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Microglia in the normally aged hippocampus
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The hippocampus plays important roles in the regulation and combination of short and long term
memory and spatial navigation with other brain centers. Aging is accompanied by a functional decline of
the hippocampus and degenerative disease. Microglia are major immune cells in the central nervous
system and response to degenerative changes in the aged brain. In this respect, functional and
morphological changes of the hippocampus have been closely related to microglial changes during
normal aging with or without disease. Therefore, in this review, we discuss morphological and functional
changes of the hippocampus and microglia in the aging brain.
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Aging is accepted worldwide in social and political agendas

as well as in research agendas. Functional declines in various

organ systems including the central nervous system (CNS)

are associated with normal aging processes. Aging in the brain

is a major risk factor for increases in neurodegenerative diseases

such as Alzheimer’s and Parkinson’s diseases [1,2]. Most

functional changes in the CNS with normal aging are associated

with a decline in learning and memory. It is well accepted

that the hippocampus is a very important region related to

learning and memory because the hippocampus is connected

to other brain regions that are related to learning and memory

[3-6]. The hippocampus is also known as the most vulnerable

region affected by the internal and external changes of normal

aging, and with strokes and other neurodegenerative diseases

[7-10]. The functional decline of the CNS, including the

hippocampus, with normal aging and degenerative processes

is accompanied by changes in the number and function of

neurons and glia, their volumes, and various factors such

as neurotransmitters, hormones, oxidative stress and

inflammation [2,11,12].

There is no doubt that microglial change in the CNS is

associated primarily or secondarily with neurodegenerative

diseases in the aged brain [13,14]. Microglia, which are

immune cells, account for 5-20% of the total glial cell

population in the CNS and are evenly distributed throughout

the brain parenchyma. They respond rapidly to a variety

of alterations in the microenvironment of the brain and act

as a sensor for pathological events in the brain [15,16].

Numerous studies and reviews have reported that numerical,

morphological and functional changes in microglia are

apparently changed in the normal aging brain and in the

aged brain with diseases [1,2,6,12,17-21]. In this review, we

discuss the literature on age-related changes in microglia in

the hippocampus.

Structure and Function of the 
Hippocampus

The hippocampus is one of the oldest brain regions

phylogenetically. It consists of two major parts: the

hippocampus proper (Ammon’s horn or cornu ammonis, CA)

and the dentate gyrus (DG). The hippocampus proper contains

three sub-regions (regions CA1-CA3), and each subregion

consists of 3 distinct layers: stratum oriens (SO), stratum
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pyramidale (SP) and stratum radiate (SR) (from the outermost

to the innermost). Main excitatory output neurons referred

to as pyramidal neurons are located in the SP [22]. The

hippocampus is involved in various physiological functions

such as olfaction, arousal, cognition, learning and memory

[4,23,24].

Extensive work on hippocampal function associated with

memory is still ongoing [25-28]. Although controversy on the

exact functional role of the hippocampal sub-region is ongoing,

the CA1 region appears to be related with the association

and completion of temporal patterns as well as intermediate-

term memory. The CA3 region mediates processes related

with spatial pattern association and completion as well as

short-term memory [4,26,28-31]. Although the DG is a main

subregion of the hippocampus, its function also needs to

be studied more; the DG is involved in metric spatial

representation and spatial pattern separation [23,24,28].

Aging Hippocampus

Age-related losses of hippocampal volume and neuronal

number in the aged hippocampus have been reported

[7,18,32-35]. Early studies showed that a significant neuronal

loss in the CA1 region is correlated with aging in the human

hippocampus, not in other hippocampal regions [32,36]. In

addition, pyramidal neurons are significantly decreased in

the SP of the CA1 and CA3 regions of the hippocampus

in both cognitively impaired and unimpaired rats [33]. Later,

however, the same researchers and others reported that the

number of hippocampal neurons with aging is relatively

persistent in primates and rodents during normal aging using

different methods [7,34,35]. These studies proposed that early

studies, which showed that neuronal loss happens in the

aged hippocampus, had some errors in their methods,

sampling and pathological conditions. Many other researchers

have confirmed that neuronal loss in the normally aged

hippocampus is not characteristic of this brain region [5,37-

39]. However, a marked neuronal loss in the aged

hippocampus occurs in some degenerative conditions such

as Alzheimer’s disease and experimental autoimmune

encephalomyelitis [5,7,10,32,40].

On the other hand, a reduction in hippocampal volume

with aging has been found in primates and rodents using

histological studies [30,31,41]. Recently, many researchers

have confirmed age-related decreases in the volume of the

hippocampus using magnetic resonance imaging in primates

and rodents [42-44]. Nowadays, therefore, it is well accepted

that normal aging is accompanied by hippocampal shrinkage,

and hippocampal shrinkage is closely related to functional

decline in learning and memory in the aged brain. Various

groups have tried to elucidate substrates of age-related

hippocampal learning and memory deficits and have focused

on neurobiological alterations as follows.

One of major finding in the literature is a change in synaptic

plasticity of hippocampal neurons that present as long term

potentiation and long term depression. It has been reported

that no significant changes in dendritic regression are observed

in the CA regions and subiculum, and, in the DG, dendritic

extent is increased in the aged rat and human [45-47]. In

addition, the spinal density of hippocampal neurons in the

DG and CA1 region is not significantly changed in the aged

human and rat [46,48,49]. Furthermore, biophysical properties

of CA pyramidal cells or DG granule cells are mostly preserved

in the normally aging hippocampus compared to those in

the young hippocampus [6,18,50]. However, perforating

synaptic contacts, especially presynaptic fibers, decrease in

the DG of aged rats [51,52]. In addition, the density of

fragmented axons, which project from various brain regions

into the hippocampus, increases in the aged hippocampus [53].

On the other hand, there are many studies that show that

noradrenergic, dopaminergic, serotonergic and cholinergic

projecting fibers decrease in the aging hippocampus [29,54-

56]. Other studies have focused on changes in the aged

hippocampus in cellular substrates such as ions, hormones,

neurotrophic factors and biomolecules. A role for

glucocorticoids in neuronal aging in the hippocampus (the

glucocorticoid cascade hypothesis) has been suggested by

some researchers [9,57,58]. Starting with these studies,

extensive studies have shown that, in the aging hippocampus,

glucocorticoids and stress contribute to learning and memory

function deficits in the aging hippocampus [19,21,59].

Many researchers have found correlations of hippocampal

functional decline with changes in ions such as calcium,

potassium and magnesium conductance in aged neurons

[60,61]. For example, calcium conduction and the number

of L-type calcium channels increase significantly in hippocampal

CA1 and CA3 neurons of the aged rat and rabbit [62-65].

Other studies have reported that magnesium deficiency in

the aged hippocampus impairs learning and memory function

[66-68]. These studies suggest that the dysregulation of cation

homeostasis might be a major cause of deficits in learning

and memory in the aged hippocampus.

Brain-derived neurotrophic factor (BDNF) is implicated in

age-related hippocampal function [69]. Many studies have

reported that BDNF and the BDNF-TrkB system decrease

with aging in human, monkey and rodent hippocampus [70-

72]. The decline of BDNF levels in the hippocampus can

cause an impairment in long-term potentiation in the aged
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rat [73].

Recently, a few studies on changes in cellular substrates

in the aging hippocampus have been done using proteomic

analysis [3,74,75]: Broad changes in proteins focused on

various processes such as glucose metabolism, oxidative stress,

signal transduction, protein folding and neurotransmitter

release and synaptic signaling in the aged hippocampus have

been conducted. These studies have provided evidence for

functional declines in these processes with aging.

Microglia in the Hippocampus

In the CNS, microglia are classified into ameboid,

intermediate, ramified (resting), activated and phagocytic,

depending on their morphology under normal and disease

conditions [76-78]. During early postnatal development,

ameboid microglia migrate and proliferate in the brain

parenchyma, and are transformed into ramified microglia in

the adult brain by transforming into intermediate microglia

with elongated process or pseudopodia. Ramified microglia

are known as resting microglia and have a small oval soma

with numerous branched processes. These spread throughout

the entire brain and play an important role in brain homeostasis

under normal conditions. Ramified microglia are transformed

into activated microglia and/or phagocytic microglia via

reactive or primed microglia in response to certain pathological

conditions such as traumatic injury, ischemia and Alzheimer’s

disease (AD), which are accompanied by inflammation

[8,13,77,79-82].

The hippocampus is one region of the brain where dense

microglia present, like the olfactory bulb, telencephalon, basal

ganglia and substantia nigra [15]. Studies on the regional

distribution of microglia between various brain regions are

limited, and results are controversial [15,83-88]. An early study

reported that in the adult mouse hippocampus F4/80-

immunoreactive microglia in the DG are more numerous

than in Ammon’s horn [15]. Recently, the microglial distribution

in the hippocampus has been reported using different

stereological methods [83-86]. These studies show that

microglial density in the CA1 region is higher than in the

DG, although the total microglial number is also different.

Using immunohistochemistry with ionized calcium-binding

adapter molecule 1, Jino et al (2007) found that in the mouse

hippocampus microglial density in the CA3 region is lower

than in the CA1 region and the DG, and the density of

microglia in the CA1 is higher than in the DG [87]. They

suggested that microglial density might be involved in site-

specific vulnerability of the hippocampus, and that the

heterogeneous distribution of microglia would participate in

the modulation of hippocampal neuronal activity [88].

Microglia in the Aging 
Hippocampus

Only a small number of studies have focused on microglial

distribution and total number in the hippocampus using

stereological methods [89-92], although a large number of

studies have been conducted in other brain regions under

normal and abnormal conditions. No age-related differences

in microglia were found in the aging hippocampus of male

mice [89,90]. However, the same research team reported

that the number of microglia is significantly increased in the

hippocampus of the same mouse strain [90]. In contrast, some

researchers found that the number of microglia is decreased

in the aged hippocampal CA1 region of the ICR mouse [91,92].

This discrepancy may be due to different animals or strains,

markers for microglia and stereological methods.

Although there is a lack of detailed studies on changes

in microglial number with aging, the change must be related

with functional changes with age. Actually, many studies show

that morphology and/or antigen expression in microglia are

changed in the aged hippocampus as well as in other brain

regions [8,82,92-98]. It is well known that the resting form

of microglia is transformed into the activated form of microglia

with aging [96,97]. Many studies have shown that the activated

form of microglia is increased in number in the aged monkey,

dog and rodent hippocampus as well as in the human

hippocampus [8,82,92-95]. These activated microglia show

high elevations of various antigens such as major

histocompatibility complex (MHC) antigens, interleukin-1α

(IL-1α), MHC class II cell surface receptor, Iba-1 and lectin

in the hippocampus [8,82,94,98,99].

Recently, a large number of studies on functional changes

in adult and aged microglia have been conducted with primed

microglia. The primed microglia, which was introduced by

Perry, have shortened processes with surface antigens such

as MHC II similar to those in activated microglia, and the

primed microglia are devoid of the ability to secrete pro-

inflammatory cytokines in the CNS [79-81]. Along with the

primed microglia concept, it has been suggested that the

functions of adult and aged microglia are different under

normal and pathological conditions [17,20,79,100,101].

Microglia cultured from aged brains express high basal IL-

6, and microglia more highly express IL-6 as well as IL-1β

after lipopolysaccharide treatment compared to microglia

cultured from adult brain [102,103]. In addition, aged microglia

show an exaggerated response to systemic inflammation

[79,100,101]: microglia in adult animal models of some types
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of inflammation produce an increase in anti-inflammatory

cytokines and fewer inflammatory cytokines. However,

microglia in middle-aged animals show a reversed production

of anti-inflammatory and inflammatory cytokines [103-105].

Consistent with these studies, emerging evidence suggests

that hippocampal functions after systemic infection are

accompanied by an increase in microglia activation, which

are more easily disrupted in aged rodents [98,100,103,105,

106]. Nevertheless, many researchers agree we still need to

examine further specific markers, methods and criteria to

define primed microglia and activated microglia as well as

resting microglia, because the morphology of primed microglia

show some features similar to activated microglia. In addition,

resting microglia and activated or phagocytic microglia also

express MHC II and Iba-1 in normal and pathological

conditions.

Microglial senescence represents a dystrophy with aging

[107]. In an in vitro study, was reported that morphological

degeneration of cultured microglia occurs after expose to

amyloid beta protein [108]. Streit and his colleague reported

that dystrophic microglia show a loss of fine branches

(deramification), shortened tortuous processes or cytoplasmic

fragmentation except for spheroid cytoplasm in the aged

human brain. They suggested that microglial dystrophy is a

sign of microglial senescence [107,109]. In addition, they

suggested, based on their data, that neurodegeneration may

occur secondarily after microglial senescence and that

neurodegeneration is associated with a loss of microglial

neuroprotective function. They also showed that dystrophic

(senescent) microglia rather than activated microglia likely

precede neurodegeneration in Alzheimer's disease [110]. In

addition, abnormal and degenerating microglia are detected

in other neurodegenerative diseases including amyotrophic

lateral sclerosis, Creutzfeldt–Jakob disease, Huntington’s

disease and schizophrenia [111-113]. They also suggested

that an increase in the number of activated microglia in the

brain with aging and neurodegenerative disease must be

reconsidered, because dystrophic microglia might have been

misidentified as activated microglia in previous studies. Other

groups have consistently provided evidence that microglial

senescence produces a shortened telomere and a decrease

in their activities in aging and neurodegenerative disease [114-

117]. However, to the best of our knowledge, there is no

study that has focused in detail on dystrophic changes of

microglia in the hippocampal subregions with normal aging,

although some studies have shown dystrophic changes in

microglia in the parahippocampal cortex [107,110,115,117].

Further studies on the stereological classification of microglia

combined with primed and dystrophic microglia could identify

the region-specific functions of microglia in the aged

hippocampus.

Conclusion

The most distinctive age-related change in the hippocampus

is a decrease in its volume with a reduction in the number

of projecting fibers from other related brain regions. No

significant loss of hippocampal neurons occurs with aging.

With the volume change, many cellular substrates also

markedly change in the aging hippocampus. Stereological

studies on the total or region-specific number of primed and

dystrophic microglia should be done in the aged hippocampus.

In addition, there are some controversies about on major

microglial functions that are harmful or beneficial for the patient

undergoing degenerative changes in the aged brain. However,

in the aged hippocampus the majority of functional declines

with aging are closely related to morphological and functional

changes of microglia.
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