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Abstract Microfluidic paper-based analytical devices

and micro total analysis systems are relatively new group

of analytical tools, capable of analyzing complex bio-

chemical samples containing macromolecules, proteins,

nucleic acids, toxins, cells or pathogens. Within one ana-

lytical run, fluidic manipulations like transportation, sort-

ing, mixing or separation are available. Recently,

microfluidic devices are a subject of extensive research,

mostly for fast and non-expensive biochemical analysis but

also for screening of medical samples and forensic diag-

nostics. They are used for neurotransmitter detection,

cancer diagnosis and treatment, cell and tissue culture

growth and amplification, drug discovery and determina-

tion, detection and identification of microorganisms. This

review summarizes development history, basic fabrication

methods, applications and also future development trends

for production of such devices.

Keywords Microfluidic paper-based analytical devices

(lPADs) � Micro total analysis systems (lTAS) �
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Introduction

Over the past 20 years, there is a rapid development and

increasing interest of microfluidic devices also called a

micro total analysis system (lTAS), lab-on-chip (LOC) or

microfluidic paper-based analytical devices (lPADs) [1, 2].

The ability to perform laboratory operations on nano- or

pico-scale, using miniaturized equipment (laboratory glass,

laboratory reactors) has opened new ways in modern ana-

lytical chemistry, medicine, genetic, cell biology and many

other research areas. Manipulation of small volumes of

fluids using channels with dimension of tens to hundred of

micrometers is very appealing and has been regarded as the

most powerful advantage of lab-on-chip [3]. Recently,

chemists apply mini-laboratories to synthesize new mole-

cules or materials. Biologists use them to study complex

cellular processes in the extensive study of many areas of

cell biology. For analytical chemists, microfluidic devices

are convenient tools for detection and determination of

many organic and inorganic compounds. These simple

devices offer analytical and diagnostic abilities that could

revolutionize medicine and pharmaceutical industry. They

are small, light, portable, and have low manufacturing,

usage and disposal costs. Specific to the field of micro-

fluidics is the benefit of low consumption of reagents and

analytes [4, 5]. They have been used for wide range of

practical applications in many research fields: biomedical

science, genomics, forensics, toxicology, immunology,

environmental studies, chemistry or biochemistry. Up to

this date, microfluidics were successfully used in clinical

analysis of blood [6–9], to detect and identify pathogens,

proteins [10–13] and environmental contaminants [14–16],

in genetic research [17, 18] and drug industry [19–21]. In

developing countries, miniaturized portable medical diag-

nostic tools are especially important for the people having
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no direct access to medical laboratories with basic diag-

nostic and analytical facilities [3].

History and Development of Microfluidic Devices

It is assumed that the first microfluidic device was devel-

oped in 1975 [22, 23]; however, some of them evolved

from separation techniques based on thin-layer and gas

chromatography. In 1938, Ukrainian scientists N.A.

lzmailov and his student M.S. Shraiber published the arti-

cle ‘‘Spot chromatographic method of analysis and its

applications in pharmacy’’ in the journal Farmatsiya

(Pharmacy) [24]. They were searching for appropriate

methods for the rapid analysis of plant extracts. They

coated microscope slides with a suspension of various

adsorbents (calcium, magnesium, and aluminum oxide),

deposited one drop of the sample solution on this layer and

added one drop of the solvent. The separated sample

components appeared as concentric rings that fluoresced in

various colors under a UV lamp, and from that reason one

of their conclusions was described as follows: ‘‘A spot

chromatographic method of analysis was developed; this

method consists in that the separation of substances into

zones is observed in thin layers of adsorbents using a drop

of the substance’’ [25]. In 1947 T.I. Williams described a

further improvement of the method of Izmailov and Shra-

iber [26]. He prepared the adsorbent-coated glass plates in

the form of a sandwich, where the adsorbent layer was

covered by a second glass plate with a small hole through

which the sample (and solvent) drops could be applied. For

years, simplified methodology called micro planar chro-

matography was frequently applied for efficient separation

and quantification of inorganic and organic substances

[27–31]. Most recently, thermostated micro-TLC protocols

were successfully applied for qualitative and quantitative

analysis, fractionation, screening and fingerprinting of

highly organic compounds loaded biological and environ-

mental samples [32–38]. First publication concerning

construction of microfluidic separation device based on

miniaturized gas chromatograph and involving integrated

circuit processing technology was published in 1975. It

consisted of a 5-cm-diameter silicon wafer with an open-

tubular capillary column, two sample injection valves and a

thermal conductivity detector. This separation device was

able to separate a simple mixture of compounds in a matter

of seconds [22, 23]. No further research on given minia-

turized gas chromatographs was initiated until the 1990s.

The response of the scientific community to this first sili-

con chip device was virtually none, presumably because of

the lack of technological experience and the research work

focusing on fabrication of the key components like micro-

pumps, microvalves and chemical sensors [1]. Progress in

molecular biology greatly stimulated development of cap-

illary electrophoresis for the separation and analysis of

DNA and proteins. Also, similar to advances with inte-

grated circuits in electronic and computer industry, bio-

logical and chemical analysis devices miniaturization

efforts have been made. In 1990, Manz and co-workers

presented a miniaturized open-tubular liquid chromato-

graph using silicon chip technology [39]. Manz is also

author of the concept of ‘‘miniaturized total chemical

analysis system’’ or lTAS [5]. In his article, he presented a

silicon chip analyzers incorporating sample pretreatment,

separation, and detection devices and disclosed the ideas of

integrating a capillary electrophoresis setting onto a chip.

In the last two decades, development of new microfabri-

cation techniques and materials, separation and detection

methods (see Table 1) used in lTAS devices was very fast

and it is widely described [1, 40, 41]. Currently, the con-

cept of paper-based analytical devices (lPADs) was orig-

inated. The first one was invented and described by

Whitesides Group of Harvard University in 2007 [42] but

its origins date back to the 1940s of the last century, to the

work of Müller and Clegg [43], excluding paper strips for

the determination of pH. They used a filter paper, made a

wax barrier on it and observed that the restricted channel

sped up the pigments sample diffusion process, amount of

sample consumption and micrograms separation order of

magnitude [43]. In recent times, lPADs are widely used in

health diagnostics, biochemical analysis, forensic and food

quality control [44].

Components of Microfluidic Devices (lTAS)

Generally, considering the publications dealing with the

development of microdevices, we can see them clearly

divided into two groups. The first one (lTAS) contains the

microfluidic devices manufactured by variety of methods

and materials that are connected to the external units such

as to a sampling unit, detector unit and electronic unit [3].

The second type of microfluidic devices include a cheap,

simple in production, paper-based laboratory chips, which

in themselves are fully equipped laboratory unit, designed

to perform specific tasks, mainly for the detection of var-

ious types of substances [44].

The main components of the microfluidic units from the

first group are injectors, channels, pumps, valves, storage

containers, mixers, electromagnets, microheaters, droplet

and bubble generators [1, 3] (see Table 1). Manufacturing

methods used for LOC devices were developed in the

semiconductor industry [45]; therefore, substrates such as

silicon, glass (first microfluidic devices were made in sil-

icon and glass [39]), quartz, soft or hard polymers are used

in their production (see Table 1). In addition, various
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biomaterials including calcium alginate, cross-linked gel-

atin or hydrogels were applied. They have been useful to

provide a physiologically relevant cellular microenviron-

ments that are necessary to cell and tissue culture growth

[46, 47]. Silicon is chemically and thermally stable, and

channels can be fabricated in this material by etching or

photolithography [48]. However, silicon wafers are

expensive, brittle and opaque in the UV and visible regions

and are therefore not suitable for devices where detection is

based on optical sensors [49]. Glass was an early replace-

ment for silicon, being less expensive, transparent, nega-

tively charged, and a good support for electroosmotic flow

[50]. Polymers are inexpensive, which allow for the man-

ufacture of disposable devices. They also offer interesting

properties for microfluidic devices. Elastomeric materials

have good structural rigidity and strength and enable the

fabrication of small and rigid microfluidic devices. Chan-

nels can be formed in polymers by moulding and various

soft lithography processes and sealing of discrete parts can

be achieved thermally or with adhesives. However, their

surface chemistry is more complex than that of silicon or

glass. They are often incompatible with organic solvents

and cannot be used at high temperatures [48]. Etching in

quartz and glass is also too expensive and time-consuming

[48] in comparison to other materials like polymers,

photopatternable silicone elastomers, thermoset polysters,

poly(methylmethacrylate) (PMMA), poly(dimethylsilox-

ane) (PDMS), polyamide (PA), cyclic olefin copolymer

(COC) and SU-8 (negative photoresist). Applications of

above-mentioned microfluidics body materials, which are

currently most commonly used materials, enable to mini-

mize the cost of microfabrication [51].

Flow Control in lTAS

Fluid transport and flow in microfluidic devices is achieved

and controlled by passive (surface tension, capillary forces)

or active (generally pumping—with electrokinetic, elec-

trohydrodynamic, magnetohydrodynamic, electroosmotic

pumps; centrifugal force,) mechanisms [52, 53] and is

defined by Reynolds number (Re), which is the ratio of the

Table 1 Basic materials and components for assembling of typical micro total analysis systems (lTAS) working under different separation and

detection modes

lTAS fabricaton

method

Device body materials Separation processes Detection systems Device main

components

Molding [147, 152] Polymers (PDMS [21, 48, 147, 160, 161]

PMMA, [149, 151, 153, 156, 157], PC

[152, 156, 157] COC [157, 159, 172] SU-8

[154, 155, 162]

Capillary electrophoresis

[152, 160–162, 175]

Conductometry [39] Inlets, outlets,

connectors,

microchannels,

microchambers

[21, 160]

Micromolding in

capillaries

(MIMIC) [147]

Ceramic [147] Micellar electrokinetic

chromatography

[165, 168]

Laser-induced

fluorescence

[160, 164]

Valves, pumps

[21, 57, 160]

LIGA (Lithographie,

Galvanoformung,

Abformung) [149,

150, 155]

Glass [39, 119, 147, 161, 169] Capillary

electrochromatography

[172–175]

Electrochemical

[161, 162]

Mixers [64, 160,

176]

Etching [148, 169] Silicon [23, 39, 119] Gas chromatography [23] Fluorescence [21] Electromagnets [65]

Lithography [21, 48,

160, 162]

Quartz [148] Liquid chromatography

[39, 175]

Absorbance

[120, 163]

Microheaters [66]

Phase-changing

sacrificial layers

(PCSL) [151]

Solid-phase extraction

[166]

Atomic fluorescence

spectrometry

(AFS) [165]

Droplet and bubble

generators

[67, 69, 96]

Imprinting [153, 160] Isotachoforesis [169]

Injection molding

[156, 157]

Chemiluminescence

[167]

Conventional

machining [158]

Isoelectric focusing

[170, 171]

Normal Raman

spectroscopy [169]

Laser ablation [181,

182]

Mass spectrometry

[177–180]

Hot embossing [182,

183]
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active forces (inertial forces) to the passive forces of

internal friction in the fluid, appearing as a dynamic

viscosity:

Re ¼ qvd

l

where q is the density of the fluid (kg/m3), v is the mean

fluid velocity (m/s), d is the channel diameter and l the

dynamic viscosity of the channel (kg/m*s). When

Re \\ 1, the flow is laminar and very smooth. When

Re [ 103, the flow is turbulent and mainly characterized by

vortices [54]. Flow within microstructures typically has

Reynolds numbers of 10-3–10-5 and is characterized by a

laminar flow. Contrary to fluid dynamic in larger scales

devices, in microfluidic devices viscous forces dominate

and turbulences are non-existent. Surface tension can be an

important driving force and mixing is slow and occurs

through diffusion [55]. Microvalves allow controlling flow

and can be segregated in two categories: passive valves

(which do not require mechanical actuation) and active

valves (which do) (Fig. 1). Typical passive valves are

cantilever valves, diaphragm valves, diffuser/nozzle valves

[56]. Actuation of active valves is generally piezoelectric,

thermopneumatic, electrostatic and electromagnetic, but

pneumatically actuated, flexible membrane-based valves

(and pumps) are most popular forms of active elements in

microfluidic devices [56, 57].

For many biological and chemical applications, mixing

of transported fluids in microchannels is very important.

Mixers are therefore essential in enhancing mixing effi-

ciency and for rapid homogenization of the reagents. All

mixing ultimately occurs due to molecular diffusion and

therefore the basic idea is reducing the distance over which

mixing must occur [59]. They can be classified as active

(needed external energy) or passive (mixing in specific

geometry of the channel). Passive mixers are usually easier

to fabricate than active mixers and are more suitable for

applications [60]. Typical active mixers based on elec-

trowetting [61], nonlinear electrokinetic effects [62] and

acoustic streaming [63] are usually complicated to fabri-

cate. However, simple, portable, hand-powered mixer that

exploits movement of bubbles in microchannels was

developed by Garstecki and co-workers [64]. More com-

plicated procedures are needed to incorporate (especially

on polymer-based devices) metal building components into

microfluidic systems, for applications such as on-chip

heating and magnetic sorting. A microsolidics method has

been developed to fabricate complex metallic structures

(like microheaters or magnets) by injecting liquid solder

into microfluidic channels, and allowing the solder to cool

and solidify [65, 66] (Fig. 2).

Microsolidics simplifies the incorporation of metals into

microfluidic channels, but has several disadvantages. They

can only be used with metals (or alloys) characterized by

low-melting point (\300 �C) and affinity for the surface of

the channel wall. These solders are usually more expensive

than commonly used, and some are not biocompatible,

particularly those that contain heavy metals like Pb or Cd.

This method cannot be used to fill ‘‘dead-end’’ channel, and

it is currently difficult to use this process to fabricate wires

with cross-sectional dimensions \10 lm [65, 66].

The other components used in microfluidic devices are

droplet and bubble generators. It has been shown that

droplet and bubble-based microfluidics can perform Bool-

ean logic functions [67]. The use of immiscible fluids for

the formation of emulsions in microfluidic devices in

controlled, individual segments (droplets) enabled rapid

mixing of fluids and is a potent high-throughput platform

Fig. 1 a General view of a strip of prefabricated screw valves. A

single valve has been separated from the strip using a razor blade.

b Microfluidic gradient generator containing two embedded solenoid

valves, two embedded screw valves and one embedded pneumatic

valve (by Hulme et al. 2009 [58]; reproduced by permission of the

Royal Society of Chemistry)

Fig. 2 Microheater incorporated in polymer-based (PDMS) micro-

fluidic systems (by Siegel et al. 2007 [66])
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for biomedical and chemical research and applications.

Droplet-based systems have been used to directly synthe-

size particles with diameters from several micrometers to

hundreds of micrometers and encapsulate many biological

entities for biomedicine and biotechnology applications

[68, 69]. There are several ways to generate droplets and

bubbles in microfluidic systems but two common methods

that depend on the geometry of the channel namely the

flow-focusing (Fig. 3) and the T-junction are commonly

applied [69].

lPADs Manufacturing Process

On the other side, manufacturing process of the second

group of microfluidic devices—Microfluidic paper-based

analytical devices (lPADs) is very easy, cheap (estimated

price is \$10 per square meter even for high-quality

chromatography paper), and can be performed literally at

home [2]. The first team that made such a device was a

Whitesides Group of Harvard University [42] (Fig. 4).

Recently, there are many techniques reported in the liter-

ature for fabricating paper-based microfluidic devices

including photolithography [42, 70, 71], plotting with an

analogue plotter [72], ink jet etching [73], plasma treatment

[74], knife cutting [75, 76] (Fig. 5), wax printing [77, 78]

(Fig. 6) and variation (wax screen printing) [79], ink jet

printing [80] flexography printing [81] and laser treatment

[82]. The main objective of those techniques’ applications

is to create hydrophobic barriers on sheet of hydrophobic

cellulose that constitute the walls of millimeter-sized,

capillary channels. To prevent leakage and to keep the

applied solution in the channels, paper strip may be sur-

rounded by a polypropylene material, for example a stick

tape or may be hidden in plastic cover [44]. To create

hydrophilic microchannels on paper, a variety of hydro-

phobic substances are used such as photoresist SU-8, wax

or as alkyl ketene dimer (AKD) ($0.1, $0.01 and $0.00001,

respectively, for patterning filter paper of 100 cm2).

Depending on the hydrophobic agents, the paper pores can

be blocked (after using SU-8 or PDSM), covered by

physical deposition (polystyrene or wax) or cellulose fibers

can be modified chemically (after using AKD) [44]. After

chemical modification, paper hydrophobicity cannot be

removed by organic solvent extraction [83]; paper hydro-

phobicity caused by physical deposition can be largely

removed by organic solvent washing, making it possible to

use organic solvent etching methods to fabricate paper-

based microfluidic devices [84].

Flow Control in lPADs

A number of valving mechanisms have been developed for

controlling the pressure-driven flow of fluids in conven-

tional lTAS; however, these technologies cannot be

applied to lPADs in which the movement of fluids is based

on capillary flow. To achieve multi-steps in analysis and

diagnostic procedures (e.g. premixing or filtering samples,

controlling fluid flow), improve sensitivity and separation

selectivity changes made by the researchers refer to both

the spatial structure and materials used for their production.

For example, Li and co-workers (2008) [74] designed

cellulose mechanical switches, filters and separators on

lPADs made by plasma treatment. One of the solutions is

Fig. 3 Typical scheme of flow-focusing microfluidic device. An

orifice is placed at a distance Hf = 250 lm downstream of three

coaxial inlet streams. Water is supplied to the two side channels

which have widths Wo = 120 lm; monomer is forced into the central

channel which has a width Wi = 100 lm. The width of the orifice is

D = 80 lm; the width of the downstream channel is W = 240 lm

(Nie et al. 2008 [68]; with kind permission from Springer Sci-

ence ? Business Media)

Fig. 4 Fabrication of paper-based microfluidic device using photo-

lithography technique (described by Martinez et al. 2007 [42])
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hydrophobic paper strip with a small hydrophilic area

matched with hydrophilic channel in device and is simply

activated by mechanical pulling [74, 85]. Other options to

achieve the above-mentioned purposes are lPADs

designed in 3D technique, which enable the transport of

fluids both vertically and laterally from a single inlet to

numerous detection zones [86]. Three-dimensional lPADs

offer several potential advantages over 2D devices. They

can incorporate intricate networks of channels connected to

large arrays of test zones, and each layer in a 3D lPAD can

be made of a different paper. Therefore, multiple func-

tionalities provided by different types of paper can be

combined into a single device [2]. Interestingly, Liu and

Crooks [87] developed lPAD using origami principles

(Fig. 7). Whitesides group [88] reported a device with

buttons for connecting and disconnecting the fluid flow

between channels. Chen et al. [89] created a fluidic diode

(two-terminal component that promotes or stops wicking

along a paper channel) and functional circuit to manipulate

two fluids in a sequential manner.

Detection Techniques, Separation Methods

and Applications of Microfluidic Devices

All primary detection methods and their variations have

been successfully integrated or coupled with lTAS devi-

ces, including optical detectors based on UV–Vis light,

chemiluminescence and fluorescence. Moreover, electro-

chemical detectors, magneto-resistive sensors (GMR),

mass spectrometric (MS) and nuclear magnetic resonance

(NMR) [13, 40] have been extensively applied (see

Table 1). Four detection methods have been reported for

the detection of analytes in paper-based microfluidics:

colorimetric, electrochemical (EC) [90], chemilumines-

cence (CL), and electrochemiluminescence (ECL), but

most studies have been focusing on colorimetric detection

(which is typically related to enzymatic or chemical color-

change reactions) and EC detection. CL and ECL per-

formed in the dark and are independent of ambient light

and also are the most common optical detection methods in

microfluidics area [44, 91]. However, they have not been

widely used in lPADs [82, 92].

In recent years, all the basic fluidic manipulations (mix-

ing, diluting, etc.) have been adapted to microfluidic chips

[93]. LOC connected with micellar electrokinetic chroma-

tography (MEKC) and electrochromatography (CEC) have

been applied to the separation of various components in

multidisciplinary field, but techniques based on microchip

capillary electrophoresis (MCE) are the most common

methods integrated with lTAS devices and many studies

were based on it. Practical applications of that separation

protocols are widely used in many studies in genetics and

molecular biology, including polymerase chain reaction

(PCR) [94] amplification of DNA in nanoliter droplets [95,

96], reverse transcription (RT)-polymerase chain reaction

(PCR) [97, 98], DNA extraction and real-time PCR for rapid

pathogen identification [97, 99, 100], simultaneous DNA

amplification and detection [101], removal of PCR inhibitors

[102], mRNA isolation and amplification [103], mRNA

quality and quantity control, nucleic acid detection, ampli-

fication and purification [104, 105], single cells genetic

Fig. 5 Paper cutting technique

for fabrication of paper-based

microfluidic device (reprinted

with permission from Fenton

et al. 2009 [75]; copyright

(2012) American Chemical

Society)
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research and manipulations [106–109], gene expression

research [108, 110], forensic DNA analysis [17] and many

others. In molecular biology, the ability to manipulate and

analyze single cells is important to understand the molecular

mechanisms underlying cellular function [111].

In medicine field, they are used for neurotransmitters

detection, cancer diagnosis and treatment [112, 113], cell

and tissue culture growth and amplification [114–116],

drug discovery and determination [19, 117, 118], detection

and identification of microorganisms, pathogens [10, 11,

Fig. 6 Schematic illustration of

the processes to produce

patterned paper with wax

(described by Lu et al. [78])

Fig. 7 Three-dimensional

paper microfluidic devices

assembled using the principles

of origami (reprinted with

permission from Liu and

Crooks, 2011 [87]; copyright

(2012) American Chemical

Society)
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97, 99, 119] and proteins [12]. LOC devices combined with

different detectors have been applied to detect environ-

mental pollutants in order to separate metal ions [120–122],

phenols [123, 124], explosives [125, 126] nitroaromatics

[127], organic peroxides [128], and other environmentally

relevant substances [15, 40, 93]. Most of these applications

were performed in aqueous solution, except for one non-

aqueous MCE example developed by the group of Collins

[120] for measuring six toxic metal cations including Cd2?,

Pb2?, Cu2?, Co2?, Ni2?, and Hg2?.

In recent years, the second group of microfluidic devi-

ces—lPADs are a subject of research activities, mostly for

biochemical analysis but also for medical and forensic

diagnostics. In the laboratory, paper filters are commonly

used for chromatography and filtration purposes. One of

the first paper-based diagnostic devices created was for

urinalysis [42]. These devices utilize colorimetric assays to

measure glucose and protein concentration in urine. Car-

rilho et al. [129] designed paper-based plates as a low-cost

alternative to the conventional plastic microliter plates.

This allowed mixing of different analytes for different

assays that were not possible in a plastic plate. Another

important application for paper-based devices is pathogen

and toxin detection. One of the first functioning paper-

based detection devices had been developed by Brennan’s

research group—the paper-based device was able to detect

neurotoxins paraoxon and aflatoxin B1 within five minutes

at low concentrations, *100 and *30 nM, respectively

[130]. Lateral flow paper chromatography and vertical flow

diagnostic sensors based on bioactive paper are recently

used to determine human blood type [8, 131–134]. Bio-

active paper strips are also applied in genetic and bio-

chemical analyses, like DNA detection [135] or ELISA

tests [136, 137].

Currently, most paper-based devices utilize colorimetric

assays, although there have been reports of electrochemical

sensing in paper-based devices for detection of glucose,

lactate, and uric acid in biological samples [90] and heavy

metal detection in water [138, 139]. In this work, a novel

method of electrokinetic sensing in a paper-based micro-

fluidic device was proposed. Chemiluminescence [82] and

electrochemiluminescence [92] detection techniques are

described; however, they have not been widely used in

lPADs. Several studies on bioactive paper [130, 135–137,

140] have proposed a few promising ideas to enhance the

sensitivity and selectivity of the colorimetric detection for

paper-based microfluidic devices.

LOC Development and Future Trends

Most important for our future is environmental protection

and ensuring the people health. Healthcare procedures

(monitoring, control, prevention) and diagnostic tests are

expensive. In poor and development countries infectious

diseases, that would be treatable in a developed nation, are

often deadly. Healthcare clinics, even if they have drugs to

treat a certain illness, often suffer from the lack of diag-

nostic equipment and qualified staff. This creates a need to

develop low-cost, simple to-use, point-of-care (POC)

diagnostic methods for diagnosis and monitoring the

treatment of patients [141]. The same problem—lack of

diagnostic tools—exists in case of environmental moni-

toring. Lab-on-chip technology can be important and vital

component of efforts to improve both a global health

through the development of point-of-care testing devices

[141] and environmental protection trough development

analytical devices for environmental samples. In genetic

research and molecular biology field, understanding the

cell biology will become accessible through high-

throughput single-cell data analysis. For example, multi-

plex quantitative polymerase chain reaction (qPCR) is

limited in the number of reactions. If we wish to measure

100 genes from 100 cells, we need 10,000 reactions.

Microfluidic chips can be used to overcome these limita-

tions by combinatorially mixing the samples and gene

detectors and by performing thousands of reactions in

parallel on a single chip and can provide high mRNA-to-

cDNA efficiency and decreased risk of contamination [110,

142]. It is also possible to isolate and amplify single

chromosomes from a single cell. Fan et al. [109] developed

a microfluidic device capable of separating and amplifying

homologous copies of each chromosome from a single

human metaphase cell in independent chambers. This

enabled them to study the two alleles (or haplotypes) of

each chromosome independently. This method can be used

to obtain accurate haplotype information in personal gen-

ome sequences, to understand meiotic recombination and

to directly study the human leukocyte antigen haplotypes

of an individual. Molecular biologist needs particular

devices for rapid isolation and characterization of single

cells from small biological specimens. Future challenges

include sensitive, high-throughput and simple-to-use mic-

rodevices for characterizing proteins, signaling, epigenetic,

and metabolic states in single cells, and correlating these

measurements with physiological characteristics. Existing

techniques for whole-genome/trancriptome amplification

prior to sequencing suffer from bias and non-specific

products that have to be characterized and eliminated. In

particular, there is a need to develop methods for multi-

plexing samples and precise unbiased counting of mole-

cules, which is possible with using microfluidic devices.

Depending on the chip platform being used, several thou-

sand to several hundred thousand distinct oligonucleotides

can be synthesized on a single chip. In principle, these

massive parallel microarrays can reduce the cost of
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oligonucleotides by orders of magnitude [105]. In devel-

oped countries, there are many valued features of diag-

nostic tools, including speed, sensitivity and specificity. In

developing countries, with limited resources, where the

healthcare infrastructure is less well developed, many dif-

ficulties must be overcome to apply the LOC device;

therefore, ease of use must also be considered. In this

case, paper-based devices can be extremely useful.

New techniques for making paper devices and their use in

clinical and environmental laboratory will be evaluated

in accordance with the principles of economics—mainly in

terms of material costs and production in mass produc-

tion—the utility and ease of use. Their advantage is the

simplicity of design and ease of interpretation of test

results. In contrast to more complicated LOC devices, they

are self-contained and independent from the other devices.

These features also do not exclude the possibility of

cooperation lPADs with other units. Their compatibility to

telemedicine, particularly with mobile phone transmission

or interpretation of test results is study [70, 143]. White-

sides’ group in Harvard University showed that an image

of the device can be taken by a camera on a mobile phone

and then sent to a remote location for analysis [70] (Fig. 8).

Liu and Crooks [144] reported, for point-of-care diagnosis,

microelectrochemical biosensing platform that is based on

paper fluidics and powered by an integral metal/air battery.

Vella and co-workers [145] described micropatterned paper

device designed for blood from a fingerstick uses to mea-

suring markers of liver function. These studies are just

beginning to show the potential for paper-based diagnostic

devices for developing countries. However, paper-based

microfluidic devices that rely on complicated instrumen-

tation for result interpretation may only have value for

laboratory uses [44]. The possibility of using paper in

preconcentration is obvious, since it is already widely used

in chromatographic applications and is much cheaper than

conventional materials used in SPE. Furthermore, paper

spray ionization has been recently reported as a direct

sampling ionization method for mass spectrometric analy-

sis [146]. Thus, the use of paper as a platform for pre-

concentration and mass spectrometric analysis can be an

excellent low-cost alternative to the conventional analytical

methods for trace compounds. The combination of paper

spray with miniature mass spectrometers offers a powerful

impetus to wide application of mass spectrometry in non-

laboratory environments [146]. lPADs area research is still

at an early stage and significant efforts will be needed to

nurture it into a more matured platform technology in

diagnostic, point-of-care (POC), and environmental moni-

toring applications [44].
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