vortex growth and

undermines any assumption of a self-similar, Newtonian-

like flow. However the experimentally-measured kinematics

along the contraction centerline show that the extension rate

is still spatially homogeneous for a given flow rate and that

useful measurements can still be made in this regime. Above

a higher critical Deborah number, Dea > O(10), the flow

becomes time-varying and reliably extracting ηE,a(ε̇) from

the measured pressure drop is difficult. Full-field measure-

ments of flow-induced birefringence generally confirm the

qualitative features seen in the streakline images, whilst also

showing that the local state of tensile stress in the fluid is

still evolving as it flows towards the contraction throat.

In summary, this microfluidic hyperbolic contraction

device can be used to investigate the extensional viscosity

of a complex fluid such as an ink or liquid foodstuff or con-

sumer product up to extension rates ε̇a ∼ O(103) s−1 using

the following steps:

(i) A series of steady pressure drop measurements

through the device are made as a function of imposed

flow rate (cf. Figs. 4 and 6).

(ii) The pressure coefficient P ≡ �P23/�P14 can be

calculated as a measure of the relative importance of

viscoelastic effects to the total pressure drop. This

value should approach unity, P → 1, as viscoelastic

effects become increasingly dominant (cf. Fig. 7a).

(iii) The pressure drop �Pc across the contraction is

calculated from Eq. 3 and the apparent extensional

rate for each flow rate is calculated from Eq. 1 (cf.

Fig. 7b).

(iv) The viscoelastic contribution to the pressure drop

�Pe can be calculated using the equation �Pe =

�Pc − �Pv, where �Pv can be estimated from

Eq. 17. The apparent extensional viscosity ηE,a can

then be determined using Eq. 21.

(v) If desired, a second transparent microfluidic chip can

be used to measure the local kinematics and optical

retardance with full-field µ-PIV and birefringence

measurements as illustrated in Fig. 9. Such measure-

ments can be valuable in ascertaining that the planar

elongational flow is stable and the kinematics are

homogeneous.

This hyperbolic planar contraction can serve as a com-

plement to the shear viscosity microfluidic viscometer

described in Pipe et al. (2008) for measuring a nomi-

nal extensional viscosity. The combination of measure-

ments obtained with these two devices will be valuable to

an applied rheologist for quality control monitoring (i.e.,

indexing variations in the extensional rheology of a spe-

cific fluid formulation) as well as for providing a simple

and quick evaluation of the performance of a particular

viscoelastic fluid in filling and dispensing applications fea-

turing converging nozzles that are characterized by high

shear and extension rates.
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