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Abstract

Repetitive, mild traumatic brain injuries (RmTBIs) are increasingly common in adolescents and encompass one of
the largest neurological health concerns in the world. Adolescence is a critical period for brain development where
RmTBIs can substantially impact neurodevelopmental trajectories and life-long neurological health. Our current
understanding of RmTBI pathophysiology suggests key roles for neuroinflammation in negatively regulating neural
health and function. Microglia, the brain’s resident immune population, play important roles in brain development
by regulating neuronal number, and synapse formation and elimination. In response to injury, microglia activate to
inflammatory phenotypes that may detract from these normal homeostatic, physiological, and developmental roles.
To date, however, little is known regarding the impact of RmTBIs on microglia function during adolescent brain
development. This review details key concepts surrounding RmTBI pathophysiology, adolescent brain development,
and microglia dynamics in the developing brain and in response to injury, in an effort to formulate a hypothesis on
how the intersection of these processes may modify long-term trajectories.
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Background

Traumatic brain injuries (TBI) can have devastating conse-

quences on brain and mental health. Between Canada, the

USA, and the European Union (EU), there are an estimated

46 million new TBI cases each year [1]. Among these, the

vast majority (~ 80%) are classified as mild (mTBI) [2]. The

highest age-specific rates for mTBI occurs in adolescents due

to increased risk-taking behaviors and participation in con-

tact sports [3], with sports-related mTBIs accounting for ~

60% of all adolescent cases [4]. Importantly, individuals who

sustain a single mTBI are at high risk for acquiring repetitive

mTBIs (RmTBI) [5]. While preventative measures to reduce

injury rates are improving, the incidence of adolescent

RmTBI continues to grow with no current therapies to im-

prove outcomes [6].

TBI pathophysiology encompasses primary and sec-

ondary injury cascades that collectively drive acute and

chronic neurological damage and dysfunction. Defining

the mechanisms of primary injury has been a major re-

search focus, but the potential therapeutic window for

intervention at this stage is limited, specifically in the

case of mTBIs. This is because primary injury cascades

initiate immediately following head trauma and unlike

moderate-to-severe TBIs, diagnosis of mTBIs is often

delayed. Therefore, concentrating research into the

mechanisms controlling secondary injury cascades is an

important step for developing strategies that aid recov-

ery and improve the long-term neurological health in

afflicted populations. A central component of secondary

injury is neuroinflammation, a common process in a

multitude of neuropathologies and neurodegenerative

diseases [7–9]. Microglia, the brain’s resident immune

cell population, play important roles in both brain devel-

opment and neuroinflammation that accompanies TBIs.

Since adolescence is a critical neurodevelopmental
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period, neuroinflammation, and specifically microglial

activation following injury, may have detrimental conse-

quences on long-term quality-of-life and even invoke

early onset of neuropsychological disorders [10–12].

However, to date, the majority of TBI research has fo-

cused on adulthood, limiting our understanding of injury

mechanisms during adolescence, and specifically those

mediated by microglia in post-injury neuroinflammation.

This review highlights major concepts surrounding neu-

roinflammation in TBI, the current understanding of

adolescent brain development, microglial function in the

developing nervous system, and the integration of these

disciplines. By examining differences in microglia activ-

ities between adolescence and adulthood, we introduce

novel concepts related to how these cells may differen-

tially impact secondary injury following TBIs and spe-

cific functions unique to the adolescent state.

Traumatic brain injury
TBIs are defined as insults to the brain caused by exter-

nal forces resulting in acute or chronic neurological im-

pairments. These injuries occur along a spectrum of

severities (mild, moderate, and severe), pathologies, and

clinical outcomes. Mild TBIs are among the most com-

mon in society (~ 80% of all diagnosed cases) and are

frequently caused by sports-related collisions, falls,

motor vehicle accidents, and war zone blast injuries

impacting military personnel [13, 14]. They are typically

characterized by a mechanical force delivered to the

head, neck, or body that results in “coup” and “contre-

coup” movements of the brain within the inside of the

skull [15]. Len and Neary (2011) defined mTBI as a blow

to the head and/or neck that causes rotational acceler-

ation/deceleration of the brain, the onset of short-lived

neurological deficits, potential loss of consciousness, and

no skull fractures or macroscopic structural abnormal-

ities assessed by neuroimaging. Mild TBIs are often clas-

sified as “concussions” in the clinical setting; however,

not all mTBIs cause prototypical concussion [16]. Com-

mon neurological disturbances accompanying mTBIs

range from acute symptoms including headache, nausea,

dizziness, light/noise sensitivity, attention, concentration,

and memory, to more long-term symptoms including ir-

ritability, sleep disturbances, anxiety, and depression

[17–19]. When accounting for all acquired brain injuries,

it appears that males experience more mTBIs than fe-

males with apparent sexually dimorphic symptomologies

[20]. For example, when comparing male and female

concussed soccer players, Covassin and colleagues found

that females performed worse in visual memory tasks,

had more total concussive symptoms (verbal and visual

memory), and higher rates of migraine-induced cognitive

fatigue and sleep disturbances up to 8 days post-injury

[21]. Although most patients recover from post-injury

symptoms within 7–10 days, a significant portion experi-

ence persistent symptoms that last for months, years,

and in some cases for the remainder of their lives. These

lingering symptoms have been termed post-concussive

syndrome [22]. Moreover, individuals who acquire a sin-

gle mTBI are at high risk for sustaining RmTBIs (due

primarily to the nature in which the injuries are ac-

quired) which can compound symptom severity and per-

sistence [23]. RmTBIs are particularly relevant to

individuals in sport and military environments where re-

current head collisions and blast injuries from explo-

sions are frequently experienced. These individuals often

return to play or duty (in the case of military personnel)

before the brain has fully recovered, which can result in

additive negative effects on long-term brain and mental

health, and propel chronic neuropsychiatric disorders

and neurodegenerative diseases [24, 25], such as mild

cognitive impairment, Alzheimer’s disease (AD), and re-

lated dementias, and Parkinson’s disease (PD) [26, 27].

Adolescents have emerged as a prominent demo-

graphic for sustaining RmTBIs [28]. Remarkably, it is es-

timated that 1-in-6 youth experience a second injury

within 2 years of their first [29]. Although males present

more frequently with TBIs when accounting for all se-

verities, among sex-comparable sports, adolescent fe-

males experience higher mTBI rates than males and

often have worse symptomologies [6, 30], potentially due

to differences in self-report [31]. To date, the majority of

preclinical mTBI research has focused explicitly on adult

injuries and neglected the female population [32]. While

these studies have shed important light on pathophysio-

logical mechanisms that dictate primary and secondary

injury severity and the development of chronic neuro-

logical disorders, the specific, sexually dimorphic effects

of RmTBI on adolescents, and the resulting impact on

their acute and chronic neurological health remains

largely unknown. Since adolescence is a critical neurode-

velopmental period characterized by ongoing neuronal

development, maturation, and fine-tuned circuit inte-

gration [33], RmTBIs sustained during this period

may have severe consequences for life-long brain and

mental health.

Immediately following a mTBI, the brain is thought to

reside in a period of vulnerability where acquiring add-

itional injuries can exacerbate neuropathology and ac-

companying neurological deficits. We currently do not

know how long this window of enhanced vulnerability

extends in humans, but preclinical RmTBI studies in ro-

dents have demonstrated cumulative behavioral deficits

and exacerbated neuropathophysiological hallmarks

when administering consecutive injuries at varying time

intervals. For example, Longhi and colleagues deter-

mined a critical time window for exacerbated behavioral

deficits and neuronal dysfunction/damage when
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consecutive injuries occurred at 3–5-day intervals in

adolescent male mice [34]. Subsequent studies have ex-

panded this finding by altering RmTBI paradigms from

multiple mTBIs per day for multiple days [35], to single

mTBIs delivered every 24 h [36], 48 h [37], or 72 h [38].

Wright and colleagues directly compared the effects of a

single mTBI or RmTBI in adolescent rats and noted cu-

mulative effects of RmTBI on behavioral deficits, gene

expression differences, and axonal integrity as compared

to sham injuries with noted sex-differences [39]. Specif-

ically, male rats exposed to RmTBIs had significantly

worse deficits in short-term working memory whereas

females displayed increased depressive-like symptoms.

At the structural level, RmTBIs caused atrophy to the

prefrontal cortex specifically in females whereas males

had increased white matter tract damage in the corpus

callosum [39]. To our knowledge, only one study has

directly compared recovery from RmTBI in adolescent

(post-natal day (P) 35) and adult mice (P120). While

adult mice had reduced white matter volume compared

to shams, no white matter changes were seen in adoles-

cents following RmTBI. Despite the lack of gross ana-

tomical changes, adolescent mice had prolonged

behavioral deficits in motor and memory tasks up to 3

months post-injury [40]. This may suggest that second-

ary injury cascades accompanying TBI persist for days

and even months following the initial injury, or that

acute neuroinflammation causes chronic neurological

changes, emphasizing the need to further characterize

the temporal nature of cerebral vulnerability windows.

In addition to these time-dependent effects, many envir-

onmental factors have been shown to influence the be-

havioral and molecular outcomes associated with

RmTBI including sleep deprivation [41], diet (ketogenic

diet: [42]; caffeine consumption [43]; monosodium glu-

tamate (MSG) consumption [44]; alcohol consumption

[45]), environmental enrichment [46], and exercise and

anabolic steroid use [47]. Given the lack of knowledge

surrounding cerebral vulnerability windows and the in-

fluence of various environmental factors on RmTBI

pathophysiology during adolescence there is a significant

need for future research in this area.

TBI pathophysiology

Diffuse axonal injury

Immediately following mTBI, primary injury cascades

initiate that drive acute neurological deficits. Primary in-

jury is caused by rotational acceleration and deceleration

forces that cause differential velocities of white and grey

matter (due to differing densities). The differential

movement of white and grey matter imparts tensile and

compressive strain to white matter tracts, which can

sometimes result in shearing or tearing of axons. This is

commonly referred to as diffuse axonal injury (DAI) (for

reviews on DAI see [48, 49]). DAI primarily occurs

throughout white matter tracts within deep and subcor-

tical brain regions like the corpus callosum [50]. This

may reflect vulnerabilities of white matter tracts that are

organized in parallel oriented bundles, making them

more susceptible to the tensile strain associated with ro-

tational acceleration and deceleration of the brain [49].

DAI is a major hallmark of all severities of TBI [50–52].

The brain is normally resilient to stretching and recovers

to normal shape; however, during repetitive injuries the

brain can lose these elastic capabilities exacerbating DAI

pathology [53].

There are a number of pathophysiological hallmarks

related to DAI (Fig. 1a). In the axon, shearing and tear-

ing can drive aberrant influx of extracellular calcium

causing neurofilament compaction, microtubule disas-

sembly, interruption of axonal transport, the accumula-

tion of transported organelles, and finally axonal

swelling and axotomy [54–56]. While not characteristic

of all time frames, axonal swelling is typically seen in the

acute post-injury phase where axons can experience a

30-fold increase in size from normal physiological condi-

tions [56] leading to altered conduction velocities [57,

58]. Axons within a tract can also become misaligned

due to cytoskeletal failure as a result of broken microtu-

bules [56]. For example, in an in vitro model, stretching

of axons caused microtubule breakage at the crests of

axon undulations (smooth wave-like crests and troughs)

[56]. At more chronic time points, axons are often

shrunken, display axonal varicosities (swellings along the

length of an axon), and formation of terminal axonal

bulbs (singular axonal swelling resulting in complete

axonal disconnection), common to Wallerian degener-

ation [56, 59, 60]. Collectively, these pathological

changes to white matter tracts interrupt normal neuro-

transmission and negatively impact neural circuit dy-

namics. Moreover, axonal injury can spread over time

further compromising healthy brain function. While the

precise mechanisms driving the spread of injury are not

clear, this phenomenon may be explained in part by the

actions of secondary injury cascades.

Secondary injury cascades

The accelerative and decelerative forces experienced by

cell membranes during TBI, combined with primary

DAI pathology, can initiate secondary injury cascades

that have additional negative effects on neuronal health

and function (for in-depth reviews of secondary cas-

cades, see [61, 62]. Secondary injury cascades can initiate

within minutes of injury and extend for months. They

are characterized by dysregulated cerebral blood flow

(CBF) [63], altered metabolic and cellular homeostasis,

ionic dysregulation [64], mitochondrial dysfunction [65],

neuronal atrophy, cell death, and neuroinflammation
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[66] (Fig. 1b). Detailing the entirety of secondary injury

cascades following mTBI would be a tall task and re-

views of this topic have been identified above. As it is

important to have a broad understanding of the neural

environment following injury, this review will touch on a

few of the most important components of secondary in-

jury cascades, before delving into an in-depth review of

neuroinflammation (specifically microglial response) in

Section 3.3.

In humans, mTBIs generally cause acute periods of re-

duced CBF up to 1 day post- injury [67], although CBF

regulation is complex and may vary by age and injury sever-

ity. Cerebral hypoperfusion is primarily driven by impair-

ments in cerebrovascular autoregulation (vascular

constriction/dilation in response to changes in perfusion

pressure to maintain constant blood flow) resulting in sig-

nificant reductions in oxygen and energy substrate (e.g.,

glucose) delivery to the brain (Fig. 1b) [16, 68]. Interest-

ingly, human and rodent TBI studies have collectively re-

ported acute hypermetabolism following brain injury

followed by variable periods of hypometabolism depending

on the severity of injury [69–72]. Prolonged reductions in

oxygen and glucose transport to the brain, along with hypo-

metabolism, depletes ATP stores that are vital for

maintaining charge separation across neuronal membranes

and efficient neurotransmission (Fig. 1c). In experimental

rodent models of severe fluid percussion TBI, global reduc-

tions in CBF were observed as early as 15 min post-injury

and recovered within 2-h [73]. In both human and rodent

RmTBIs, alterations to CBF and metabolism are evident

and vary depending on the mechanism and number of in-

juries [74–76]. For example, following murine RmTBI, de-

creased cortical CBF was observed accompanying microglia

activation, in part due to the upregulation of cytokines such

as RANTES, interleukin (IL)-13, IL-10, and IL-15 [77].

Combined with reductions in CBF, axonal stretching can

induce mechanoporation and activate mechanosensitive ion

channels, further exacerbating ionic imbalance across neur-

onal membranes perpetuating depolarization (Fig. 1c) [78].

Mechanoporation typically occurs in the acute phase fol-

lowing TBI and is characterized by the formation of small

non-selective pores in the lipid membrane that allow ions

to travel down their electrochemical gradients [78]. Collect-

ively, the ionic imbalance in affected neurons can alter the

surrounding neural environment causing secondary ionic

disturbances in nearby uninjured neurons [79]. This mem-

brane dysfunction can persist for several hours post-injury

[79]. In response to reduced CBF and mechanoporation-

Fig. 1 Primary and secondary injury cascades following TBI. a Diffuse axonal injury that results from the differential velocities of white and grey matter during
a traumatic impact induces tensile strain and microtubule damage within axons. This event induces accumulation of microtubule transport proteins/cargo
and calcium influx, resulting in axonal swelling and ultimately axonal degeneration. b TBI reduces cerebral blood flow through impaired autoregulation and
increased vasoconstriction, thereby reducing glucose and oxygen throughout the brain. c Axonal stretching induces mechanoporation, facilitating
depolarization via the influx of sodium and calcium ions. Additionally, reductions in oxygen and glucose delivery reduce neuronal ATP levels causing failure
or reversal of ATP-dependent ion transporters/pumps such as the sodium/potassium ATP pump. This further exacerbates ionic dysregulation by exporting
potassium and importing sodium ions. d Ionic imbalances which lead to depolarization of pre-synaptic neurons result in dysregulated glutamate release into
the synaptic cleft, which over-activates NMDAR receptors and increases calcium influx into post-synaptic neurons (termed excitotoxicity). e Unregulated
calcium influx drives neuronal death through mitochondrial dysfunction and the release of reactive oxygen species (ROS)
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dependent depolarization of neurons, aberrant neurotrans-

mitter release ensues that can lead to excitotoxicity and

neuronal death. In general, this is thought to be driven

largely by overactivation of post-synaptic NMDA receptors

in response to excessive glutamate release, pathological in-

flux of Ca2+ ions, and subsequent mitochondrial dysfunc-

tion (Fig. 1c). Although our understanding of the molecular

mechanisms driving these injury cascades has broadened,

the precise timing of CBF alterations, cytotoxic ionic imbal-

ances, and accompanying pathways driving neuronal death/

dysfunction have not been fully elucidated and appear to

vary depending on the type and extent of injury. Notwith-

standing, it is now clear that the immune system plays cen-

tral roles in the regulation of primary and secondary injury

cascades. Specific modulation of the post-traumatic neu-

roinflammatory response may therefore provide unique op-

portunities to limit the extent of neural dysregulation/

damage accompanying TBI and improve recovery.

Neuroinflammation

Pathophysiological signaling processes that accompany

TBIs can initiate complex, dynamic neuroinflammatory

responses that modulate both recovery and secondary

injury cascades. Neuroinflammation is mediated by a

number of different cell types including local glial cells

(microglia, astrocytes), cerebrovascular endothelial cells,

and peripheral immune cells (macrophages, neutrophils,

T cells, B cells, etc.) [80].

Microglia are thought to be the first responders to in-

jury. They detect alterations in their local environments

by activating and synthesizing/secreting a plethora of sig-

naling molecules that coordinate diverse effector functions

such as phagocytosis of cellular debris and cytotoxic mole-

cules, modulation of neuronal protein expression and ac-

tivity, and orchestration of neural repair pathways [81].

Microglia are highly plastic cells, able to rapidly change

along a spectrum of pro-inflammatory (M1-Like) and

anti-inflammatory (M2-like) phenotypes on an “as need”

basis [82–84]. Under normal homeostatic conditions,

microglia primarily exist in a surveillance state, sampling

the extracellular milieu on a constant basis through their

motile, ramified processes. In response to tissue damage

or infection, these cells are activated, retracting their pro-

cesses and adopting amoeboid morphologies reminiscent

of peripheral macrophages [85]. Activated microglia that

adopt classical M1-like phenotypes primarily synthesize

and release pro-inflammatory molecules including IL-1β,

IL-6, IL-12, and tumor necrosis factor α (TNFα) cytokines

and CCL2 and CXCLR9 chemokines [86]. These pro-

inflammatory cytokines induce alterations in intracellular

Ca2+ dynamics that can modify synaptic plasticity, neuro-

transmitter release, and neuronal excitability [87, 88].

Conversely, M2-like microglia are considered “alternative”

activated states promoting anti-inflammatory profiles

(induced by IL-4, IL-10, IL-13, and transforming growth

factor-β) involved in resolution of neuroinflammation

through increased phagocytic activity and tissue repair

[89]. It is now clear that microglia are highly heteroge-

neous and can adopt a variety of phenotypes depending

on changes to their immediate neural environments. As

such, it is not surprising that these cells play dynamic roles

in neuroinflammation, influencing both injury resolution/

tissue repair and further dysfunction/destruction.

Within the acute post-injury window, disruptions in

neuronal membranes by mechanical forces and DAI

cause release of damage-associated molecular patterns

(DAMPs; e.g., ATP, HMGB1 and heat shock proteins)

that can signal through receptor-dependent mechanisms

to activate microglia, and alter inflammatory phenotypes

and effector functions (Fig. 2) [90, 91]. In addition to

these immediate responses, microglial-derived signaling

molecules and DAMPs can modulate blood-brain barrier

(BBB) function in the cerebral vasculature [90]. While

the central nervous system (CNS) has historically been

considered an immune-privileged organ due to this bar-

rier and absence of classical antigen presenting cells, it is

now well recognized that peripherally restricted immune

cells can gain access to the brain parenchyma in cases of

injury and/or infection [92, 93]. Like many other neu-

roimmunological diseases, TBIs can disrupt the BBB and

permit the invasion of peripheral immune cells that play

dynamic roles in the post-injury inflammatory profile

(for review on mechanisms of BBB function/permeability

in TBI see [94]).

In experimental models of TBI, timing of BBB disrup-

tion often occurs in a biphasic manner and is dependent

upon injury severity and the method of injury induction

[95]. In models of moderate-to-severe TBI, BBB perme-

ability has been observed immediately following injury

(~ 2 h) and persists for up to 7 days post-injury [63, 95].

Conversely, in mTBI and RmTBI, there is high variability

in observable BBB disruption, with some studies report-

ing robust disruption and others reporting no observable

changes [60, 63, 96–99]. Furthermore, diffuse injuries

may result in sexually dimorphic responses whereby

males are more prone to BBB disruption than females

[97, 100].

Congruent with the dynamic nature of BBB permeabil-

ity, the infiltration of peripheral immune cells appears to

occur in a cell type-specific and time-dependent manner.

Circulating neutrophils are among the first cells to infil-

trate, usually within the first hour and peaking by 24 h

post-injury, initiating enhanced inflammatory signals

[101, 102]. Monocyte-derived macrophages enter the

CNS within 24 h of injury and peak at approximately 96

hours, readily crossing the BBB aided by neutrophils

[103–105]. T cells and dendritic cells, peaking at ~ 72 h,

have similar profiles to monocytes but in lower numbers
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[106, 107]. Together, the spatiotemporal dynamics of

microglia, precise timing of peripheral immune cell infil-

tration, the identity and phenotypic polarization of these

cells, and the coordinated signaling mechanisms they

impart shape the neuroinflammatory environment and

dictate dichotomous aspects of neural repair and sec-

ondary injury.

While we appreciate that the inflammatory response

in TBI is complex and multifaceted, this review focuses

on the differential roles for microglia in adolescent

mTBIs. For in depth review of global neuroinflammatory

dynamics in TBI see Simon et al., 2017 [108]. We believe

that there are two key areas of research missing within

the literature regarding the microglial inflammatory re-

sponse following TBI. First, there is a lack of representa-

tion of the adolescent time period with most studies to

date focusing on adulthood, and second, there is a gap

in knowledge with respect to females, where the majority

of studies have focused solely on males. Given known

sex differences in microglial development and injury re-

sponses [109–111] along with age-specific effector func-

tions, we believe that these cells play important,

differential roles in neuroinflammation accompanying

adolescent RmTBI.

Adolescence

Adolescence represents a critical developmental period

between childhood and adulthood, generally categorized

from 8 to 20 years of age in humans [112], 30 to 60

months in non-human primates [113], and 35 to 60 days

in rodents [114]. This dynamic developmental period en-

compasses a multitude of changes including refinement

of higher-order cognition [113], brain maturation [33],

the onset of puberty [115], changes in social and risk-

taking behaviors [12], and onset of major disorders such

as schizophrenia [10], substance-abuse [11], and mood

disorders [116]. The start of adolescence is generally

characterized by the onset of puberty (although adoles-

cence and puberty are exclusive terms) [113]. Interest-

ingly, the hormonal events associated with puberty

influence brain maturation in females before males

[117]. While sex hormones are responsible for sexually

differentiating neural circuits during embryogenesis,

during puberty, they activate reproductive behaviors and

organize neural circuits [115].

Adolescent brain development.

Adolescent maturation is a complex process that culmi-

nates in novel and complex social and environmental in-

teractions and experiences. Specifically, it represents a

period of social autonomy, sensation-driven behavior,

and sexual maturation [118]. Throughout adolescence

the brain is extremely plastic and undergoes robust

experience-dependent rewiring influenced by coordi-

nated dendritic spine formation and elimination, and

myelinogenesis [119, 120], (for review on adolescent

brain development, see [121]). By adolescence, total

brain volume is relatively stable and remains this way

Fig. 2 Microglia phenotypes following TBI. DAMPs released by injured, damaged, and/or degrading brain cells activate microglia from homeostatic surveillance/
ramified phenotypes to activated inflammatory/amoeboid phenotypes. Activated microglia may differentiate along a spectrum of pro-inflammatory (M1-like) and
anti-inflammatory (M2-like) phenotypes, synthesizing and releasing a plethora of pro- and anti-inflammatory cytokines/chemokines, respectively
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into adulthood. However, this does not explicitly imply

that all brain regions undergo linear development. Grey

matter (unmyelinated axons, dendrites) decreases during

adolescence in a region-specific manner [121, 122].

These grey matter changes appear to be dependent on

significant region and sex-specific changes in synaptic

pruning [123, 124]. Interestingly, testosterone has been

positively correlated with grey matter volume whereas

estradiol levels have been negatively associated [125]. In

contrast to grey matter, white matter volume expands

throughout adolescence in a sex-specific manner,

whereby females demonstrate earlier developmental

changes, but males appear to show steeper age-related

increases [126, 127]. Given that adolescence is a critical

period of learning, increased social autonomy, and com-

plex social interactions [128], it is likely that white mat-

ter tract development is continually altered throughout

this period. In both longitudinal and cross-sectional

studies, fractional anisotropy (a measure of white matter

integrity) exhibits both age and region-specific changes

[129]. In one particular study, region-specific increases

in fiber integrity were noted in all fiber tracts throughout

the brain measured (arcuate, cingulum, fornix, genu, in-

ferior fronto-occipital fasciculus, inferior longitudinal

fasciculus, splenium, and uncinate) when examining ad-

olescents between 9 and 12 years of age [129]. Import-

antly, microglia play important dynamic roles in the

developing CNS and their dysregulation may have pro-

found effects on the adolescent neurological state.

Microglia and the developing CNS
Microglia are among the most abundant and versatile

glial cells in the CNS, encompassing ~ 10–15% of total

glial cells [130]. While it has classically been thought

that microglia primarily functioned in CNS immune re-

sponses and homeostasis, it is now known that they play

central roles in shaping CNS development by promoting

neuronal survival, inducing programmed neuronal death,

and fine tuning synaptic connections through synapto-

genesis and dendritic spine pruning [131, 132]. Dysregu-

lation of microglial function has been implicated in a

number of neurological disorders and pathologies in-

cluding obsessive compulsive disorder [133], AD [134],

PD [135], chronic traumatic encephalopathy (CTE)

[136], and brain infections [137]. Microglial dysfunction

has also been implicated in aging [138]. Aging-related

dysregulation may impair microglia’s ability to regulate

homeostasis by altering the balance between surveillance

and activated phenotypes along the M1-like/M2-like

spectrum [138, 139]. Given microglia play central roles

in CNS development in utero and immediately following

birth, it stands to reason they would also shape the CNS

during other critical periods of neurodevelopment, in-

cluding adolescence. This is especially relevant when

considering the substantial white matter tract develop-

ment in the prefrontal cortex (PFC) that occurs in this

age group [122] [126]. Uncovering age-related differ-

ences in TBI pathophysiology and specific functions of

microglia could therefore increase our understanding of

the differential impact of sustaining these injuries during

adolescence or adulthood.

Microglia development

Microglia are the first glial cells to colonize the CNS,

however, unlike the neuroectodermal origin of most

neural cells, microglia are derived from the yolk sac (for

reviews, see [140]). The most conclusive evidence for

this was determined by Ginhoux and colleagues (2010).

During early embryogenesis, they populate the brain in

an amoeboid morphology, which facilitates migration,

and share many surface antigens and effector functions

with peripheral blood-borne immune cell populations

[141]. In rodents, amoeboid microglia transition towards

a ramified morphology around embryonic day (E) 10.5

and complete ramification by P28 [142]. During this

period, microglia are also proliferating. Microglial prolif-

eration is a continual process beginning in the early

postnatal days of murine life and reaching maximal con-

centration around two weeks of age [143]. By 18 weeks

of age in humans, most microglia display ramified

morphologies and have dispersed throughout the CNS

[144]. These mature microglia display smaller cell bodies

and longer, more ramified processes compared to imma-

ture microglia [145]. The transition from amoeboid to

ramified morphologies appears to be dependent on the

presence of other CNS resident cells, notably neurons

and astrocytes [146–150].

Notwithstanding, there appear to be spatial differences

in microglia morphology. For example, in subcortical

white matter microglia display more amoeboid morph-

ologies, whereas cortical microglia display diffuse distri-

bution and ramified morphologies [131]. During

development, microglia in murine models form hotspots

and cluster in white-matter tracts with distinct spatio-

temporal patterns of distribution and expression of dif-

ferent cellular markers [81] [141, 144]. The clustering on

white-matter tracts suggests microglia play an important

role in axonal growth, guidance, and myelination [141].

Indeed, through regulation by cytokines and chemokines

(i.e. IL-34, CXCL12, and CX3CL1), microglia promote

axonal outgrowth in regions such as the corpus callosum

[151, 152]. Throughout adulthood, microglia exhibit lon-

gevity independent of replenishment by bone marrow-

derived progenitors, owing to their ability to undergo

self-renewal [153]. Transplants from bone marrow de-

rived myeloid cells reconstituted less than 10–20% of

total microglial cells, indicating that once microglia enter

the CNS they are self-renewing and do not re-infiltrate
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from the periphery [142]. Self-replication means micro-

glial density remains fairly consistent throughout life, al-

though there are region-specific and pathological

turnover rates [154].

Recently, sex differences in microglial morphology,

maturation, and function have come to light. In the early

postnatal period, males exhibit region-specific (amyg-

dala, hippocampus, nucleus accumbens, preoptic area)

increases in microglia number, while at the beginning of

adolescence (P30), females have more microglia in those

brain regions [110, 155]. Production of testosterone by

testes in the late gestation period may drive the early

microglial increases in males since ovaries are largely si-

lent at this time [155]. Once colonization is established,

microglia contribute directly to many facets of brain de-

velopment and sexual differentiation.

Microglial effector functions in the developing CNS

Microglia are key contributors to normal CNS develop-

ment and function, providing important multifaceted ef-

fector functions that shape the CNS throughout life. The

precise timing of microglia emergence in the CNS corre-

sponds with the birth of neurons [131, 152]. Accord-

ingly, in the prenatal and perinatal brain, microglia

regulate neurogenesis and maturation of developing neu-

rons by controlling the balance between neuronal death

and survival, phagocytosing neuronal progenitors, coord-

inating axonal outgrowth, and promoting neuronal fasci-

culation [156–158]. During embryogenesis, microglia

regulate neurogenesis at the terminal stage of cortical

development by phagocytosing progenitor cells in the

ventricular and subventricular zones [152]. Support for

this function was determined by pharmacologically de-

pleting microglia, which resulted in an increase in pro-

genitor cell number. Conversely, activation of microglia

from their ramified, homeostatic state by maternal im-

mune activation (injection of lipopolysaccharide) caused

a decrease in neural progenitors [152]. This neurogenic

role does not conclude in utero, but continues through-

out the post-natal period regulating neural development

in the subventricular zone of the developing cerebral

cortex [152]. During development microglia also play

dual roles that control differentiated neuronal survival

and elimination. Over half of the neurons present at

birth are eliminated. Microglia directly regulate survival

by releasing trophic factors (i.e., insulin-like growth

factor-1 promoting the survival of layer V neurons)

[131] and eliminate specific neurons undergoing pro-

grammed cell death via coordinated microglia-

dependent phagocytosis [159].

In the post-natal brain microglia modulate synapse

number, maturation, and survival, all of which collect-

ively influence neuronal activity [160]. Most notably, re-

cent discoveries have highlighted microglia as direct

regulators of synaptic pruning [132, 160, 161]. Through-

out normal development, neurons create excess synaptic

connections, and it is the role of ramified microglia to

prune unnecessary connections and strengthen

remaining synapses [160]. Removal of excess synapses is

vitally important for the development of proper neuronal

connections and the integration of higher-order circuits

that control healthy CNS function [162–164]. To date,

microglial-dependent synaptic pruning has been ob-

served in numerous brain regions such as thalamus,

cerebellum, olfactory bulb, and hippocampus (HPC)

[165]. The functioning of microglia in synaptic pruning

during development is highly responsive to experience

[166, 167]. Evidence for microglial experience-dependent

synaptic pruning comes from experiments in the devel-

oping visual cortex [132]. In short, Tremblay and col-

leagues found that under normal development microglia

clustered around growing dendritic spines and were in

direct contact with synaptic clefts. In response to altered

sensory experience (light deprivation) and re-exposure,

microglia were less motile, increased phagocytosis of

synaptic elements, and localized to larger dendritic

spines [132]. This experience-dependent synaptic prun-

ing implicates microglia in synaptic remodeling.

But how do microglia determine which synapses to

prune? Recently, the complement system has been impli-

cated in regulation of microglial-dependent synaptic

pruning (Fig. 3). The complement system comprises a

series of proteins, C1-to-C9, that are part of the innate

immune system with roles in cytokine production, vas-

cular permeability, recruitment of macrophages, and

opsonization (for review, see [168]). The specific com-

plement proteins C1q, C3, and C4 have been directly

linked to synapse engulfment [169]. Microglia express

receptors for C1q (C1qR) and C3 (C3R or CD11b) [170]

that coordinate the mechanisms for selective engulfment

of pre- or post-synaptic terminals. First, microglia

recognize C1q tagged on post-synaptic dendrites

(through their C1qR) to initiate phagocytosis of this

structure. Second, neuronal upregulation of C1q cleaves

C3 into C3b which is displayed on pre-synaptic elements

for targeted phagocytosis [170]. Knocking out C1q re-

sults in deficits in synaptic pruning causing excessive in-

nervation of lateral geniculate nucleus neurons [169].

Tagging of pre- and post-synaptic elements by specific

complement proteins is thought to be regulated by activ-

ity. It has been proposed that less active (weaker) synap-

ses are selectively tagged with complement components

to signal their engulfment and strengthen remaining

connections. Alternatively, it is possible that all synapses

express complement components but some also harbor

complement regulatory proteins that prevent recognition

by microglia [171, 172]. Nonetheless, it is clear that syn-

aptic pruning through the complement system is tightly
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regulated and likely restricted to key developmental

stages [109, 169]. However, Hong and associates deter-

mined that in rodent models of AD, C1q, and C3 are

expressed on synapses before β-amyloid plaque forma-

tion and associated synaptic loss, while blockade of the

complement cascade in this system protected against

synaptic loss [173]. This observation may suggest that

complement-mediated synaptic pruning by microglia

drives the early synaptic and cognitive impairments that

often precede overt plaque formation in AD. To date,

the majority of studies on complement-mediated synap-

tic pruning by microglia have focused on early develop-

mental periods, but an important recent study extended

these observations into the adolescent stage. Kopec and

colleagues determined that C3 and microglial C3R medi-

ated synaptic pruning in dopaminergic neurons in the

nucleus accumbens of adolescent male rats [174]. Inter-

estingly, synaptic pruning in females was not mediated

by C3 and microglial C3R. When C3-C3R interactions

were pharmacologically blocked, microglia exhibited de-

creased phagocytic activity resulting in increased rodent

social play behavior in a sexually dimorphic manner.

Age- and sex-dependent microglia dynamics in

TBI pathophysiology
The dual role of microglia in neuroinflammation

Microglia-dependent inflammatory processes in TBI are

evident in both focal and diffuse injuries (for review, see

[108]). As a result of neuronal membrane damage/dis-

ruption, released DAMPs activate microglia, causing

proliferation and migration to sites of injury in an effort

to “wall off” damaged neurons, phagocytose cellular deb-

ris, and clear cytotoxic molecules from the extracellular

milieu [175, 187]. The heterogeneous effects of mTBI

and RmTBI on microglial reactivity are summarized in

Table 1. Nonetheless, it is generally accepted that while

Fig. 3 Complement-mediated synaptic pruning by microglia in the homeostatic and RmTBI adolescent brain. a Under homeostatic conditions, the
complement protein C3 is converted to C3b by C3 convertase which tags unnecessary or weak synapses for pruning. Microglia, which highly express
the C3 receptor (C3R), bind to synaptically tagged C3 molecules facilitating microglia-mediated pruning of pre-synaptic terminals. b Following RmTBI,
microglia-mediated synaptic pruning may be either increased or decreased compared to homeostatic conditions. Ramified microglia are thought to
be more efficient at synaptic pruning compared to amoeboid microglia, which could reduce pruning during adolescence. Alternatively, increased
expression of C3 following RmTBI may facilitate increased synaptic pruning by activated/amoeboid microglia. Collectively, alterations in synaptic
pruning caused by RmTBIs may directly influence synaptic density and overarching neural development and health
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Table 1 Microglia activation following TBI

Reference Strain/
sex/age

Model (severity) # of
impacts/
ICI

Microglia
marker

Time PI Regions Findings

[37] C57/
male/9-15
months

Controlled impact 5/48 h Iba1 6 months,
12 months

Cortex
(retrosplenial,
sensormotor,
motor), CC, CA1,
DG

Cortex: no difference at 6 or 12 months;
CC: Increase at 6 months and 12
months; CA1and DG: no change

1 Iba1 6 months,
12 months

Cortex
(retrosplenial,
sensorimotor,
motor), CC, CA1,
DG

Cortex: no difference; CC: Increase at 12
months; CA1 and DG: no difference

[38] Sprague-
Dawley/
male and
female/
P30

Lateral impact 3/3 days Iba1 16 days VMH Increase following RmTBI in males only

[40] C57/
male/P35

Mod. weight drop 7/9 days Iba1 3 months CA1 Increase in both ages with no
difference in adolescent’s vs adults

C57/
male/
P120

Mod. weight drop 7/9 days Iba1 3 months CA1

[98] C57 Mahmood weight
drop

5/24 h Isolectin B4 30 days HPC No activation

10/24 h Isolectin B4 30 days HPC No activation

[175] Long-
Evans/
male/
adult

mLFP 1 CD68 4 days Ips and Con
perirhinal
cortex, parietal
cortex, temporal
cortex

Increased expression in all regions

32 days Ips and Con
perirhinal
cortex, parietal
cortex, temporal
cortex

No differences

[176] C57/
male/
P120–150

Mod. CCI 30/
5 on 2
off

Iba1, CD68 1 day, 60
days, 365
days

Optic Tract and
LGN

Elevated at all time points

[177] C57/
male/P84

Mod. CCI 42/
6 per
day/2h

CD68 7 days, 1
month, 6
months

Cortex, Amy,
DG, CA1, CA3

7 days: Increase in cortex, con amy,
CA3; 1 month: increase ips cortex, ips
amy, ips/con DG; 6 months: Increase
ips/con cortex, ips/con amy, ips/con
DG, ips/con CA1, ips/con CA3

[178] C57/
male/
P60–90

Mod. CCI 2/24 h Iba1 2 days, 4
days, 7 days,
14 days, 28
days, 49
days

Ips cortex, Ips
DG, CC, Ips
Thalamus

Ips cortex: Increase 4/7/14/28d; Ips
thalamus: Increase 4/7/14/28 days; CC:
Increase 4/7/14/28/49 days; Ips DG:
Increase 2/4/7 days; Con CA: Increase 4
days

[179] C57/
male/P70

Controlled impact 1 Iba1 24 h, 10
days

Cortex, CC,
brainstem

Cortex: no difference; CC: moderate
both times; CA1: present both times;
brainstem: no difference

5/48 h Iba1 24 h Cortex: moderate increase; CC: intense
increase; brainstem: no difference

[180] BALB/c/
male/P90

Midline diffuse FPI
(moderate)

1 Flow: CD14;
Immuno: Iba1

Flow: 4 h, 72
h; Immuno:
30 days

Flow: Cortex,
HPC; Iba1: DG,
PCX, PFC;

Flow: CD14 microglia increases at 4 and
72; Iba1: 30 days increase in DG and
PCX but not PFC

[181] Wistar/
female/
P56

CCI
(moderate-to-severe)

1 Flow: CD40,
CD68, CD163;
Immuno: CD68,
C163, CD68,
Iba1

1 day, 3
days, 5 days,
7 days, 14
days, 30
days

Cortex Flow: CD163 increase 3 days and 5
days; CD40 and CD68 no difference
Immuno: CD68: increase at 5/7/14 days;
Cd163: Increase 5 and 7 days; CD68: No
difference; Iba1: Increase 7 days
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the acute microglial response has neuroprotective effects

[108], when these cells reside in chronically activated

states, they contribute to the window of cerebral vulner-

ability and compound the negative effects of repetitive

injuries on neurological health.

Chronic neuroinflammation and microglial priming

Given the known homeostatic function of microglia in

white matter tract development and synaptic

organization, RmTBI-induced alterations to adolescent

microglia may shift these cells to activated inflammatory

states limiting their homeostatic role in normal develop-

ment [81, 161]. Microglia can be chronically activated

well after functional recovery from primary injuries, res-

iding in a “primed” state that may exacerbate inflamma-

tory responses with subsequent injuries or inflammatory

stimuli [188, 189]. In the context of mTBI and the asso-

ciated risk of sustaining RmTBIs, the priming of acti-

vated microglia is an important consideration for

translation of preclinical studies to the clinical setting

[175]. As mentioned previously, the precise recovery

window following TBI appears to vary with age, injury

severity, and other genetic and environmental factors.

Intriguingly, microglial priming places these cells in sen-

sitized states where successive mTBIs promote detri-

mental inflammatory functions. In support of this,

experimental priming of microglia with lipopolysacchar-

ide (LPS), which activates microglia through toll-like re-

ceptor (TLR) signaling, significantly increased the

number of activated microglia for up to 28 days follow-

ing RmTBI, compared to single injuries or sham controls

[190]. Similarly, LPS priming of microglia 5 days follow-

ing single mTBI compounded behavioral deficits (in-

creasing depressive-like symptoms and impairing

cognition) and exaggerated pro-inflammatory microglia

phenotypes up to 3 months following injury [191]. Fur-

thermore, microglia priming is exacerbated by increasing

concentrations of IL-1β and TNFα, known endogenous

signaling molecules elevated in the post-traumatic brain

[180]. This priming effect may be best exemplified in the

context of aging.

Microglia slowly transition from ramified surveillance

states to activated phenotypes and increase in density

throughout aging [192, 193]. Aging microglia also appear

to lose the ability to transition between surveillance and

activated states and tend to reside in more activated

phenotypes as aging progresses [194]. In the preclinical

setting, Kumar and colleagues utilized a controlled cor-

tical impact (CCI) model of mTBI in adult (3 months)

and aged (24 months) mice, identifying increases in M1-

like and M2a-like microglial phenotypic markers and the

presence of bushy/amoeboid microglia in the HPC, cor-

tex, and thalamus of aged animals 24 h post-injury as

compared to adult cohorts [195]. Prior work by Sandhir

and colleagues reported that aged mice subjected to sin-

gle CCI displayed increased Iba1 and CD11b mRNA and

protein levels up to 3 days post-injury in the HPC, with

a prolonged return to baseline as compared to adult

Table 1 Microglia activation following TBI (Continued)

Reference Strain/
sex/age

Model (severity) # of
impacts/
ICI

Microglia
marker

Time PI Regions Findings

[182] C57/
male/
P120–150

Closed-headed
impact model of
engineered
rotational
acceleration (CHIM
ERA)

1 Iba1 6 h, 1 day, 2
days, 7 days,
14 days

Optic tract,
olfactory nerve,
CC, brachium
sup. Colliculus

Optic tract: increase 2/7/14 days;
olfactory nerve: increase 1/2/7/14 days,
CC: increase 2/7/14 days; Brachium:
increase 2/7/14 days

[183] Long-
Evans/
male/
young
adult

LFP 1,3,5/5
days

ED1 24 h Injured cortex Increase following 3 and 5 injuries

8 weeks Injured Cortex Increase following 5 injuries

[184] C57/
male/P60

Mod. weight drop 7/9 days Iba1, CD68 24 h, 7 days Fimbria white
matter and CA1

Increase in Iba1 and CD68 at 24 h and
7 days in both regions

[185] C57/
male/
P60–90

Mod. weight drop 7/9 days Iba1 3 months Fimbria white
matter and CA1

Increase in both regions

[186] Sprague-
Dawley/
male/P18

Mod. CCI 1 Iba1 7 days Cortex, external
capsule,
amygdala

No difference

2/1 day Iba1 7 days Cortex, external
capsule,
amygdala

No difference

Abbreviations: Amy amygdala, Con contralateral, CC corpus callosum, DG dentate gyrus, HPC hippocampus, ICI inter-injury interval, Ips ipsilateral, LGN lateral

geniculate nucleus, LFP lateral fluid percussion, Mod modified, PCX parietal cortex, PFC prefrontal cortex, VMH ventromedial hypothalamus
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mice [194]. Moreover, a complementary study utilizing a

CCI model of RmTBI in aged mice revealed significant

increases in Iba1 reactive microglia in the corpus callo-

sum (but not HPC or cortex) 6 months post-injury

which persisted for up to 12 months [37]. Consistent

with these experimental studies, human patients with se-

vere TBI may exhibit continued axonal degeneration and

chronic microglia activation up to 18 years post-injury

[196, 197]. Chronic microglial activation has also been

reported in impact sport athletes following retirement

suggesting that this phenomenon is not restricted to se-

vere TBI, but also a hallmark of RmTBIs [198]. Collect-

ively, both preclinical and clinical studies support the

idea that microglia not only participate in acute inflam-

matory responses following brain injury, but can adopt

primed, activated phenotypes that persist chronically

and may play central roles in the pathophysiology ac-

companying cumulative TBIs. However, the characteris-

tics of microglia activation in adolescent mTBI remain

largely unknown and to our knowledge there have been

no studies examining the impact of altered microglia dy-

namics during adolescent RmTBIs on adult outcomes.

Microglia responses in adolescent TBI

Current literature regarding microglia-dependent in-

flammatory responses in adolescent RmTBI is sparse

and requires further investigation. However, in a model

of pediatric (P18) RmTBI, researchers identified more

amoeboid microglia in the cortex, HPC, and amygdala

with single or RmTBI on post-injury day 7. However, no

differences were noted in total quantity of Iba1 positive

microglia when compared to sham rats on post injury

days 7, 21, or 92 [186]. These observations suggest that

single and RmTBI caused microglia activation with no

overt gliosis. Similar to the findings by Fidan, Wu and

colleagues saw no differences in Iba1 expression in the

cortex, corpus callosum, or hippocampus, 4 h and up to

1 year, between RmTBI and sham animals [199], which

corroborates findings from adult research. It is import-

ant to note that while Iba1 is commonly used to identify

microglia, it is also expressed by peripheral macrophages

and may not be an ideal marker for microglia in injury

models that cause BBB permeability and infiltration of

peripheral cells. Juvenile (P21) mTBI induced region-

and sex-dependent differences in microglial responses,

whereby, males experienced higher activation of micro-

glia compared to females, especially in regions affected

by DAI [200]. Mannix and colleagues utilized a modified

weight drop model of RmTBI to compare microglia-

dependent outcomes in adolescent (P35) or adult (P120)

wild-type C57Bl/6 mice. To our knowledge, this was the

first closed-headed RmTBI model to directly compare

adolescence and adult subjects. Adolescents exposed to

RmTBI displayed similar magnitudes of gliosis to adults

with RmTBI [40]. However, they did not monitor adoles-

cent development following RmTBI into adulthood to

determine long-term behavioral deficits or microglial re-

activity. Given significant brain maturation is occurring

during adolescence and the role microglia plays in syn-

aptic pruning and overarching spine density, it is pos-

sible that RmTBI may alter normal neural development.

While not directly analyzing microglial involvement, a

number of studies have displayed increased spine density

following adolescent RmTBI [43, 201–203]. Reductions

in synaptic pruning may result from altered microglial

functioning. Chronically activated microglia following

RmTBI may be improperly regulating (or inhibiting)

homeostatic functioning, leading to decreased synaptic

pruning and increased spine density. It is known that al-

terations in synaptic density are hallmarks of a number

of neuropsychiatric disorders. It will be key to determine

how RmTBI received during key developmental periods

affect susceptibility to neuropsychiatric disorders.

Perspectives and conclusions

As we have mentioned above, the adolescent develop-

mental period is a critical time in life that is character-

ized by increased risk-taking behaviors and increased

risk for mTBI. Yet, adolescents are severely underrepre-

sented in the mTBI literature. We believe the adolescent

period is important for future research for a number of

reasons. First, during adolescence, white matter tracts

are not fully developed. As we have mentioned, in DAI

white matter tracts are especially susceptible to axonal

sheering and tearing. Does this mean adolescents will

experience more severe injuries because the tracts have

less tensile strength? Or will they be less likely to display

white matter injuries? It is possible adolescents will be

more vulnerable to this type of injury as they have in-

creased water content in the brain and may be more dis-

posed to cerebral edema [204]. This claim is supported

by Cernak and colleagues utilizing a pediatric model of

mTBI in Sprague-Dawley rats. Following a single injury

temporal patterns of edema in the cortex and hippocam-

pus differed in juvenile (P7, P14, P21) and adult animals

whereby, juveniles displayed edema formation earlier

than adults [205]. Given the immense changes to brain

structure during adolescence, temporal profiles may not

follow the same trajectory as pediatric injuries. Indeed, a

single injury at P30 did not cause identifiable edema in

adolescent mTBI. However, administration of a second

injury exacerbated secondary cascades and increased

edema [206].

The findings from Mannix (2017) provide important

support for this concept: adolescents exposed to RmTBI

displayed similar magnitudes of microgliosis to adults

with RmTBI [40]. While this may seem unimportant,

chronic microgliosis following RmTBI is associated with

Eyolfson et al. Journal of Neuroinflammation          (2020) 17:326 Page 12 of 19



persistent behavioral differences in adult models [185].

While beyond the scope of this review, it is also import-

ant to note that astrocytes play important immune re-

lated roles following brain injuries, and chronic

astrocytosis may additionally compound behavioral defi-

cits (for in-depth reviews, see [207, 208]). Importantly,

microglia and astrocytes are known to engage in cross

talk whereby, activation of one, also activates the other,

suggesting that both play vital roles in the pathophysi-

ology and recovery from injury [209]. In addition, we

have highlighted specific roles for microglia in synaptic

pruning in this review and recent evidence suggests that

astrocytes may also play roles in synaptic pruning [210].

The injury-induced activation of microglia during ado-

lescence may disrupt homeostatic synaptic pruning and

lead to decreased dendritic branching similar to what

has been identified in the ageing or AD brain [173, 211].

Furthermore, both adolescence and TBI upregulate the

complement cascade. Complement cascade expression is

downregulated during non-developmental periods and is

upregulated during adolescence. Kopec and associates

confirmed that during adolescence, microglial-induced

synaptic phagocytosis was mediated by protein C3 [109].

Further, C3 mRNA was significantly increased following

experimental TBI [212]. Following RmTBI in adoles-

cence, this upregulation of the complement cascade may

mediate abnormal microglial synaptic pruning at other-

wise strong, healthy synapses (Fig. 3) [164].

Finally, adolescent RmTBI may perpetuate abnormal

microglia priming, reminiscent of aging where microglia

lose the ability to shift from activated to ramified pheno-

types. This is relevant because activated microglia are

less capable of performing their homeostatic develop-

mental functions. Studies have shown that microglial ac-

tivation can persist up to 18 years following TBI in

clinical populations [197]. It is therefore possible that

adolescent RmTBI primes microglia to activated pheno-

types earlier than usual, potentially leading to the early

onset of neurodegenerative disorders and neurological

decline (Fig. 4). While tracking adolescent RmTBI into

adulthood has scarcely been researched, we do know

that severe TBI in adolescence results in continuous ver-

bal IQ decline and impairments in attention and work-

ing memory well into early adulthood [213]. Therefore,

although adolescents are underrepresented in current

TBI research, the literature to date suggests that

Fig. 4 Trends in microglia activation and neurological impairments following adolescent RmTBI. Throughout life, microglia are known to become
increasingly activated. In addition, neurological impairments increase throughout adulthood and ageing. RmTBIs sustained in adolescence may
cause earlier chronic or primed microglia activation that may persist into adulthood and through aging. Increased microglia activation during the
adolescent developmental period may therefore influence the acquisition or onset of neurological impairments throughout life. Disruption to
neurological functioning may induce negative consequences through adulthood into aging
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receiving RmTBIs during adolescence may have far

reaching consequences that require greater attention.

Research into mTBI and specifically RmTBI has seen a

surge in recent years. However, the adolescent population

has not been adequately studied and there is a specific

void in the literature regarding the neuroinflammatory

profile in this age group. Moreover, in the research that

exists there is considerable variability and heterogeneity

between studies. The main issues plaguing the mTBI re-

search field are the lack of transparency and consistency

in (1) model, (2) severity, (3) sex, (4) age and species, (5)

time points for analysis, (6) number of injuries adminis-

tered, and (7) inter-injury interval. For example, the inclu-

sion of both males and females in basic and clinical

research is of particular importance. Beginning in utero,

and continuing throughout life, microglia development

and transcriptional profiles differ between males and fe-

males. These differences in microglia phenotypes may

manifest following injury and combine with sex-specific

epigenetic changes, behavioral symptomologies, and

microscopic structural changes to produce divergent

pathological profiles. These differences are indicative of a

non-uniform injury responses which have the potential to

also impact therapeutic interventions and recovery. Given

that the inflammatory profile differs based on each of the

issues mentioned above and there is significant heterogen-

eity in the environmental factors surrounding injuries, it is

currently difficult to draw specific conclusions regarding

the role of microglia in adolescent and adult TBI patho-

physiology. Notwithstanding, we have demonstrated that

examination of the homeostatic and neurodevelopmental

functions of microglia and immunological function during

injury in adult states may provide novel insight into patho-

logical consequences of activating these cells during ado-

lescence. Sustaining injuries during this period has

significant potential to alter developmental trajectories by

augmenting microglial-dependent synaptic pruning, white

matter tract development, and priming these cells to more

activated phenotypes that could exacerbate neurological

decline. The future however is bright. New technologies

such as translocator protein (TPSO) autoradiography and

positron emission technology (PET) have been developed

to image microglia activation in vivo, in both humans

[214–216] and rodents [217, 218]. These novel techniques

open avenues to image microglia in living adolescents,

which will be paramount to understanding this important

aspect of neuroinflammation during such a critical period

of brain development.
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