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Neuroinflammation, the inflammatory response in the central nervous system (CNS), is a
major determinant of neuronal function and survival during aging and disease progression.
Microglia, as the resident tissue-macrophages of the brain, provide constant support to
surrounding neurons in healthy brain. Upon any stress signal (such as trauma, ischemia,
inflammation) they are one of the first cells to react. Local and/or peripheral signals
determine microglia stress response, which can vary within a continuum of states from
beneficial to detrimental for neuronal survival, and can be shaped by aging and previous
insults. In this review, we discuss the roles of microglia upon an ischemic or traumatic
injury, and give our perspective how aging may contribute to microglia behavior in the
injured brain. We speculate that a deeper understanding of specific microglia identities
will pave the way to develop more potent therapeutics to treat the diseases of aging
brain.
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INTRODUCTION
Microglia are considered the tissue-resident macrophages that
derive from the primitive macrophages produced in the yolk
sack. These primitive cells migrate and reach the central nervous
system (CNS) at early embryonic stage, prior to development of
the bone marrow hematopoietic system (Ginhoux et al., 2010;
Schulz et al., 2012; Yona et al., 2013), where they expand and
colonize the entire CNS. Depending on the species, microglia
account for 5–20% of the total glial cells present in the adult
brain (Lawson et al., 1992). Secluded by the blood brain barrier
(BBB) and evenly distributed through the brain parenchyma, they
form an autonomous population distinct from the peripheral
circulating monocytes or macrophages (Ginhoux et al., 2010;
Schulz et al., 2012). Microglia play important roles in chronic
neurodegeneration as well as in acute lesions in the brain
including trauma and stroke, when the BBB is compromised.
They express a wide range of receptors allowing them to
respond to large number of cytokine signals from other cells
circulating in blood and tissue. Therefore, until recently, microglia
were mainly seen as the immune-competent cells of the CNS
forming the first line of defense against invading pathogens
or in case of injury or disease (Nimmerjahn et al., 2005).
Recent literature, however, has demonstrated more sophisticated
functions of these cells going beyond immune surveillance. Of
particular importance, microglia actively participate in plasticity
and maintenance of the adult CNS by secreting cytokines
and neurotrophic factors including BDNF (Parkhurst et al.,
2013) and refining the neuronal circuit by pruning synapses

and axonal terminals (Tremblay and Majewska, 2011; Parkhurst
et al., 2013; Salter and Beggs, 2014). Hence, in addition to
immune surveillance and response, microglia have a number
of additional distinct functions compared to immune cells in
the blood. Moreover, while monocytes readily replenish from
the bone-marrow hematopoietic stem cells, microglia have
∼20–30 folds slower self-renewing capacity compared to them
under homeostatic conditions (Elmore et al., 2014). Because
life span of CNS microglia is longer, they are more prone
to accumulating aging-related changes (Gehrmann and Banati,
1995). In addition, it has been proposed that a subtype of
monocytes (Ly-6ChiCCR2) could replace microglia by being
recruited from the blood circulation and sub-sequentially
differentiated into microglia (Mildner et al., 2007; Varvel
et al., 2012). However, to which extend these cells could
take over different microglia functions is still not yet fully
understood.

Hence, the view that microglia act as simple CNS scavengers,
cleaning debris and dead cells, is out of date. The microglia
are dynamic cells with the capacity of broad spectra of
supportive as well as destructive functions in health and disease.
The balance between these two opposing roles—undermined
by infections, trauma or stroke challenges—are critical for
the course of neurodegenerative diseases. Microglia have a
high level of plasticity allowing them to change their shape
and function in response to environmental cues (Saijo and
Glass, 2011). After injury or over time with the aging, their
morphology is progressively altered. For example, abnormal
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microglia morphology and dysfunction have been linked to many
neurodegenerative diseases and psychiatric disorders including
Alzheimer’s disease (AD), Parkinson’s disease (PD) and Rett
syndrome (Prinz and Priller, 2014). While microglia morphology
in general is a good indication of their functions, it is important
to assess their cytokine profiles and interactions with the
surrounding cells to determine their exact roles in a given
situation.

Here we would like to argue that microglia’s function and
morphology considerably change with the aging. Thus, their
response to acute CNS lesions (stroke or trauma) depends on the
age of the insult. On the other hand, any acute lesion could confer
additional imprints to microglia function, thereby weaken their
protective response to future insults and accelerate the aging of
the brain.

MICROGLIA IN THE YOUNG HEALTHY BRAIN
While microglia have mainly been studied in the context
of disease, recent studies yielded important insights on their
significance also in the healthy brain specifically on their
contribution to the maintenance of brain’s homeostasis (for
review, see Schafer et al., 2012, 2013; Wu et al., 2013; Salter and
Beggs, 2014). Microglia monitor changes in their environment
with their long and motile processes, an activity that is facilitated
by their positioning in a grid like fashion within the brain
parenchyma. Because of their motility and positioning, they
could scan the entire brain tissue every few hours (Davalos
et al., 2005; Nimmerjahn et al., 2005). Such microglia dynamics
are age-dependent and seem to slow down with the aging
(Hefendehl et al., 2014). The homeostatic role of microglia has
been linked at least in part to their phagocytic activity to sculpt
the developing and young adult brain. Microglia contribute to
elimination of sub-numeral Purkinje neurons in the developing
cerebellum, a process potentially triggered by free radical release
from the microglia (Marín-Teva et al., 2004). However, the
molecular mechanisms triggering the engulfment of neurons
by microglia are poorly uncovered. One idea is that microglia
may recognize the apoptotic targets cells via a “receptor-ligand”
interaction as it has been reported during the neurogenesis in
the adult hippocampus. The subgranular zone (SGZ) of the
dentate gyrus gives rise to numerous new cells. Only a small
subset of these cells can reach to the maturity of a neuron
and integrate into the hippocampal circuitry while most of
them die. During these events, microglia rapidly dispose the
dead cells and clear the neurogenic compartment long before
migration of the remaining cells to the granular layer (Sierra et al.,
2010).

Microglial might also be monitoring neuronal activity via
transient contacts with dendritic spines and synapses (Wake
et al., 2009; Tremblay et al., 2010). When needed, microglia
may prune these dendritic spines and synapses via phagocytic
mechanisms (Davalos et al., 2005; Nimmerjahn et al., 2005).
For example, physical elimination of the contacted synapse by
microglia occurs after an episode of light deprivation in the visual
cortex or in the penumbra upon cerebral ischemia (Wake et al.,
2009; Tremblay et al., 2010). Proposed microglial phagocytosis of
neurons, dendritic spines and axonal shafts depends on the “eat

me” and “don’t eat me” signals exposed at the neuronal surface
(Brown and Neher, 2014). Local flipping of the plasma membrane
phospholipids exposing phosphatidylserines to the external layer
and synapse tagging with the complement C3 or C1q proteins
are part of the signals mediating phagocytosis (Stevens et al.,
2007; Berg et al., 2012). Conversely, neurons expressing CD47
and sialylated glycoproteins inhibit this process by binding to
the microglial receptors signal regulatory protein 1α (SIRP1α)
and sialic acid-binding immunoglobulin-like lectins (SIGLECs),
respectively (Brown and Neher, 2014).

MICROGLIA IN AGING BRAIN
Microglia morphology, number and dynamics are altered
throughout the aging (Harry, 2013). Studies in young vs.
aged retina (Damani et al., 2011) or brain (Hefendehl et al.,
2014) have revealed that microglia exhibit age-related soma
volume increase, shortening of their processes and loss of
homogeneous tissue distribution. In addition, microglia exhibit
slower acute and sustained chronic post-injury response,
reminiscent of a prolonged inflammatory response (Damani
et al., 2011; Hefendehl et al., 2014). Microglia can display
swellings, varicosities and retraction of the ramifications, which
are indication of unhealthy microglia (Mrak and Griffin, 2005;
Miller and Streit, 2007; Norden and Godbout, 2013). Aging per
se can reduce microglia phagocytic capacities for endogenous
proteins such as Abeta peptides (Floden and Combs, 2011;
Harry, 2013) and reduce their expression of phagocytosis and/or
endocytosis genes (Orre et al., 2014). In addition, in vitro data
indicate that microglia in the aged brain express more MHC-
II molecules and become less sensitive to regulatory signals,
such as transforming growth factor beta 1 (TGF beta-1) or
colony stimulating factor 1 (CSF1; Rozovsky et al., 1998). During
their life span, episodes of systemic inflammation and cytokine
stimulation can instruct microglia and increase their reactivity.
This mechanism of exposure to multiple noxious stimuli is called
priming (Perry and Holmes, 2014). Along with the priming,
accumulation of mutations and DNA damage with the aging
(Mrak and Griffin, 2005), can lead microglia to gradually acquire
resistance to regulation (Norden and Godbout, 2013; Perry and
Holmes, 2014).

Upon activation, microglia density is increased several folds
(Erturk et al., 2012), which eventually drops back to normal
levels during the recovery phase (Streit, 2006). This reduction
of microglia numbers in a pathological context is reestablished
by apoptosis through activation-induced cell death (AICD), a
mechanism triggered by interferon gamma (Takeuchi et al.,
2006). Moreover, accumulation of functional and morphological
alterations over time also implies that microglia could die
independently of AICD, as shown in human brain (Streit, 2004;
Streit and Xue, 2009). Potentially these mechanisms could lead
to a substantial decrease in the number of microglia, because
the proliferation rate is quite low in physiological conditions.
While the number of mitotic divisions achieved before death is
not known (Saijo and Glass, 2011), telomere shortening along
with a significant decrease of telomerase activity—a marker of
aging and senescence—in microglia have been reported during
normal aging (Flanary et al., 2007). Taken together, this suggests
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that aged microglia decline in homeostatic functions and become
susceptible to deterioration.

Parabiosis experiments have revealed that the source of
microglia replenishment depends on the BBB integrity (Wright
et al., 2001; Ajami et al., 2007). When the BBB is compromised,
Ly-6ChiCCR2+ monocytes are recruited from the blood
circulation (Mildner et al., 2007). Alternatively, when the BBB
is intact, global depletion of microglia by blockage of CSF1
mobilizes a pool of latent progenitors, which, probably originate
from the neuroectoderm—a different source than original
microglia pool—as they express the specific marker Nestin
(Elmore et al., 2014). Whether these substituting cells are really
able to recapitulate the very different functions of microglia is
unclear. It is possible that reactive microglia during aging could
be deriving from the neuroectoderm lineage. Hence, future
studies need to characterize different subtypes of microglia in the
aging brain and their origins to determine which types support
neuronal survival and which are detrimental to neuronal health.

MICROGLIA IN BRAIN LESIONS (STROKE AND TRAUMA)
After a brain lesion, e.g., induced by TBI or ischemic stroke,
neuroinflammatory responses are prominent (Liesz et al., 2011).
The acute stage begins with the local death of damaged
neurons via necrosis and apoptosis (Raghupathi, 2004). It is
associated with a rapid inflammatory response involving both
resident microglia and infiltrating blood-borne immune cells
(neutrophils, monocytes, leukocytes; for a detailed review please
refer to Famakin, 2014). This initial neuroinflammation can
be both destructive and beneficial depending on the subtype
and spatiotemporal distribution of the inflammatory cells and
the environmental cues surrounding them (Kreutzberg, 1996;
Ramlackhansingh et al., 2011; Aguzzi et al., 2013; Jeong
et al., 2013). Neurodegeneration progresses long after acute
lesion, perhaps throughout the remaining lifetime, which may
result in chronic neurological complications such as dementia
(Smith et al., 1997; Pierce et al., 1998; Bramlett and Dietrich,
2002). However, how the initial injury spreads to the rest
of the brain and how microglia is involved in this chronic
neurodegeneration process are currently unknown (Masel and
DeWitt, 2010). Human MRI and PET studies indicate that
white matter track pathology after stroke contributes to a
secondary degenerative process in the corresponding cortex
(Duering et al., 2012) that seems to be associated with
microglia/macrophage activation (Radlinska et al., 2009). Could
a possible chronic neuroinflammation be a major contributor
to long-term degeneration of the brain? In support of this
hypothesis, GWAS studies demonstrate that inflammation-
related TREM2 (Guerreiro et al., 2013; Jonsson et al., 2013) and
CD33 (Hollingworth et al., 2011; Naj et al., 2011) genes are
risk factors for AD. In addition, increased microglial response
is associated with enhanced pathology and behavioral decline
in an experimental model of dementia (Boimel et al., 2010).
To our view, detrimental inflammatory response is exacerbated
even by aging alone. Additional insults in the brain (e.g., acute
injury) might catalyze this inflammatory response and further
accelerate aging of the brain (Smith et al., 2013; Jacquin et al.,
2014; Figure 1).

FIGURE 1 | Diagram illustrates putative activities of microglia in aging
and lesioned brain. Aging constitutes the continuous factor that
transforms some of the microglia to the destructive mode, which may
contribute to development of diseases. When there is a lesion, e.g., TBI or
stroke (1st hit), some microglia become M1 type, which causes further
neurodegeneration while a larger population is still M2 type, which helps
healing the lesion environment. In addition, infiltration of the blood-derived
immune cells (monocytes/macrophages, lymphocytes) forms the second
wing of the inflammatory response and may contribute to neuronal
protection and disease development.

Determination of the exact role of microglia in the lesioned
CNS is complicated due to the fact that resident microglia cannot
easily be distinguished from the blood-borne infiltrating immune
cells (e.g., macrophages/monocytes), which come through the
leaky BBB. Hence, majority of studies in the context of injuries
provided limited information on the specific role of microglia
(Hellwig et al., 2013; Perego et al., 2013; Yamasaki et al., 2014).
Yet, recent studies demonstrated that indeed microglia and blood-
derived immune cells differ in their gene expression signatures,
hence, possibly in their functions (Butovsky et al., 2014; Prinz
and Priller, 2014). In line with these findings, studies from
the traumatic spinal cord injury indicate that blood-derived
infiltrating macrophages, but not the resident microglia, are
responsible for the secondary axonal dieback (few weeks after the
initial insult) (Evans et al., 2014). Similarly, there is supporting
data that blood-derived macrophages initiate demyelination in
the EAE model, while microglia cleanup the debris and provide
trophic support to maintain the tissue homeostasis during the
early phases of the disease (Yamasaki et al., 2014). Hence, it
is reasonable to consider that the short-lived blood-derived
macrophages/monocytes and the long-lived (Elmore et al., 2014)
resident microglia are different cell populations with only
partially overlapping functions. In the future, accumulation of
knowledge on the specificity of each immune cell type (e.g.,
via the recently generated CCR2-RFP/CX3CR1-GFP transgenic
mouse (Saederup et al., 2010)) will be critical to tackle CNS
diseases by targeting only the destructive immune cells while
preserving the beneficial ones.

Microglia express a repertoire of various receptors such
as TREM2, FcγRs, MHC-II, CD200R, RAGE, CX3CR1
(fractalkaline), CXCR3 and 4, purinergic receptors, Toll-like
receptors 2 and 4, galectins 1 and 3, scavenger receptors (e.g.,
CD36), CD47, integrins and SIRPα (Hu et al., 2014). Thereby,
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they provide both pro-inflammatory and anti-inflammatory
response, in a varying range depending on the signals dictated by
their environment (Hu et al., 2014, 2015; Peferoen et al., 2015).
In the normal brain, it is now understood that microglia activity
is repressed by their repeated contacts with normal neurons
via inhibitory inputs such as CD200, CX3CL1, CD47, CD22,
CD172 or TREM2 (Hellwig et al., 2013). Under acute neuronal
injury, inhibitory signals are reduced and danger stimuli
(danger-associated molecular patterns, DAMPs) are released
(Weinstein et al., 2010). These modifications trigger changes in
the microglial response to the environment, collectively resulting
in microglia activation, proliferation, migration and response
(Patel et al., 2013). The type of microglia response can also vary
depending on the mechanisms triggering the lesion (Cherry
et al., 2014) (e.g., non-autoimmune, pathogen-associated
triggered inflammation vs. adaptive immunity) (Zindler and
Zipp, 2010).

Thus, on one hand, microglia can encapsulate dangerous
foci and remove the cellular debris via phagocytosis in order to
protect the surrounding CNS tissue; on the other hand, they can
harm the injured CNS via propagation of inflammation, pro-
inflammatory cytokine secretion, antigen-presentation (MHC-
II positive) and further immune cell recruitment. Eventually
microglia get “deactivated” or cleaned-up by adjacent cells via
poorly understood processes that are guided by local and systemic
homeostatic signals (Hristova et al., 2010; Saijo and Glass, 2011;
Starossom et al., 2012; Patel et al., 2013).

Stroke and TBI initiates a cascade of events (Iadecola and
Anrather, 2011) that includes all cellular components of the
brain as well as a systemic response from the periphery (Lee
et al., 2014). We know that in both ischemic stroke and TBI
(Nimmerjahn et al., 2005), microglia respond quickly within the
first minutes-hours after the insult (Gelderblom et al., 2009)
and the overall neuroinflammatory milieu seems to a peak at
around day 5 post-lesion (Turtzo et al., 2014). Interestingly,
the initial microglial response in stroke seems to be primarily
helping the tissue repair (Hu et al., 2012; Figure 2). These
microglia secrete and balance anti-inflammatory cytokines and
growth factors (IGF1, TGFb1, neurotrophic factors) to promote
tissue repair (Wang et al., 2013), indicating that their primary
effect after sub-acute ischemia or TBI is to protect the brain and
not to kill it (Patel et al., 2013). As mentioned in the review
by Hellwig et al. (2013), it is unlikely that the real reason for
the presence of numerous inflammatory cells in the vulnerable
brain is just to cause harm. In line with this assumption, it has
been shown that the enhancement of the microglial population
by transplantation of microglia can ameliorate the ischemia-
induced injuries via multiple mechanisms, such as upregulation
of neurotrophic factors or an active interaction and engulfment
of the few neutrophils that might migrate perivascularly after
stroke (Neumann et al., 2006, 2008, 2015; Narantuya et al.,
2010; Perez-de-Puig et al., 2015). However, microglia dynamically
change their phenotypes and they react to the ongoing neuronal
death in the peri-infarct regions (Hu et al., 2012) as the
lesion extends from core to penumbra over time (Lee et al.,
2014; Figure 2). Such a change is dictated by the dynamic
local ischemic cues (cytokines, chemokines, cells, complement

molecules, DAMPs) (Hu et al., 2014). In the lesioned brain,
debris are removed via phagocytosis largely by microglia and
a lesser extent by infiltrating macrophages (Fu et al., 2014).
Removal of debris is beneficial for the tissue and its regeneration
(Neumann et al., 2009) but large amounts of debris can overload
the microglia and render them dysfunctional over time (Li,
2013). Such a dysfunction can lead to tissue aging as we discuss
below.

It is now more evident that neuroinflammation can affect
neuronal degeneration and recovery depending on the age of
the organism at the time of insult. In other words, we should
consider microglia as the brain’s guardian of the innate immune
compartment that responds to danger and shape a reaction
(beneficial or not) (Kigerl et al., 2014) based on their history. Aged
microglia are more sensitive to inflammatory stimuli and become
resistant to regulation by exposure to multiple noxious stimuli
during the life-span of the organism (Norden and Godbout,
2013; Perry and Holmes, 2014). Aging per se, can imbalance the
repertoire of receptors docked at the membrane and thereby alter
the microglial response to environmental cues. Aging decreases
some silencing receptors on microglia, e.g., CX3CR1 (Wynne
et al., 2010) and CD200 (Lyons et al., 2007), while increases
some of the activating ones, thereby priming microglia to become
more readily activated upon any trigger (Wong, 2013; Raj et al.,
2014). Aged microglia seems to have higher proliferative capacity
in response to injury compared to younger adult animals, for
example, as observed in facial nerve crush injury (Miller and
Streit, 2007) or in mild ischemic injuries (Yan et al., 2014).
Moreover, in an aged organism, where a chronic and subtle
infection could reside, the intrinsic state of microglia is also
per se different (increased proinflammatory response) (Püntener
et al., 2012) and such microglia may have maladjusted protective
response in case of an acute insult. Increased pro-inflammatory or
reduced cyto-protective responses related to aging of the organism
are indeed a common feature of long-lived resident macrophages
reported in various organs including liver (Okaya et al., 2005;
Bouchlaka et al., 2013). Conversely, repeated acute lesions can
exhaust microglia and reduce their phagocytic function, resulting
in chronic, unresolved, sterile inflammation that may propagate
over months/years (Li, 2013). The most striking examples for the
necessity of a healthy phagocytosis by microglia come from AD
(Njie et al., 2012) and multiple sclerosis (Napoli and Neumann,
2010) studies, in which microglial phagocytosis—that is necessary
for the clearance of aggregates (e.g., Abeta) or debris—is reduced
(Floden and Combs, 2011). In addition to being exhausted
by workload, autophagy dysfunction and mitochondrial DNA
damage seen in microglia could further contribute to the brain
aging and development of neurodegenerative diseases (Nakanishi
and Wu, 2009). Eventually, since microglia continuously shape
neuronal circuitry and their functions are altered in the post-
lesioned brain (Wake et al., 2009), they could also participate in
defective circuit remodeling removing not only the degenerating
non-functional synapses but also eliminating healthy synapses.
Overall, we speculate that multiple acute lesions over the lifespan
accelerate aging of the CNS by priming microglia bit-by-bit
until they lose their homeostatic and/or repairing capacity
(Figure 2).
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FIGURE 2 | Acute lesions trigger morphological and functional changes
from resident microglia. The diagram summarizes the main microglia’s
temporal (hours to months) and spatial (infarct core, peri-infarct area and
unlesioned tissue) kinetics after an ischemic lesion (Ito et al., 2007; Perego
et al., 2011, 2013; Hu et al., 2012; Morrison and Filosa, 2013; Patel et al., 2013;
Taylor and Sansing, 2013). Infarct core (pink, upper panel) is surrounded by
penumbra (orange, middle panel) in the acute phase, a peri-infarct region in
the intermediate phases and turns into a scar (gray, with or without cavitation
depending on the species) in the chronic phase. During acute phase (first
24 h), microglia are the first to respond to the lesion: unless they die
immediately by the ischemic processes of the core, they are activated gaining
an M2 functional polarization. In the peri-infarct region, microglia are activated
but are initially not polarized (M0). In the following days, microglia are further
activated in the peri-infarct area, proliferate, migrate to the core to repopulate
the corresponding cells and some of them die. Depending on the ischemic
severity and neuronal damage in the peri-infarct regions, microglia gradually
acquire different, region-dependent, polarization states and eventually shift
from M2 to M1 microglia as core expands to penumbra and neurons die. At

this period, blood-borne monocytes (blue cells) and lymphocytes and
neutrophils (not shown here) infiltrate mainly the peri-infarct regions. During
the subchronic phase (weeks), the core is further cleared from debris
(amoeboid microglia turn into foam cells or die) and microglia in the
peri-infarct area possibly follow regionally different paths (resting, activation or
death), under processes not well studied so far. Foam cells are present
(coming from both resident and blood-macrophages), while the numbers of
blood-borne cells gradually decline. In the chronic phase (months), there are
indications of long-term microglial activation and presence of residual foam
cells in the peri-infarct tissue, with unknown significance so far. Importantly
enough, the unlesioned tissue is not well studied so far but probably holds
populations of activated microglia that respond or facilitate local degenerative
processes. For the simplicity of the figure, we have not included the secreted
cytokines produced by the microglia, their changes in their receptors and the
contribution of other immune cells. M0: non-polarized microglia, M1:
pro-inflammatory or classically activated microglia, M2: anti-inflammatory or
alternatively activated microglia (Patel et al., 2013), “?” indicate lack of
detailed information.

CONCLUSION
Microglia identity is progressively altered in the aging brain
leading to both immunological and homeostasis dysfunctions. In

addition to age related decline, microglia accumulate alterations
rendering them weaker against protection of the brain after an
ischemic or traumatic insult. On the other hand, lesions can

Frontiers in Cellular Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 54 | 5

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Lourbopoulos et al. Microglia in injury and aging

prime microglia to age faster, which in return can certainly
contribute to escalation of neurodegenerative diseases (Figure 1).
In fact, resident microglia, which can be imprinted by multiple
exposures to insults in the aging brain, should be regarded as
“veteran” cells. Therefore, investigating the molecular and cellular
mechanisms underlying long-term changes in microglia’s identity
in response to acute injuries at different times would provide
valuable insight for better understanding the aging progression.
We believe that novel strategies aiming to reverse the microglia
aging could carry high therapeutic potentials for both acute
injuries and neurodegenerative diseases.
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