
 International Journal of 

Molecular Sciences

Review

Microglial and Astrocytic Function in Physiological
and Pathological Conditions: Estrogenic Modulation

Andrea Crespo-Castrillo 1,* and Maria-Angeles Arevalo 1,2,*

1 Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce, 37,

28002 Madrid, Spain
2 Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de

Salud Carlos III, 28029 Madrid, Spain

* Correspondence: andrea.crespo@cajal.csic.es (A.C.-C.); arevalo@cajal.csic.es (M.-A.A.);

Tel.: +34-915-854-729 (A.C.-C. & M.-A.A.)

Received: 30 March 2020; Accepted: 30 April 2020; Published: 2 May 2020
����������
�������

Abstract: There are sexual differences in the onset, prevalence, and outcome of numerous neurological

diseases. Thus, in Alzheimer’s disease, multiple sclerosis, and major depression disorder, the incidence

in women is higher than in men. In contrast, men are more likely to present other pathologies, such as

amyotrophic lateral sclerosis, Parkinson’s disease, and autism spectrum. Although the neurological

contribution to these diseases has classically always been studied, the truth is that neurons are

not the only cells to be affected, and there are other cells, such as glial cells, that are also involved

and could be key to understanding the development of these pathologies. Sexual differences exist

not only in pathology but also in physiological processes, which shows how cells are differentially

regulated in males and females. One of the reasons these sexual differences may occur could be

due to the different action of sex hormones. Many studies have shown an increase in aromatase

levels in the brain, which could indicate the main role of estrogens in modulating proinflammatory

processes. This review will highlight data about sex differences in glial physiology and how estrogenic

compounds, such as estradiol and tibolone, could be used as treatment in neurological diseases due

to their anti-inflammatory effects and the ability to modulate glial cell functions.
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1. Introduction

One of the most sensitive and precise defense systems against trauma, bacteria, and viruses is the

immune system, which extends throughout the body. Until a few decades ago, it was thought that

the brain was a privileged organ that did not have an immune system [1]. However, this concept has

currently changed, and the presence of the blood–brain barrier (BBB), specialized immune cells, and

a system that connects the brain to the peripheral circulation, known as “glymphatic system” [2–4],

make us understand that the brain is able to respond against injuries in an efficient way. The response

of specialized cells to brain injury trying to fight damage and then restoring the brain parenchyma is

known as neuroinflammation. Neuroinflammation has been widely studied, and it is currently known

that neuroinflammation has different faces depending on the time of activation [5,6]. Hence, in an

acute stage, neuroinflammation has beneficial effects in recovering homeostasis in the central nervous

system (CNS), and it is able to face aggressions such as brain injury, trauma, hypoxia, or bacterial

and viral infections. Different cell types participate in the neuroinflammatory response, including

glial cells, endothelial cells, and neurons. In addition, BBB is usually damaged, and there is an

increase in permeabilization through which peripheral immune system cells can enter into brain
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parenchyma. The cells that usually penetrate the CNS are monocytes, macrophages, dendritic cells,

and T lymphocytes [7–9].

Many diseases of the nervous system, such as major depression, Alzheimer’s disease, autism

spectrum, Parkinson’s disease, and multiple sclerosis, present an exacerbated inflammation or an

incorrect response of the immune system in the CNS, so the severity of the pathology could be related

to inflammatory processes [10]. Thus, an incorrect control of neuroinflammation, such as when it is

prolonged over time, making it too aggressive and producing too many proinflammatory factors such

as interleukin 6 (IL-6), interleukin 1β (IL-1β), or tumor necrosis factor (TNFα), or when it appears

for no apparent reason, as in autoimmune diseases, could contribute to the etiology of neurological

disease [11].

Curiously, in many of these pathologies, sex differences can be found [12–15]. Sex differences

can be found not only in response to pathological conditions but also under physiological conditions.

In physiology, there are basic genetic differences. For instance, the SRY gene on the Y chromosome

is responsible for the development of the testes that produce testosterone, which reaches the brain,

where it is transformed into estradiol by the aromatase enzyme, with estradiol being responsible for

the masculinization of the brain [16–20]. In fact, it has been shown that estradiol levels are different in

male and female brains during a developmental period around birth, and there are well-established

sex differences in the amount of testosterone and estradiol in the hypothalamus and preoptic area

during the perinatal period. Testosterone declines in both sexes with increasing age, but its action on

the brain persists during life [21]. One interesting tool to study the genetic/sex hormone contribution

to pathologies is the use of the four core genotype (FCG) model [22]. Using this model, researchers

were able to discover recently why women are more likely to develop multiple sclerosis [23]. For this

reason, it is easy to think that not only do cells respond differently in males and females after an insult

but that sexual differences can also be found in cell performance under normal conditions due to their

different genotype.

Furthermore, although sexual behavior in males and females is mainly controlled by neuronal

circuits [24–27], some studies have shown how these sex differences could be sculpted by microglia

and astrocytes [28,29]. Hence, glial cells could play a key role in modulating sex differences in the

brain. In this review, we present a description about several sexual differences that can be found in

both physiological and pathological conditions on glial cells and a description about the impact of

estrogenic compounds like estradiol and tibolone on astrocyte and microglia functional activity.

2. Microglia

Microglia are considered to be the immune cells in the brain, and their origin is mesodermal [30–35].

They infiltrate to the CNS during gestation of embryo, and they develop from PU.1 + cells [36,37].

Although the number of microglial cells is small in the embryo state, they are able to proliferate by the

induction of colony-stimulating factor 1 (CSF1) and colonize the whole brain [30,38].

Microglial cells play a key role during neural development. One of the functions they have

in developmental stages is to perform synaptic pruning, which consists of eliminating defective,

immature, or redundant synaptic buttons. It has been shown that the alteration of this function of

microglia during development can contribute to the appearance of pathologies in adults, such as

autism, depression, or learning difficulties, due to the lack of elimination of inappropriate neuronal

connections between the cortex and the hippocampus [39,40].

Microglial morphology is an important characteristic to understand cell function [41]. Although

there are many variations, some studies have shown how size and shape correlate with different

microglial functions. In a resting tissue state, microglia are present as a “resting” phenotype with a

small soma and long ramifications, whose function is to scan the environment around them [42,43]. In

pathological conditions, microglia acquire an amoeboid morphology. Along the cell body, including

processes, chemokine (C-X3-C motif) receptor 1 (CX3CR1) is widely expressed in microglial cells.

This is a chemokine receptor that is only expressed in the brain by microglia, and it is activated by
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fractalkine (CX3CL1, chemokine (C-X3-C motif) ligand 1) expressed by neurons. Through this receptor,

microglia surveil the state of the neural connections, being able to not only act in case of damage but

also modulate and maintain dynamic and constant monitoring of all circuits [44,45].

As indicated above, there are sex differences in many neurological diseases. Microglia are altered

in all of them, but sexual differences can also be found in healthy state [46]. In Table 1, some of them are

indicated with their references. For example, microglial development in males is delayed compared to

females [47]. There are also differences in the number of cells in the early postnatal stages in which the

males have a higher number of cells, while it is the females that have a higher number of microglial

cells in the adult stages [48,49]. Differences in cell morphology and phagocytic capacity are also present

and dependent on the brain region. In embryonic stages, there are no morphological or phagocytic

differences between male and female microglial cells in amygdala or hippocampus. However, in

neonatal stages, males are more prone to present an amoeboid morphology and phagocytic cups

than female microglia in amygdala. On the other hand, in the hippocampus, males again present

an amoeboid morphology, but female microglia have more phagocytic cups and CD68+ cells than

male microglia. In adult stages, male and female microglia are similar [29,50]. In in vitro experiments,

many studies have shown that female microglia have a higher phagocytic capacity than males [51,52].

Furthermore, in general, transcriptomes show that males express more genes related to inflammation

and females express more genes associated to cell repair [49,53]. All these physiological sex differences

have been recently reviewed by Bordt et al., Yanguas-Casas, and Villa et al. [50,54,55].

Table 1. Sex differences in microglia and astrocytes in health and pathology with references.

Microglia Sex Differences References

Health

Development maturation [47]
Cell number and density [48–50,56,57]

Regional distribution [58]
Phagocytic capacity [29,49,51,52,59,60]

Transcriptome [49,53]
Maternal microbiome influence [61]

Air pollution exposure [62]

Pathology

Inflammatory sensitivity and
reactivity

[47]

Cellular repair [53]
LPS stimulation [61,63–65]

Stroke and brain injury [53,66–72]
ApoE expression [73–75]

Response to stress [66,76,77]
Neuropathic pain [78–81]

Astrocytes Sex Differences References

Health

Cell number and density [56,82–86]
Cell morphology [84,87,88]

Respiratory capacity [89]
Phagocytic capacity [90]

Pathology
Response/uptake of glutamate [91,92]

Response to fatty acids [93]
Stroke and brain injury [71,94–97]

Microglia could also play a relevant role in the difference in social behavior seen in men and

women in adult age. There is a sexual difference in the preoptic area (POA), where microglia density

and activation are higher in males than in females due to testosterone increase in the brain. This sex

hormone is important to masculinize and maintain male sexual behavior in adulthood by modifying

the neuronal circuits and the morphology of the microglia in a dimorphic way [28,98].
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3. Microgliosis

After brain injury, stroke, or bacteria and virus invasion, microglia change the phenotype to an

activated or reactive phenotype, characterized by shorter cytoplasmic processes and a bigger soma

size. It is important to understand that the microglial phenotype is not an all-or-nothing result but

that there is instead a wide spectrum where, depending on the triggering brain area or cytokine

release, different shapes and sizes can be found [99–101]. In addition to activated or resting microglia,

there is a phenotype called “phagocytic phenotype”, where microglia present a thick cell body and

long ramification with phagocytic cups. This phenotype can be found in both healthy and disease

conditions [102,103]. Microglia activation is a complex and very well-regulated process (for review,

see [42,104]).

When damage occurs in the cerebral parenchyma, microglia will move fast to that point [105],

although in some cases the detection of a significant increase of proinflammatory cytokines occurs at

24 h after injury. Using immunochemistry techniques, it has been shown that there is an activation

peak between two and seven days after injury [106–110]. It has been determined that adenosine

triphosphate (ATP) is capable of attracting microglia [105] and that blocking purinergic receptor with

P2X inhibitors makes it possible to inhibit microglial migration. P2X4, P2Y1, and P2Y12 are essential in

microglia chemotaxis [111,112], and it has recently been shown that P2Y12 plays a key role by not only

being activated after damage but also controlling neuronal mitochondria state to regulate synapsis

and neuronal death through a new structure named purinergic junctions [113]. On the other hand,

although microglia are able to detect this ATP directly, some studies have shown that, after brain

damage, astrocytes are the first cells to detect it, and astrocytes will in turn release more ATP than

what will be detected by microglia [105].

Another stimulus that will cause microglia activation and migration is monocyte chemoattractant

protein 1 (MCP-1) or chemokine C-C motif ligand 2 (CCL2) produced by neurons. In turn, the microglia

will release more MCP-1, which attracts more cells to the damaged area [114]. In addition, other

factors contribute to the regulation of migratory stimuli, such as macrophage inflammatory protein

1-alpha (MIP-1α), also known as chemokine C-C motif ligand 3 (CCL3), and RANTES (regulated on

activation, normal T cell expressed and secreted), also known as chemokine C-C motif ligand 5 (CCL5).

By binding to their receptors, these ligands will facilitate the release of cytokines, such as IL-1β, IL-6,

and TNFα [42,104,110,115,116], amplifying the proinflammatory signal.

Microglia also have specific receptors that control phagocytosis (Figure 1). Purinergic receptor

P2Y6 (platelet purinergic receptor 6) will regulate it and will be activated when neuronal damage is

produced [117,118]. Fractalkine (CX3CL1), mentioned before, not only activates migration [119–121] but

is also a prophagocytic stimulus. Damaged neurons will express fractalkine and thus attract microglia

to the injured site, which will phagocyte the neuronal debris or the altered neuronal connections,

allowing the neuronal circuitry to function properly. Fractalkine can also be expressed by astrocytes

in vitro and after damage situations like in experimental autoimmune encephalomyelitis (EAE) and in

a neuropathic pain model, even if they do not express their CX3CR1 receptor [122–127]. Microglia also

have the triggering receptor expressed on myeloid cells 2 (TREM2) in the cell membrane. This receptor

is closely related to phagocytosis in microglia, and it has been observed that the phagocytic capacity

of microglia is inhibited in knockout (KO) mice of TREM2 [128–130] (for review, see [131]). Binding

ligands of TREM2 are anionic carbohydrates, lipopolysaccharide (LPS) and apolipoprotein E (ApoE).

This receptor is also relevant in Alzheimer’s disease, so much that it has been considered as an early

marker of the disease [132].
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Figure 1. Graphical representation of different phagocytic receptors and ligands in microglia and

astrocytes. Although microglia are considered the professional phagocytic cell of the brain, astrocytes

are also able to modulate neuronal synapsis. In the case of microglia, there are stimuli for both “eat me”

and “don’t eat me” signals. Apart from neurons, they are also able to modulate tumor cells (microglia),

apoptotic cells (both), and Aβ intake (microglia and in vitro astrocytes). Based on [122,133–135].

After brain injury or trauma, sex differences can also be found in reactive microglia (for review,

see [136]). Male microglia produce more arginase-1 and more neuroglobin than female microglia

after a penetrating brain injury. This will lead to a difference in neuronal death between sexes being

reduced in males [71]. However, after a stroke, males express more CD16/32, while females express

more anti-inflammatory protein Ym1, having a better outcome of the disease [53]. In in vivo stress

models, microglia activation is different depending on the sex [66,76,77]. Therefore, in some in vitro

models, male and female microglia have different migratory, phagocytic, and motility capacity in both

basal conditions and after interferon (IFN) and LPS treatment [51,64]. In males, microglia mediates

neuropathic pain, while microglia are not implicated in females [78–81].

4. Astrocytes

Astrocytes are the most abundant glial cells in the brain [137]. Unlike microglia, whose embryonic

origin is mesodermal, astrocytes are ectodermal, like neurons. Astrocytes mostly derive from the radial

glia, which is necessary for neuronal migration in embryonic stages. In adult stages, they help in the

migration of olfactory bulb neurons [138,139].

In addition, numerous results have shown that astrocytes participate in glutamatergic synaptic

function, forming what has been called the “tripartite synapse” [140]. Here, neurons and astrocytes work

together to carry out the glutamate–glutamine cycle to precisely control the amount of neurotransmitter

that is emitted to the postsynaptic neuron. There has been much debate in this regard as there are

studies that suggest that this synapse formation only appears in the developing brain and not in

adulthood [141] (for review, see [142]).
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Like microglia, astrocytes have a very important role in eliminating synaptic connections by

phagocytosis, both in physiological processes and in pathological conditions (Figure 1). The most

studied routes by which astrocytes carry out phagocytosis are MERTK (Mer receptor tyrosine kinase)

and MEGF10 (multiple epidermal growth factor (EGF)-like-domains 10). Both routes begin with classic

signs of cell death recognition, such as phosphatidylserine in the membrane, although they are also able

to phagocyte active connections, thus modulating neuronal circuitry [143,144] (for review, see [134]).

Astrocytes also have the capacity to engulf apoptotic cells by brain-specific angiogenesis inhibitor 1

(BAI1) receptor [145] (for review see [135,146]).

Furthermore, astrocytes are also important for the maintenance of the BBB, controlling blood flow,

and modulating nutrient uptake, such as oxygen and glucose, from the bloodstream according to the

needs of the brain at any time [7,9,147,148].

Astrocytes present some sex differences in physiological conditions, and most of them depend

on the brain region. In Table 1, these differences are summarized with references. For example,

in the hypothalamus, males express a greater number of cells compared with females [84,85,87].

Besides, the cell morphology is different as male astrocytes present more stellated morphology while

female astrocytes are more bipolar in in vitro models [87]. These morphological differences could be

regulated by Notch signaling, at least after an inflammatory challenge [88]. In the hippocampus, the

astrocyte morphology is similar to that of the hypothalamus, but females express more glial fibrillary

acidic protein (GFAP) in this region than males, which could indicate a higher cell number [82].

Some studies have shown that testosterone can regulate cell number differences observed in the

hypothalamus. Removing testosterone in males or adding it to females reduces and increases GFAP

levels, respectively [83]. It has also been shown that male astrocytes have a greater respiratory

capacity than female ones at low physiological level of oxygen, which could implicate a different

modulation of mitochondria respiratory chain. It could generate some sexual differences observed in

some neurodegenerative diseases [89]. Differences in the estrogenic concentration between males and

females could lead to these observed differences. It has already been reviewed [149] how estradiol

can sculpt functional and behavioral sex differences by modulating astrocytes directly or through

microglial cells and their crosstalk with neurons [29,150].

As with microglia, it is wrong to consider astrocytes found in a physiological environment as

inactive cells as both astrocytes and microglia are essential cells for the proper functioning of CNS

in physiological conditions. Even so, when a pathophysiological event occurs, the function and

morphology of astrocytes will change, producing an astrocytic activation or astrogliosis [151,152].

5. Astrogliosis

Astrocytes will lead to different types of astrogliosis, which may be more moderate or more severe

depending on the level of damage. The main difference between them is that there is overexpression

of proinflammatory and GFAP genes in moderate astrogliosis, but there is no proliferation and

overlapping between astrocytes. Instead, in severe astrogliosis, where proinflammatory genes are

activated and GFAP increases its expression, there is an activation of cell proliferation and cells overlap

over other astrocytes, thus eliminating their contact inhibition [151].

In astrogliosis, astrocytes do not act alone but rather always work together with microglia and

NG2 cells (neural/glial antigen 2), whose relationship in both health and disease has been recently

and extensively reviewed by Vainchtein and Molofsky [153]. In addition, microglia can activate

astrocytes, leading them to a proinflammatory state (A1) [154]. Astrocytic activation can occur due to

neurodegenerative diseases, viral or bacterial infections, trauma, and brain injuries. In this last case, a

glial scar will be formed [151,155].

One of the first consequences of damage in the cerebral parenchyma is the rupture of the neuronal

connections, which will produce demyelination and axonal degeneration [156–158]. Later, in a second

phase, there will be a first wave of neuronal death that will coincide in time with the vascular cascade

(increased flow and opening of BBB) and the release of molecules, which will activate glia (astrocytes,
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microglia and oligodendrocytes), pericytes, and fibroblasts. In this second phase after an injury, the glial

cells will release cytokines and chemokines, which will attract cells from outside the CNS, especially

from the peripheral immune system. These cellular responses after injury are necessary to face damage,

but if they are not carried out in a controlled manner and the reaction lasts too long, the glial cells

themselves can contribute to increased neuronal damage, which makes the damage worse [158,159].

As indicated above, when an injury occurs, microglial cells, astrocytes, and also the NG2 glia will

proliferate and migrate to the damaged area. Astrocytes are able to proliferate, but they need numerous

stimuli, such as EGF, fibroblast growth factor (FGF), endothelin-1, and ATP [155,160]. Classically, it has

been considered that this proliferation in the injured area will lead to what is known as a glial scar.

However, despite the name, several studies have shown that the percentage of glial cells, especially in

the core of this scar, is really low in comparison to the amount of cells from the extracellular matrix

(such as pericytes, fibroblasts, and ependymal cells), which increases the concentration of fibronectin,

laminin, and collagen [161].

On the other hand, many astrocytes are observed in the periphery of the lesion (penumbra area).

It has long been considered that the glial scar will inhibit neuronal regeneration, but more and more

studies suggest that this scar helps regeneration. The scar increases the availability of TGF-β, which not

only increases the release of neurocam and inhibits neuronal growth but also produces the deactivation

of the microglia, turning it to a more restorative phenotype that will eventually cause an increase in

neuronal regeneration [162–165]. In addition, it has been shown that, in STAT3 KO animals, which do

not have the capacity to form the glial scar, neuronal loss increases and hinders brain recovery [166].

The increased number of glial cells surrounding the fibrotic scar produces many neurotrophic factors,

and they also eliminate cellular debris and repair the BBB [146,158,167–169].

After physiopathological events, astrocytes also present some sex differences (Table 1). After

ischemic injury, there is a sex dimorphism in the astrocytic reactivity and number. Besides, females

present an increased amount of Ca2+ release [94–96]. Upon brain injury, female astrocytes have lower

levels of MCP-1 (CCL2), so there is a reduction in the peripheral recruitment [71]. Besides, astrocytes

present a sex-specific response after LPS treatment, with male astrocytes having higher proinflammatory

gene expression, such as IL-6, TNFα, and IL-1β, than female astrocytes [97]. In addition, male and

female astrocytes have a dimorphic response to fatty acids intake, with males presenting a higher

proinflammatory profile compared to females [93]. Regarding astrocytic phagocytosis, there have not

been too many studies about how sex could modulate it. Nevertheless, we recently described that

there was no basal sexual differences in an in vitro model of astrocytic phagocytosis, although they

had different responses after a proinflammatory stimulus [90].

6. Estradiol and Estrogen Receptor Signaling

As described in the introduction and the following paragraphs, sex hormones could explain the

maintenance of sex-specific features seen in microglia and astrocytes. However, it is important to

know that, although the “hormone theory” is the most established theory, there are also other factors

that could produce these sexual differences. Genetic influence is considered as an extrinsic factor in

sex differentiation because some differences appear before hormone production [170]. Besides, some

studies have shown that environmental factors could play an important role in influencing microglia in

a sex-dependent manner, and this could be important in the onset of many brain diseases. For example,

maternal microbiome is able to change microglia transcriptome in fetal stages [61], and air pollution

exposure in prenatal age is able to affect microglia, especially in males, providing a possible clue about

why males are more prone to bearing autism spectrum disorder in comparison to females [62].

However, setting this aside, many laboratories have demonstrated that it is undeniable that

sex hormones drive most of the sex differences observed in the brain. Therefore, it is important to

continue studying the relationship between sex steroid hormone production and its influence on glial

cells. There are three types of estrogens: estriol and estrone from androstenedione and estradiol from

testosterone [171]. All of them present a neuroprotective effect [172–174]. Among all estrogens, it is
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necessary to highlight estradiol because it is one of the hormones whose effects have been studied

most in the brain in both development and aging, and its concentration in the brain is higher than

estrone and estriol [20,174–176].

The main function of estradiol is not to produce sex differences per se. Surely, these differences are

a consequence produced by many factors. Sex differences sometimes converge in the same endpoint

in males and females, although they are carried out through different mechanisms. However, the

endpoint is sometimes is different in males and females, creating the observed differences, for example,

in stress response, food intake, odor detection, etc. [177]. Estradiol is produced along the lifespan in

most tissues in the mammal body and, along with other sex hormones like progesterone, it is in charge

of maintaining the estrous cycle in females and sexual behavior [24,178].

Estradiol is a sex hormone produced mostly in ovaries, although it is also synthesized in less

concentration in the bone, adipose tissue, and the CNS of both males and females. Therefore, the

brain is also considered a steroidogenic organ as it has all the enzymes necessary to produce estrogens

and other steroids locally [179]. To do this, cholesterol is transported to the mitochondria, where it is

converted to pregnenolone, which is translocated into the endoplasmic reticulum. Here, after several

enzymatic conversions, estradiol is produced from testosterone by aromatase enzyme [180].

The role of aromatase in cognitive function is increasingly important because of studies linking

the decreased levels of estradiol in women treated with enzyme inhibitors or after menopause with

increased risk of some neurodegenerative diseases like Alzheimer’s disease [181]. In the specific case of

brain trauma or injury, it has been reported that there is an increase in the expression of the aromatase

enzyme in the damaged areas of the CNS and consequently an increase in estradiol levels, which

contributes to fighting brain damage and activating processes that help to repair brain parenchyma.

Regarding the cell type, only neurons express aromatase in physiological conditions; however, enzyme

expression is induced in astrocytes, but not in microglial cells, by different forms of brain injury [182].

Estradiol exerts its effects by activating different estrogen receptors (ERs) (Figure 2). Both microglia

and astrocytes express the necessary receptors to their activation by estradiol. Classically, two types of

receptors have been identified: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). These

receptors are transcription factors that are activated when the ligand (estradiol) binds to them. Once

activated, they recruit activating cofactors or transcription repressors and bind to estrogen response

elements in the DNA promoter region of certain genes [183]. ERα and ERβ receptors may also be

transiently associated with the plasma membrane where, once estradiol binds to them, they regulate

several signaling pathways, such as those of PI3K/Akt, ERK, or Jak/STAT. In addition, there are estrogen

receptors that are specifically associated with the plasma membrane or endoplasmic reticulum, best

known as GPR30/GPER1, which is a receptor associated to Gαq proteins and activates the ERK and

PI3K pathways [184–188]. Depending on the tissue where these receptors are, there will be a different

response after their activation. In the brain, estrogen receptors are located in neurons and glia cells, and

they exert neuroprotective effects. In studies performed in rats, there were no sexual differences in the

global expression of estrogen receptors in the brain [189], although in a study on the brain of lambs, ERα

had higher expression in males [190]. On the other hand, estradiol concentration in the hippocampus

and cortex presented sexual differences in development and in early postnatal stages in rats [21]. In

cells, there have not been many studies measuring the number of ERs in a sexually dependent manner,

although there are some sexual differences in ER activation, which we will describe below.
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Figure 2. Schematic representation of the effects of estrogen receptors (ERs) after estradiol binding. ERα

and ERβ need to dimerize to bind to DNA estrogen response elements after activation with estradiol.

These dimers could be homodimers or heterodimers, but the proportion of homodimers is higher. The

effects of ERs depend on the tissue they are in, the proportion of each type of receptor, and the crosstalk

between them. In general, ERβ antagonize ERα, with different effects on tissue. Furthermore, there

are some post-translational modifications (PTMs), both before receptors attach to DNA and after that.

Palmitoylation in Cys447 in ERα and Cys399 in ERβ allows them to interact with caveolin-1 (cav-1)

and be translocated to the membrane as monomers. G protein-coupled estrogen receptor (GPER) is a

receptor associated to Gαq proteins, triggering numerous nongenomic effects. Based on [191,192].

6.1. Estradiol Effects on Astrocytes

Estradiol acts directly on astrocytes through the ERα, ERβ, and GPR30/GPER1 receptors

(Figure 3) [193–195].

ERα and ERβ need to dimerize to bind to DNA estrogen response elements after activation with 

and the crosstalk between them. In general, ERβ antagonize ERα, with different effects on tissue. 

after that. Palmitoylation in Cys447 in ERα and Cys399 in ERβ allows them to interact with 
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Figure 3. Estradiol has specific actions on microglia and astrocytes. After a proinflammatory stimulus,

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is translocated to the nucleus

to activate genes of different proinflammatory pathways. This spreads the damage in the brain by

increasing proinflammatory mediators. In microglia, estradiol inhibits the release of metalloproteinase

9 (MMP9). In addition, by activating PI3K, NF-κB translocation to the nucleus is inhibited. In astrocytes,

estradiol increases the production of growth factors and glutamate transporters (GLT1 and GLAST)

and blocks NF-kB translocation. Based on [196–199].
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Depending on the experimental model and the type of pathology, estradiol exerts anti-inflammatory

actions in astrocytes through different estrogen receptors. For instance, in an experimental

multiple sclerosis model, estradiol exerted neuroprotective and anti-inflammatory effects through

the ERα receptor. On the other hand, in in vitro models, it acts mainly through ERβ [200].

The anti-inflammatory action of estradiol on astrocytes is mainly mediated by the regulation of

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Nevertheless, estradiol not

only blocks p65 nuclear translocation but is also able to repress the NF-κB-dependent transcription of

cytokines like CCL2 by activating ERα in astrocytes [201]. In a H2O2-induced toxicity model, estradiol

reduced the secretion of inflammatory mediators in astrocytes [202]. Similarly, estradiol also exerts

anti-inflammatory actions by increasing the release of growth factors, such as IGF-1, and decreasing

the release of Ca2+ [203]. Estradiol also increases the expression of GLT1 glutamate transporters in

astrocytes through GPR30/GPER1 receptors, increasing glutamate recapture of the synaptic cleft and

thus inhibiting excitotoxicity [204]. In some studies, estradiol treatment was also able to generate

sexual differences in astrocytes. In an astrocytic in vitro model, estradiol induced higher increase of

intracellular [Ca2+] in males than in females and was able to increase progesterone synthesis in male,

but not female, astrocytes. Furthermore, estradiol treatment increased the expression of ERα in both

sexes but only enhanced the insertion of the receptor into the membrane in females [150]. In astrocyte

cultures stimulated with palmitic acid, estradiol had a protective action, increasing the expression of

IL-10 in male and female astrocytes. However, estradiol only reduced pJNK, caspase-3, and TNFα

levels and apoptotic cell death in male astrocytes [205].

6.2. Effects of Estradiol on Microglia

It is also known that estradiol is able to regulate immune response in the brain and has

anti-inflammatory properties [206]). Estradiol will bind to ERα receptor, ERβ receptor, and

GPER1/GPR30 on microglia (Figure 3) [207,208].

As in astrocytes, estradiol binds to the ERα of microglia and inhibits the transcription factor NF-κB

through the activation of PI3K [209,210]. This inhibition will lead to a decrease in the production of

nitric oxide synthases (iNOS), which will subsequently reduce the production of nitric oxide (NO) and

reactive oxygen species (ROS). Both NO and ROS are responsible for expanding the inflammatory

response when damage occurs, so its inhibition has an anti-inflammatory effect [211]. Estradiol will

also bind to ERβ and GPER1/GPR30 microglial receptors, thus modulating the release of inflammatory

mediators and reducing microglial activation [212,213].

In addition to the anti-inflammatory aspect of estradiol on microglia, it has also been described that

the hormone is capable of modulating the phagocytic capacity of microglia during development [214]

and in animal models of Alzheimer’s disease [215].

Although the inflammatory process is beneficial for tissue repair, it is sometimes necessary

to modulate it. For this reason, there is a large field of study on compounds that are capable of

controlling this inflammation and are beneficial to CNS. Estradiol is one of the hormones whose effects

have been most studied in the brain in both development and aging [20,176,216]. Thus, it has been

widely observed that estradiol exerts protective actions in animal models of Alzheimer’s disease and

Parkinson’s disease and increases the number of living neurons after an ischemic episode [217–219].

Estradiol treatment also produces some sexual differences in microglia. In hippocampal neonatal

microglia, LPS treatment induced a greater in increase in IL-1β mRNA in males than in females.

However, after estradiol treatment, anti-inflammatory effects were produced in male microglia, while a

proinflammatory effect was produced in females. Nevertheless, in adult hippocampal microglia, estradiol

produced an opposite effect, protecting female microglia but not male microglia [64]. Besides, estradiol

treatment was able to affect microglia phagocytosis, reducing it in females to reach the male level [52].

7. Therapeutic Potential of Estrogenic Compounds

As mentioned above, estradiol has a neuroprotective effect in many neurological diseases, but

the use of this compound in a clinical setting is limited due to its side effects [215,220]. It is also
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important to consider the age of the animals because some studies have shown that estradiol

treatment could have a detrimental effect in elderly animals with a reduced estradiol serum

concentration [221–223]. Estradiol increases the risk of having breast cancer, ovarian cancer, and

endometriosis [224]. Hence, it would be necessary to have compounds with estrogenic beneficial effects

but without the side effects. Some of these compounds are selective estrogen receptor modulators

(SERMs). Instead of being full agonists or antagonists of estrogen receptors, SERMs are competitive

partial agonist/antagonist [225]. Many studies have shown that SERMs have neuroprotective effects

and regulate gliosis and neuroinflammation [226–231]. Two of the most known compounds are

raloxifen and tamoxifen, which are typically used for breast cancer treatment and postmenopausal

osteoporosis [232,233]. Some studies have shown that these compounds also have beneficial effects in

the brain after peripheral administration as they can cross BBB [234–237].

In the 1980s, another compound called tibolone started to be used in clinical settings for

postmenopausal women. Tibolone is a synthetic steroid used to reduce climacteric symptoms, cognitive

deficits, and osteoporosis in women [238–240]. After treatment, it takes 30 min to have detectable levels of

compound in serum, reaching a peak in 60–90 min. It has a half-life of approximately 7 h [241]. Tibolone

is metabolized in the liver, producing three different metabolites. The first two metabolites are 3α- and

3β-hydroxytribolone, which are produced by the actions of enzymes 3α-hydroxysteroid dehydrogenase

(3α-HSD) and 3β-hydroxysteroid dehydrogenase (3β-HSD), respectively. They activate ERα and ERβ

and are able to easily cross BBB, thus increasing their concentration in the brain [242]. The third

metabolite is ∆4-isomer, which is formed by the enzyme 3β-hydroxysteroid dehydrogenase-isomerase.

Together with tibolone, this metabolite activates progesterone receptor (PR) and androgen receptor

(AR) [240,242,243]. Furthermore, the tibolone is capable of controlling estradiol levels in the tissue

by inactivating sulfatase enzymes. This regulation will lead to a reduction of undesirable estrogenic

effects, reducing the level of estradiol in the breasts and the endometrium but increasing them in the

bones and the brain. Hence, tibolone is classified as a selective tissue estrogenic activity regulator

(STEAR) [238–240].

Although tibolone is widely used in clinical settings, there have not been too many studies about

how this steroid could modulate gliosis and neuroinflammation. In an in vivo model of brain injury,

we demonstrated that tibolone reduced the number of astrocytes and microglia seven days post-injury,

leading to a reduction of neuronal death 14 days post-injury [244]. Studies on glial cells in vitro have

revealed that tibolone reduces oxidative damage [245] and exerts anti-inflammatory actions due to the

reduction in the activation of NF-κB [246,247] in both microglia and astrocytes. This will produce an

improvement in the cellular survival, which could have a neuroprotective effect in neurons. Recently,

we also showed that tibolone was able to increase and modulate astrocytic phagocytosis in both

physiological conditions and after LPS administration [90].

8. Conclusions and Perspectives

In recent years, new neuroglia mechanisms have been elucidated, and it is clear that neurological

diseases are a compendium of numerous factors and cells, including microglia and astrocytes. The

neuroprotective action of estrogenic compounds is well described, although their effect on glial cells is

already being clarified. In addition, it is important to highlight the therapeutic potential of SERMs and

tibolone, which could be used in clinical settings to treat pathologies involving neuroinflammation.

In addition to using estradiol as a treatment, it would be interesting to study how endogenous sex

hormones are able to modulate neuroglia function. The estrogenic differences in the concentration,

receptor distribution, and changes in serum level through the lifespan could be relevant in sex

differences observed in many neurodegenerative diseases. Nevertheless, further research is needed

to elucidate the specific mechanisms of estrogens and the contribution of microglia and astrocytes to

overall progression in neuroinflammatory processes.
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Abbreviations

BBB blood–brain barrier

CNS central nervous system

EAE experimental autoimmune encephalomyelitis

IL-1β interleukin 1β

IL-6 interleukin 6

TNFα tumor necrosis factor

CX3CL1 chemokine (C-X3- C motif) ligand 1or fractalkine

CX3CR1 chemokine (C-X3-C motif) receptor 1

MCP-1 monocyte chemoattractant protein 1

CCL2 chemokine (C-C motif) ligand 2

MIP-1α macrophage inflammatory protein 1-alpha

CCL3 chemokine (C-C motif) ligand 3

RANTES regulated on activation, normal T cell expressed and secreted

CCL5 chemokine (C-C motif) ligand 5

TREM2 triggering receptor expressed on myeloid cells 2

LPS lipopolysaccharide

ApoE apolipoprotein E

MERTK Mer receptor tyrosine kinase

MEGF10 multiple EGF-like-domains 10

BAI1 brain-specific angiogenesis inhibitor 1

GFAP glial fibrillary acidic protein

EGF epidermal growth factor

FGF fibroblast growth factor

TGF-β transforming growth factor β

ER estrogen receptors

PR progesterone receptor

AR androgen receptor

PTMs post-translational modifications

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

MMP9 metalloproteinase 9

PGE2 prostaglandin E2

iNOS nitric oxide synthases

SERMs selective estrogen receptor modulators

STEAR selective tissue estrogenic activity regulator
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