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Abstract 

Microglia play critical roles in neural development, homeostasis and 

neuroinflammation and are increasingly implicated in age-related neurological 

dysfunction.  Neurodegeneration often occurs in disease-specific spatially-restricted 

patterns, the origins of which are unknown. We performed the first genome-wide 

analysis of microglia from discrete brain regions across the adult lifespan of the 

mouse and reveal that microglia have distinct region-dependent transcriptional 

identities and age in a regionally variable manner. In the young adult brain, 

differences in bioenergetic and immunoregulatory pathways were the major sources 

of heterogeneity and suggested that cerebellar and hippocampal microglia exist in a 

more immune vigilant state. Immune function correlated with regional transcriptional 

patterns. Augmentation of the distinct cerebellar immunophenotype and a 

contrasting loss in distinction of the hippocampal phenotype among forebrain regions 

were key features during ageing. Microglial diversity may enable regionally localised 

homeostatic functions but could also underlie region-specific sensitivities to 

microglial dysregulation and involvement in age-related neurodegeneration.  
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Introduction 

Microglia are a specialised population of tissue macrophages resident in the central 

nervous system (CNS) parenchyma and adapted to the unique properties of the 

CNS environment1. Recent studies have revealed an expanding array of functions 

for microglia during brain development and adult homeostasis and in 

neurodegeneration, infection and brain injury2. These studies have shown that the 

cellular activities of microglia extend beyond their well-established role as immune 

sentinels and effectors to include synaptic organisation3, 4, control of neuronal 

excitability5, phagocytic debris removal6 and trophic support for brain protection and 

repair7, 8.  

The multifunctional roles of microglia may be considered part of a spectrum of 

environmental monitoring that is designed to sense perturbations and elicit 

appropriate microglial responses to maintain homeostasis. The local environment will 

therefore be a key influence shaping microglial phenotype. Notably, exposure to 

neuronal cell surface and soluble factors has been shown to maintain microglia in a 

comparatively quiescent immunophenotype (versus systemic macrophage 

populations)9, 10. Recent studies have extended these findings to describe key 

features of the genome-wide transcriptional profile of microglia that distinguishes 

their phenotype from non-CNS macrophages11, 12.  

The microenvironment is not uniform throughout the various brain regions. 

Variations in neuronal subtypes, neurotransmitter profiles, haemodynamics and 

metabolism could all be an influence on and be influenced by local microglial 

phenotype. Moreover, the permeability of the blood-brain barrier and resultant 

exposure to systemic signals that can also modify microglial phenotype are 
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regionally heterogeneous. It remains unclear if microglial phenotype is similarly 

diverse throughout the brain. Regional variations in microglial density13, surface 

expression of a small panel of immune molecules14, and dependency on 

maintenance by IL-3415, 16 suggest there could be differences.  

Ageing is associated with alterations in the neuroinflammatory environment and 

recent studies have uncovered risk alleles in age-related neurodegenerative disease 

that implicate microglial dysfunction and neuroinflammatory processes as 

contributory factors17. The pathological targeting and progression of most 

neurodegenerative conditions occurs in region-specific patterns and regulatory 

mechanisms of gene expression in the human brain were recently shown to have 

regional differences18. This suggests that it is important to determine if ageing 

modifies any region-specific influences on microglial phenotype. 

Here we have used genome-wide transcriptional profiling of adult microglia from 

discrete brain regions at three different ages in combination with network analyses to 

determine the nature of microglial diversity in the adult mouse brain and the impact 

of ageing. To our knowledge, these data provide the first account of the microglial 

regional transcriptome throughout the adult lifespan. Our data reveal microglia as 

richly diverse cells under steady-state conditions, show that microglial ageing occurs 

non-uniformly in a region-dependent manner, and define the transcriptional basis 

and major functional features responsible for this region- and age-related diversity. 

Our datasets provide an extensive and publically-accessible comparative resource 

for future studies exploring microglial function, dysfunction and contribution to age-

related neurodegeneration.  
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Results 

Isolation of adult microglia from discrete brain regions 

We refined established techniques to purify adult mouse microglia by density 

gradient and immuno-magnetic separation (Fig 1 and Supplementary Fig 1a). We 

first validated the consistency of microglial extraction from all regions of interest 

(cerebellum, cerebral cortex, hippocampus, striatum). The CD11b antigen is 

ubiquitously expressed on microglia throughout all brain regions as shown by 

colocalisation with GFP+ microglia in the Csf1r-EGFP “MacGreen” reporter mouse 

(Supplementary Fig 1b). The post-purified selected fraction consisted of a single 

population of CD11b+ and F4/80+ cells and there was no detectable CD11b or F4/80 

staining in the post-purified non-selected fraction confirming CD11b as an efficient 

target for purification (Supplementary Fig 1c).  Microglia obtained from all regions 

showed a uniform CD11b+F4/80+CD45lo profile (Fig 1a) characteristic of resident 

brain microglia and distinguishing them from CD45hi systemic macrophage 

populations. This indicated that we were extracting an equivalent microglial 

population from all brain regions. Expression of Itgam (encodes CD11b) and other 

established microglial/macrophage genes including Csf1r and Cx3cr1 was similarly 

enriched in purified microglia from each region in comparison to the respective mixed 

brain cell homogenates (Fig 1b). Additional genes recently reported as microglial 

“signature” genes (e.g. Tmem119, P2ry13)11, 12, 19 were also highly enriched in 

purified samples (Fig 1c) whereas markers of neurons, astrocytes and 

oligodendrocytes were expressed at negligible levels in purified microglia (Fig 1d). 

Genes highly expressed in blood leukocyte subsets including Cd3e (T lymphocytes), 

Cd19 (B lymphocytes) and Ly6g (granulocytes) were undetectable in purified 

microglia (Fig 1e) and there was no expression of systemic macrophage-specific 
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genes identified from a recent study (e.g. Fabp4, Serpinb2)11 in microglial samples 

(Fig 1f). Immunostaining of isolated cells in culture showed that all cells stained 

positively for the microglial/macrophage antigens IBA1 and F4/80 (Fig 1g). Together 

these data verify the purity and consistency of microglial extraction across brain 

regions.  

 

The microglial transcriptome is regionally heterogeneous  

We initially determined whether the microglial transcriptome in the healthy young 

adult brain (4 months of age) is regionally heterogeneous. Principal components 

analysis (PCA) showed clustering of samples in a region-dependent manner and 

indicated a close relationship between microglial expression profiles of the cerebral 

cortex and striatum and relatively more distinct profiles in the cerebellum and 

hippocampus (Fig 2a). These relationships were validated non-subjectively using the 

network visualisation and analysis tool BioLayout Express3D 

(http://www.biolayout.org/). Sample-to-sample correlation analysis showed clustering 

according to brain region with similar inter-regional relationships as PCA (Fig 2b). 

Thus, the global gene expression profile of adult microglia in the healthy brain is 

regionally heterogeneous. 

Expression of 3,131 probesets (~7% of total) representing 2527 genes was 

differentially regulated by brain region (FDR q < 0.05) (Supplementary Table 1). 

Hierarchical clustering of samples based on differentially expressed probesets 

demonstrated the marked contrast in expression profile between cortical/striatal and 

cerebellar microglia and the intermediate profile in hippocampal microglia (Fig 2c). 

Genes involved in multiple aspects of immune function were among the most 
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differentially expressed by region (Supplementary Table 1) including those with 

established function and others previously unexplored in microglia. Analysis of Gene 

Ontology (GO) biological processes using DAVID revealed “immune response” and 

“immune effector response” as significantly over-represented (Supplementary 

Table 2). There was also a striking over-representation of multiple processes 

associated with energy metabolism (Supplementary Table 2). We used the 

Enrichment Map (http://baderlab.org/Software/EnrichmentMap/) network 

visualisation tool to remove redundancy in GO enrichment annotation. The key 

feature of the network was the presence of two major clusters each comprising 

functionally-related and highly-connected enriched gene sets with roles in immune 

function and energy metabolism (Fig 2d). Full annotation of nodes within these 

clusters is presented in Supplementary Table 3. These data indicated 

immunoregulatory and bioenergetic/metabolic processes as the major contributors to 

regional diversity in microglial phenotype of the young adult brain.  

 

Three major patterns of region-dependent microglial gene co-expression 

We next sought to define the region-specific microglial phenotypes by assessing 

patterns of gene co-expression using BioLayout Express3D 

(http://www.biolayout.org/)20. The utility of BioLayout Express3D for the identification 

of spatiotemporal patterns of gene expression and the discovery of transcriptional 

networks underpinning common functional pathways has been described 

previously20. A network graph constructed from the set of 3,131 regionally 

differentially expressed probesets was clustered using a Markov clustering algorithm 

to non-subjectively sub-divide the graph into discrete sets of co-expressed genes. 

Overall graph structure consisted of 14 clusters ranging in size from 10 to >1,000 
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nodes (Fig 3a and Supplementary Fig 2a). Three major clusters distributed across 

two distinct regions of the graph were evident (Fig 3a and Supplementary Table 4). 

The mean expression profiles of these three clusters showed that cluster 1 contained 

genes whose expression was relatively greater in cerebral cortex and lower in 

cerebellum (Fig 3b). In contrast, clusters 2 and 3, which were located together and 

distant from cluster 1, both contained genes with relatively greater expression in the 

cerebellum (with greater hippocampal expression in cluster 2). The expression 

profile for individual genes within each cluster generally followed the cluster mean 

(Fig 3c). Increasing the Pearson correlation threshold did not materially affect the 

overall graph or clustering structure (Supplementary Fig 2) 

 

Microglial immunophenotyppic and bioenergetic heterogeneity 

Genes which share highly correlated expression profiles across a range of 

experimental conditions (i.e. are co-expressed) are often distinct components of a 

common pathway or biological process21. A large number of cluster 3 genes (high 

expression in cerebellum) were immune-related. GO analysis revealed “immune 

response” and “defence response” as the most overrepresented biological processes 

(Supplementary Table 5) and clustering using Enrichment Map underlined the array 

of enriched immune-related processes (Fig 4a). To gain further insight to the 

molecular functions encoded in cluster 3, we manually annotated genes according to 

the following major categories: pathogen/self-recognition, cell adhesion and 

chemotaxis, signalling integration, antigen presentation, and microbial 

killing/sequestration (Fig 4b). Genes from multiple molecular classes involved in 

pathogen (or self) recognition were present in cluster 3. Bacterial recognition genes 
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included the C type lectins (Clec4e (Mincle), Clec7a (Dectin 1), Cd209a (DC-SIGN)) 

and Fcnb (Ficolin B) and the formyl peptide receptors Fpr1 and Fpr2. Viral 

recognition was also evident in the high expression of the Zbp1 gene, which encodes 

cytoplasmic sensors of viral DNA22. Consistent with antiviral activity, there were a 

large number of interferon pathway genes (e.g. Stat1, Stat4, Ifit2, Ifitm3, Irf7, Oas1, 

Plscr1) and pathway analysis in Ingenuity identified an enriched interferon network 

and both interferon gamma and the type I interferon receptor (IFNAR) as top 

upstream regulators (Supplementary Fig 3 and Supplementary Table 6). A 

striking feature of cluster 3 was the presence of multiple genes involved in antigen 

processing and presentation, including both MHC-I (H2-D1, H2-K1) and MHC-II (H2-

Aa, H2-Ab1, H2-Eb1, Cd74) pathways. Upstream regulation was evident through the 

presence of Ciita encoding the master regulator of MHC-II expression and Nlrc5, the 

master regulator of MHC-I gene expression. Pathway analysis in KEGG identified 

antigen processing and presentation as a significantly over-represented pathway 

(Supplementary Fig 4 and Supplementary Table 7). Genes encoding several 

classes of immune effector molecules, many involved in pathogen killing or 

sequestration, were present in this cluster. Camp and Ngp, genes encoding the anti-

microbial peptides mCRAMP and neutrophilic granule protein respectively, were of 

particular note because a recent study identified these genes as unexpectedly highly 

expressed in microglia compared to non-CNS macrophages11. The regional 

expression profile of selected genes from cluster 3 was further assessed by 

quantitative PCR (Fig 4c) and at the protein level by flow cytometry with both 

demonstrating comparable profiles to the microarray data (Fig 4d, e). We also noted 

a panel of immunoregulatory molecules in cluster 1 (relatively high expression in 

cortex and low in cerebellum) indicating that some immunoregulatory pathways may 
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be more active in regions other than the cerebellum (see below also). These were 

largely immune signalling genes (e.g. Cd47, Cd300a) encoding molecules that limit 

the strength of myeloid cell responses to external stimuli.  

The bioenergetic profile of myeloid cells is tightly linked to their 

immunophenotype and the environmental conditions they are exposed to (e.g. 

normoxia/hypoxia)23. We were therefore interested that cluster 2 (high expression in 

cerebellum and hippocampus) contained a large number of genes associated with 

key components of energy production systems and their regulation (Fig 4f-h). This 

was validated by GO analysis which revealed “generation of precursor metabolites 

and energy”, “electron transport chain” and “oxidative” phosphorylation” as among 

the most highly over-represented processes (Supplementary Table 8) and 

visualisation in Enrichment Map showed multiple clusters associated with glycolysis, 

the electron transport chain, ATP synthesis and redox metabolic activity (Fig 4f). 

Genes encoding most enzymes in the glycolytic pathway, the tricarboxylic acid 

(TCA) cycle, multiple subunit constituents of each of the proton pump complexes in 

the electron transport chain (I, III, IV) and the ATP synthase complex were present in 

cluster 2 (Fig 4g). Key regulators of energy metabolism were also present, notably 

peroxisome proliferator-activated receptor gamma (Pparg) and the associated co-

activator peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

(Ppargc1a), which co-operate to control transcription of an array of genes involved in 

mitochondrial function and energy metabolism. Antioxidant responses, important for 

counteracting oxygen radicals produced during oxidative phosphorylation, were also 

represented, including the superoxide dismutase (Sod1, Sod2), catalase (Cat), 

peroxiredoxin (Prdx2, Prdx5) and glutathione peroxidase (Gpx4, Gpx8) families (Fig 
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4g). Individual gene expression profiles of representative examples for each of the 

above classes are shown in Fig 4h.  

Collectively, the above data support the suggestion that cerebellar and 

hippocampal microglia maintain a more immune-alert state than microglia in the 

striatum and cortex and this is accompanied by relatively greater expression of an 

extensive set of co-regulated genes involved in energy metabolism. 

 

Microglial steady-state heterogeneity in immune alertness  

Immune cells maintain a balance between activating and inhibitory signals to fine-

tune the strength of their responses in part through cell surface activating receptors 

that associate with immunoreceptor tyrosine-based activation motifs (ITAMs) and 

counteracting inhibitory receptors containing immunoreceptor tyrosine-based 

inhibition motifs (ITIMs)24. Given the more immune-alert state of cerebellar and 

hippocampal microglia suggested above, we explored whether there were regional 

differences in microglial expression of ITAM-associating and ITIM-containing 

immunoreceptors. We focussed on the triggering receptor expressed on myeloid cell 

(TREM), sialic acid-binding immunoglobulin-type lectins (Siglec), CD200R, CD300 

and signal regulatory peptide (SIRP) families, each of which contains activating and 

inhibitory members  (Fig 5a). In all families, we found inter-regional differences in 

expression of both ITAM and ITIM-signalling members and strikingly there was an 

opposing pattern of expression for activating and inhibitory receptors (Fig 5b, c). 

Activating ITAM-associating members were more highly expressed in cerebellar 

microglia whereas ITIM-containing inhibitory members showed the reverse pattern. 

For example, in the CD300 family, CD300a is the only member with a cytoplasmic 
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tail containing an ITIM motif and Cd300a was expressed at lower levels in 

cerebellum and hippocampus. In contrast, other CD300 members have consensus 

sequences enabling association with ITAM-containing adapters such as DAP12 and 

all showed the opposite pattern of expression to Cd300a. One caveat relates to 

TREM2, which although associating with the ITAM-containing DAP12 adapter 

molecule, dampens microglial pro-inflammatory reactions, and thus the expression 

profile is consistent with other inhibitory immunoreceptors. Expression of the genes 

encoding the ITAM-containing adapter proteins DAP12 and DAP10 was consistent 

across brain regions, perhaps reflecting their common use for signalling by several 

receptors (Fig 5a). 

We next determined if the regional immunophenotypes of microglia extended to 

differences resembling overtly polarised states of microglia activation. We mined 

published microglial microarray datasets25 to establish a set of non-overlapping 

genes induced by classical (LPS) or alternative (IL-4) activation. This identified 216 

LPS-induced genes and 132 IL-4-induced genes (Fig 5d). 17% of these LPS-

induced genes and 18% of IL-4-induced genes were differentially expressed 

according to brain region in the present study. The LPS-inducible subset showed 

greater expression of the majority of genes in the cerebellum and hippocampus (Fig 

5e). In contrast, greater expression of the differentially expressed subset of IL-4-

inducible genes was not restricted to any particular brain region (Fig 5f). 

Furthermore, the majority of microglial genes associated with classical or alternative 

activation were expressed at almost undetectable levels in all brain regions, 

including the archetypal marker genes Nos2 and Arg1 (Fig 5g). Thus it appears the 

more “alert” phenotype of microglia in the cerebellum and hippocampus is distinct 

from conventional states of activation or polarisation. 
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We reasoned that steady-state differences in microglial immune alertness could 

predispose to region-dependent variations in function. To assess this directly, it was 

important to use an assay with freshly isolated microglia (prepared as for microarray) 

exposed to an equivalent challenge and over a short timeframe to avoid prolonged 

culturing which could result in de-differentiation from in vivo regional phenotypes. We 

achieved this using a bacterial phagocytosis and replication assay. Fewer bacteria 

were recovered from cortical microglia than cerebellar microglia 1 h after gentamicin 

treatment (Fig 5h), which may reflect distinct phagocytic or killing capacity, or both. 

Relative to the population of bacteria present inside microglia at 1 h after gentamicin 

treatment, there was a significant increase in intracellular net replication of bacteria 

in cortical but not cerebellar microglia by 4 h (Fig 5h). This suggested that cerebellar 

microglia were better able to control the net replication of internalized bacteria and 

support distinct functional responses of microglia to challenge that correlate with 

their region-specific immune alertness transcriptional profiles. 

 

Transcriptional regulators of region-dependent co-expression networks 

As described above, clusters 2 and 3 contained genes encoding known 

transcriptional regulators (e.g. Pparg, Nlrc5) of many of the respective cluster genes. 

To gain further insight to transcriptional control mechanisms that may drive microglial 

diversity we searched the annotated promoter regions of genes within these clusters 

for over-representation of transcription factor binding (TFB) motifs from the JASPAR 

collection26 using Clover27. Motifs recognised by the specificity protein (Sp), nuclear 

hormone receptor 4A (NR4A), estrogen related receptor (ERR) and RAR-related 

orphan receptor (ROR) were significantly over-represented in cluster 2 

(Supplementary Table 9). Each of these families has established roles in regulating 
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cellular energy metabolism28-31 which is consistent with the prominence of 

bioenergetic genes in cluster 2. The NR4A, ERR and ROR transcription factors are 

all members of the nuclear receptor family that act as both metabolic sensors and 

transcriptional regulators32, perhaps highlighting how the metabolic environment of 

microglia could direct region-dependent regulation of gene expression. TFB motifs 

over-represented in cluster 3 included those bound by early B-cell factor-1 (EBF1), 

forkhead box L1 (FOXL1), activator protein 1 (AP1) and c-Rel (REL) 

(Supplementary Table 9) all of which are known regulators of immune and 

inflammatory gene expression33-35 and therefore consistent with the 

immunoregulatory gene profile of cluster 3.    

 

Brain region disproportionately affects cell surface gene expression  

A subset of genes encoding microglial cell surface proteins was described recently11 

and  termed the microglial “sensome” with reference to their  involvement in sensing 

the environment. We hypothesised that brain region would have a substantial impact 

on the expression of the sensome genes given that regional heterogeneity of 

microglial phenotype may in part arise from exposure to varying local environmental 

demands. GO terms associated with the cell surface were highly enriched in the set 

of regional differentially expressed genes (Supplementary Fig 5a) and 34 of the 100 

sensome genes were differentially expressed according to brain region. The majority 

were expressed at greater levels in the striatum and cortex (Supplementary Fig 5b) 

and related to immune signalling (Supplementary Table 10). Moreover, of the 

differentially-regulated sensome genes involved in immune signalling, many encoded 

proteins involved in restricting over-activation of microglia, including Cx3cr1, Trem2, 
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Cd33, Siglech and Fcgr2b (Supplementary Fig 5c). These data highlight that brain 

region has a disproportionately large effect on expression of genes encoding 

microglial cell surface proteins (compared to all genes) and that much of the 

heterogeneity affects receptors transducing microglial “off” signals10. 

Transmembrane pathways promoting microglial quiescence may therefore be active 

at differing levels depending on brain localisation and contribute to regional 

differences in immune alertness.     

 

Inter-regional microglial heterogeneity mirrors macrophage tissue diversity 

We assessed the extent of inter-regional microglial heterogeneity in the wider 

context of macrophage diversity by comparison of our regional microglial 

transcriptomes with selected purified macrophage datasets from the GNF Mouse 

GeneAtlas V3 (http://biogps.org/dataset/2394/gnf-mouse-geneatlas-v3/) acquired on 

the same microarray platform. As anticipated, using PCA the 1st principal component 

distinguished macrophage populations (peritoneal and bone marrow) from all 

microglial samples (Fig 6a). The 2nd principal component identified inter-regional 

heterogeneity in microglia that was comparable in magnitude to the differences 

between bone marrow and peritoneal macrophages.  In view of the established 

diversity of tissue macrophages outside the brain, these data give an indication of 

the extent of inter-regional microglial heterogeneity discovered in the present study. 

We next determined the genes which were most highly expressed (>10-fold, FDR q 

< 0.05) in microglia compared to macrophages and if these were commonly found in 

microglia from all regions. Microglia from all regions each expressed a similar 

number of microglial-enriched genes (Fig 6b). Greater than 90% of these were 
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common to at least two regions of the brain and approximately two-thirds to microglia 

from all regions (Fig 6c). Among these were genes recently identified as 

distinguishing microglia from macrophages including P2ry12, Tmem119 and 

Olfml311, 12, 19 (Fig 6d). Thus, in the healthy young adult brain, microglia express 

considerable regional heterogeneity yet retain a unifying core profile that, regardless 

of brain region, distinguishes them from tissue macrophages outside the brain. 

 

Ageing of microglia occurs in a region-dependent manner  

Ageing is associated with altered inflammatory status systemically and in the brain 

and involves marked changes in microglial morphology and phenotype. However, it 

is unclear if the impact of ageing on microglia is uniform throughout the brain. We 

first determined if the gene networks defining young adult regional heterogeneity 

were equally sensitive to ageing. Overall, approximately 50% of region-defining 

transcripts at 4 months were differentially-regulated during ageing, however there 

was an unequal distribution across the major 4 month-old region-defining clusters of 

gene co-expression (see Fig 3). Notably, the majority (>80%) of transcripts from the 

4 month immune regulation cluster were age-regulated, but fewer than 25% of 

transcripts in the 4 month bioenergetics cluster were differentially expressed during 

ageing (Fig 7a) . This shows that distinct modules of co-ordinated gene transcription 

that define microglial heterogeneity in the young adult brain are differentially 

sensitive to ageing. 

Principal components analysis showed that while the gross relative regional 

relationship identified at 4 months was generally preserved during ageing, there was 

an age-dependent progression suggesting an interaction between age and brain 
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region (Fig 7b). First, cerebellar microglia were relatively more distant from the 

remaining brain regions at 12 and 22 months compared to 4 months. Second, the 

intermediate hippocampal microglia profile at 4 months was preserved at 12 months 

but largely converged with cortical and striatal samples at 22 months. We 

substantiated these observations non-subjectively using network analysis in 

Biolayout Express3D on the 13,741 transcripts regulated by age (FDR q < 0.05). 

Unbiased sample-to-sample correlation and clustering identified age-dependent 

unique cerebellar clusters and showed that hippocampal samples at 4 and 12 

months clustered independently whereas at 22 months they formed a larger cluster 

together with striatal and cortical samples (Fig 7c). These data show a region-

dependent influence on microglial ageing suggesting increased sensitivity of 

cerebellar microglia and a potential diminishing of the discrete hippocampal 

phenotype. 

The kinetics of microglial ageing were also region-specific. Changes in gene 

expression profile occurred relatively consistently during “early” (4-12 months) and 

“late” (12-22 months) ageing in both cerebellar and cortical microglia (Fig 7d). In 

contrast, changes were most pronounced during early ageing in the striatum and 

during late ageing in the hippocampus. The hippocampal pattern was particularly 

interesting because, in contrast to other regions where only ∼10% of gene alterations 

comprised decreased expression from 12 – 22 months, >30% declined in expression 

in hippocampal microglia (Fig 7e) supporting a diminishing distinction from other 

forebrain regions at the individual gene level. We also noted that twice the number of 

genes were differentially expressed (FDR q < 0.05, fold-change ≥ 1.5) at 22 versus 4 

months in cerebellar microglia compared to other regions further reinforcing their 

greater sensitivity to age-related change (Fig 7d). 
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Unsupervised hierarchical clustering and visualisation of age-region interacting 

genes (FDR q < 0.05) demonstrated a number of striking patterns (Fig 7f) likely 

underpinning the gross age-region relationships above. First, a large group of genes 

increased in expression during ageing in all regions, however, in the cerebellum this 

occurred earlier (i.e. by 12 months) and/or to a greater magnitude by 22 months. 

Second, there was a cluster of genes that increased during ageing only in the 

cerebellum. Third, expression of a group of genes initially detected at relatively 

greater levels in hippocampal and cerebellar microglia at 4 months declined during 

ageing selectively in the hippocampus.  

Collectively, these data show that the microglial transcriptome ages in a non-

uniform manner across brain regions. Key observations are an accelerated and more 

amplified ageing trajectory in cerebellar microglia and a declining distinction of the 

hippocampal phenotype (relative to other forebrain regions).  

 

Pathways underpinning region-specific microglial ageing profiles 

We next sought to establish the biological processes responsible for the age-region 

microglial interactions above. A correlation network graph of the age-regulated 

transcripts was clustered to non-subjectively sub-divide the graph into modules of 

highly co-expressed genes (Fig 8a). We focussed on clusters where interactions 

between age and region were most evident. In general, expression of cluster 2 

transcripts increased with age but the most striking features were the greater and/or 

earlier age-regulated increased expression in cerebellar microglia (Fig 8b). The 

majority of genes were involved in immunoregulatory function and this was 

supported by GO analysis showing immune-related processes as the most over-
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represented in cluster 2 (Supplementary Table 11). Multiple families of molecules 

were represented including those involved in sensing of self and foreign ligands, 

immune cell adhesion and chemotaxis, cytokine signalling and anti-microbial effector 

responses. A large group of co-expressed genes involved in several aspects of the 

interferon pathway was particularly prominent. This included transcriptional 

regulatory factors (e.g. Irf7, Stat2, Oasl1) and interferon-regulated genes including 

those encoding effector proteins involved in anti-viral defence (e.g. Sp100, Csprs, 

Isg20, Ifit families, Bst2, Zbp1). Expression of the above genes was not only 

increased to a significantly greater extent (e.g. 5-fold) during ageing in the 

cerebellum but increased expression was also evident earlier (12 months) (Fig 8c). 

Further genes involved in the interferon pathway predominantly increased in 

cerebellar microglia although not until 22 months (e.g. Stat1, Ifitm family, Gbp family) 

(Fig 8d). Genes more sensitive to greater and/or earlier age-related changes in 

cerebellar microglial included both those already more highly expressed in cerebellar 

microglia and those expressed at negligible levels in all regions at 4 months.  

Given the above data and regional differences in expression of ITAM and ITIM 

signalling immunoreceptors in microglia of young adult mice we assessed if there 

were region-dependent ageing responses of specific immunoreceptor families. There 

was a striking contrast in the ageing expression profile of amplifying and inhibitory 

immunoreceptors in all families examined (Fig 8e). Expression of inhibitory receptors 

from each family in general remained stable (e.g. Cd300a) or decreased in a largely 

region-independent manner (e.g. Cd200, Sirpa) during ageing. In contrast, 

expression of amplifying receptors increased with age and in a mostly region-

dependent manner, affecting the cerebellar microglia selectively (e.g. Cd300ld, 

Trem1, Sirpb1a) or to a significantly greater extent (e.g. Cd200r4, Cd300lb) than 
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other regions. The Cd300 family is presented as an example (Fig 8f) Thus, during 

ageing, alterations in immunoreceptor expression across multiple molecular families 

support a regionally-variable shift in balance towards immune amplification.  

Genes significantly decreased in expression (FDR q < 0.05, fold-change ≥ 1.5) 

from 4-22 months in hippocampal microglia showed enrichment of GO processes 

related to cell adhesion/migration/motility, membrane organisation/endocytosis, 

immune/inflammatory function, and vascular development (Supplementary Table 

12) suggestive of marked changes in the interaction of hippocampal microglia with 

their environment. Mining of these genes in the Biolayout Express3D network graph 

revealed their presence in several clusters each with a profile sharing reduced age-

related hippocampal expression. Cluster 14 was particularly interesting because it 

contained genes expressed at relatively greater levels in both hippocampal and 

cerebellar microglia at 4 months that selectively declined in the hippocampus (and in 

the striatum for a subset) during ageing (Fig 8g, h).  Among the genes in this cluster, 

many (e.g. Cd36, Cd93, Pf4, Lyve1) are involved in cell adhesion and motility 

pathways through interactions with matrix components and other extracellular 

ligands (Fig 8h). Consistent with the above functions, genes co-ordinating cross-

regulation of endocytosis/phagocytosis and cytoskeletal reorganisation were present, 

notably Arhgef3, Dab2, Itsn1 and Vav3. Some of the above genes have overlapping 

roles in immune function through sensing and internalisation of microbial ligands and 

involvement in antigen processing and presentation (e.g. Cd36, Cd93, Pf4). 

Together with further genes in this cluster such as the mannose receptor gene Mrc1 

and the MHC-II genes H2-Aa and H2-Ab1 (Fig 8h) it was evident that gene networks 

involved in certain aspects of ligand recognition, processing and presentation are 

relatively selectively suppressed during ageing in hippocampal microglia. More 
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generally, the above data support a potential “disengagement” of aged hippocampal 

microglia with their environment compared to their young adult counterparts.   

 

Regionally-variable depression of the “homeostatic” microglial signature 

during ageing  

Microglial heterogeneity in the young adult brain was superimposed upon a core 

signature distinguishing microglia from systemic macrophages. Ageing resulted in a 

modest decline in expression across all forebrain regions of key signature genes and 

a significantly greater effect (e.g. 30% reduction in expression from 4 to 22 months 

old) in cerebellar microglia (e.g. Tmem119, P2ry12, P2ry13, Fcrls) (Supplementary 

Fig 6a). This supports data above that the greatest deviation from the “baseline” 

young adult homeostatic signature during ageing occurs in cerebellar microglia. 

Reduced expression of TGFβ receptor genes in aged microglia (Supplementary Fig 

6b)  may be important because expression of signature-defining genes is regulated 

by TGFβ12. In contrast, signature macrophage genes (e.g. Serpinb2, Alox15, Fabp4) 

were expressed at negligible levels at all ages (Supplementary Fig 6c)  and genes 

commonly expressed on macrophages and microglia and upregulated on overtly 

activated microglia (e.g. Ptprc, Emr1) and Itgam were stably expressed during 

ageing in all regions (Supplementary Fig 6d). These data suggest that the age-

related lessening of the young homeostatic microglial signature is regionally variable 

but is not accompanied by the gain of a macrophage-like signature. 

 

 



22 
 

Discussion 

The data presented here provide compelling evidence of regional microglial 

phenotypic diversity in the healthy adult brain and the region-dependent impact of 

ageing on microglial phenotype. To our knowledge, this is the first demonstration that 

regional localisation of microglia influences their genome-wide expression profile 

across the adult lifespan, and notably we show that this extends beyond their 

immunophenotype. Key findings include that (1) transcriptional networks controlling 

microglial bioenergetic and immunoregulatory functions contribute prominently  to 

heterogeneity in the young adult, (2) immunophenotypic variation suggests a more 

immune vigilant state of cerebellar microglia, (3) networks of gene co-expression 

underpinning heterogeneity in the young adult brain are differentially sensitive to 

ageing, (4) increasing distinction of cerebellar microglia and reduced distinction of 

hippocampal microglia (among forebrain regions) are key features of ageing, (5) 

microglial diversity is superimposed upon a core profile that distinguishes all 

microglia from macrophages, and (6) aged microglia display partial loss of the core 

young adult microglial identity in a regionally-variant manner but do not adopt a 

macrophage-like signature.  

In the young adult brain (4 months old), the general relationship among the brain 

regions analysed showed that cerebellar microglia were most distinct, that cortical 

and striatal microglia were similar to each other, and that hippocampal microglia had 

an intermediate profile. This pattern suggests a microglial relatedness correlating 

with the relative positioning of brain regions along the rostro-caudal neuroaxis. 

Recent studies have reported that microglial responses to injury, disease or 

inflammatory challenge also vary according to neuroaxis location36, 37. Microglial 

morphology and density vary according to the relative composition of white and grey 
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matter with a lower density of microglia reported in white matter of the adult mouse 

brain13. The extent to which white-to-grey matter ratios could influence regional 

differences in microglial transcriptomes is unclear, although the finding that the white 

matter-rich striatum and largely grey matter-dominant cerebral cortex have highly 

similar expression profiles suggests this may not be a major determinant. Forebrain 

microglia but not cerebellar microglia are dependent on IL-34, a ligand of the colony 

stimulating factor-1 receptor, for their maintenance15, 16. Furthermore, the 

involvement of enhancers in controlling tissue and cell identity is increasingly 

recognised, including in microglia38, and a recent study indicated that expression of 

brain region-specific enhancer RNAs may play a particularly important role in 

cerebellum-specific gene expression18.  

Heterogeneity in microglial phenotypic markers other than immunophenotype 

has received negligible attention previously. The present data provide novel 

information on the transcriptional programmes controlling metabolism in microglia 

and show that regional differences in expression of these networks is a core feature 

of microglial diversity in the healthy young adult brain. Co-ordinated differences in 

regional expression of genes involved in all phases of the energy production 

pathway (mitochondrial production, glycolysis, TCA cycle, electron transport chain, 

ATP synthesis) was evident, emphasising the integrated nature of regional 

bioenergetic variation in microglia. The cluster profile revealed that hippocampal and 

cerebellar microglia have relatively greater expression of these genes suggesting 

greater energetic demands on microglia in these areas. Although there is little 

understanding of microglial bioenergetics, the routine cellular behaviour of microglia 

(e.g. process scanning, phagocytic activity) is likely to be metabolically demanding 

and regional differences in these activities could therefore influence energy 
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demands39. In addition, the lower density of microglia in some areas, notably in the 

cerebellum, requires each microglial cell to survey a larger volume of tissue and 

would be expected to increase energy demands on an individual cell basis.  

 Our data suggest that microglia in some regions of the young adult brain exist in 

a more immune-vigilant state but one that does not equate to a conventional 

activated or primed microlgial/macrophage phenotype. Local differences in the 

physical and neurochemical environment, such as cellular and matrix composition, 

blood-brain barrier permeability, neurotransmitter profiles and heterogeneity in other 

cell types, may all be important. Consistent with this we found that a substantial 

proportion of genes encoding the microglial-enriched cell surface sensing apparatus 

were differentially expressed. Previous studies have suggested white matter 

microglia exist in a relatively less quiescent basal state than their grey matter 

counterparts37, which could contribute to the more vigilant profile of microglia in the 

white matter-enriched cerebellum. Another explanation is that the environment of 

some brain regions has evolved to support a more immune vigilant phenotype as a 

result of genomic integration of endogenous retroviruses (ERVs) and other 

retrotransposons. ERVs comprise ~10% of the murine genome40 and although 

normally inactive, deficiencies in innate immunity can predispose to reactivation41. 

Cerebellum-specific expression of the murine leukaemia virus (MuLV)-ERV has been 

shown previously42 and in mixed brain homogenates expression of the MuLV-ERV 

designated Mela (melanoma antigen) was restricted to the cerebellum 

(Supplementary Fig 7). The hippocampus is also more susceptible to 

retrotransposition in the human brain43. Thus, microglia, which we show have a more 

immune vigilant phenotype, including higher expression of anti-viral interferon 
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networks, are found in areas where there may have been an evolutionary drive for 

development of greater immune vigilance.   

Despite sharing similarities in their regional expression profile in the young adult 

brain, the major transcriptional networks (bioenergetics and immune) underlying 

regional heterogeneity at 4 months of age were affected differently by ageing. Genes 

within the immune networks were particularly sensitive whereas the majority within 

the bioenergetics cluster were unaffected by age. This indicates that regional 

differences are preserved during ageing for some functional pathways alongside 

marked divergence in others. Given the similar regional profiles of the immune and 

bioenergetics clusters at 4 months of age and the close relationship between 

immune function and metabolism, there may be some degree of immune-metabolic 

decoupling during ageing particularly in microglia from regions showing the greatest 

immunoregulatory deviation from the young adult (e.g. cerebellum). However, further 

work will be needed to determine if this divergence could allow for greater adaptation 

to the demands of ageing or could predispose to functional dysregulation.  

The sensitivity of the immune network to ageing was largely responsible for the 

increasing distinction of the cerebellar phenotype in the aged brain. In contrast to 

ageing and direct immune stimulation ex vivo, however, we observed regionally 

comparable responses to acute systemic inflammatory challenge with bacterial 

lipopolysaccharide (data not shown) indicating that microglial heterogeneity encodes 

region-specific sensitivities in a stimulus/stressor-dependent manner. A selective or 

significantly greater induction in expression of many immune amplifying genes 

occurred in cerebellar microglia compared to other brain regions during ageing 

whereas genes involved in restraining excessive immune activity were generally 

stable across all brain regions. This implies that the more immune alert state of 
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cerebellar microglia compared to other regions evident in the young adult is further 

augmented in the aged brain. The functional consequences of this are important to 

consider but may be complex. More caudal regions of the CNS such as the 

cerebellum may be more vulnerable to age- or disease-related inflammatory 

degeneration if this heightened alertness is poorly controlled. In support, age-related 

increases in inflammatory marker expression were predominant in the cerebellum 

and associated with functional cerebellar deficits37. However, the extra-alert 

phenotype may confer protective functions through increased vigilance and 

efficiency in removing potentially harmful agents. In this regard, it is pertinent to note 

the lower susceptibility of the cerebellum to amyloid deposition during ageing44.  

Selective age-related alterations in gene networks were also evident in 

hippocampal microglia, however in contrast to the cerebellum, these resulted in a 

declining distinction from other forebrain regions. Decreasing expression of genes 

involved in matrix interactions and sampling the extracellular environment were the 

most prominent cause, suggesting that a declining engagement with their 

environment during ageing particularly affects hippocampal microglia. Although 

previous studies were not performed on a region-specific basis our data are 

consistent with reports of decreased process motility45 and reduced expression of 

cell surface sensing genes11 in aged microglia indicative of compromised 

environmental sampling capabilities. In contrast to the cerebellum, the hippocampus 

is vulnerable to age- and disease-related deposition of misfolded proteins which 

could in part relate to the age-driven divergence in environmental and immune 

alertness of microglia we describe in these brain regions. Dystrophic microglia in the 

aged human hippocampus have been described and postulated to represent a 

senescent state unable to carry out normal functions46; our data may provide a 
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plausible transcriptomic basis for this hypothesis. More broadly, the loss of 

distinction in the overall hippocampal microglial phenotype at 22 compared to 4 

months of age among forebrain regions is consistent with the concept of age-related 

loss of differentiation in neural function, cognitive performance and reorganisation of 

connectivity across brain regions47, 48. Notably, the weighting of regional connections 

of the hippocampus changes markedly during ageing48. Declining specialisation 

among neuronal populations has also been described in the aged brain49. It is 

therefore possible that age-related changes in the regional diversity of local signals 

derived from other neural components, altered inter-regional communication, and 

intrinsic microglial modifications in sensing pathways could all contribute to the 

diminished regional identity of hippocampal microglial in the aged brain. 

Recent studies have revealed the distinctive transcriptional identity of microglia 

that distinguishes them from non-CNS tissue macrophages11, 12, 19. The present data 

now show that, although microglia have multiple transcriptional identities dependent 

on brain region, a core signature differentiating them from macrophages is retained 

across regions. Hence inter-regional microglial heterogeneity is superimposed upon 

a distinctive core profile. Microglial regional heterogeneity may be analogous in 

some respects to macrophage diversity observed within other tissues such as the 

spleen50. Despite reductions in expression of signature microglial genes with age, 

particularly in the cerebellum, highly macrophage-enriched genes (e.g. Fabp4, 

Alox15) were not expressed in any region at any age thus supporting that microglia 

also retain an overriding phenotypic individuality compared to macrophages in the 

aged brain.  

In summary, regional microglial diversity described herein may be important for 

meeting the location-dependent demands of brain tissue under steady-state 
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conditions. The impact of ageing on this diversity also suggests a basis for the 

regional variation in susceptibility to age-related neurodegenerative processes 

involving neuroinflammatory mechanisms. Further studies examining microglial 

diversity in the context of neurodegeneration are therefore warranted.      

  



29 
 

Methods 

Accession codes 

Microarray data are deposited in the NCBI GeoDatasets database with the 

accession number GSE62420. 

 

Mice  

Experiments were performed using male C57Bl/6J mice (Charles River Laboratories, 

UK) and Csf1r-EGFP reporter mice bred in-house. Mice were housed in individually-

ventilated cages (five mice per cage) maintained under specific pathogen-free 

conditions and a standard 12 h light/dark cycle with unrestricted access to food and 

water. All experiments using live animals were conducted under the authority of UK 

Home Office project and personal licences and adhered to regulations specified in 

the Animals (Scientific Procedures) Act (1986) and Directive 2010/63/EU and were 

approved by both The Roslin Institute’s and the University of Edinburgh’s Animal 

Welfare and Ethics Committees.  

 

Microglial purification and mixed brain cell/homogenate preparation 

At 4, 12 and 22 months of age, mice were perfused transcardially with physiological 

saline and brains dissected into cerebellum, cortex, hippocampus and striatum. 

Tissue from eight mice was pooled for each regional replicate to obtain sufficient 

RNA for microarrays and the experiment was performed in quadruplicate for each 

region. Brain tissue was finely minced by scalpel blade in ice-cold Hanks Balanced 

Salt Solution HBSS (Sigma, UK), centrifuged (400 g, 5 min, 4°C) then resuspended 

and incubated for 1 h at 37°C using an enzyme cocktail containing 50U/ml 

collagenase, 8.5 U/ml dispase, 100 ug/ml Nα-Tosyl-L-lysine chloromethyl ketone 
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hydrochloride and 5 U/ml DNaseI in 9.64 ml HBSS (Life Technologies, UK). Tissue 

was dissociated manually using a Dounce homogeniser and the enzymatic reaction 

terminated by addition of equal volume HBSS containing 10% fetal bovine serum. 

Homogenates were centrifuged (400 g, 5 min, 4°C) and pellets resuspended in 35% 

Percoll (GE Healthcare, Sweden), overlaid with HBSS then centrifuged (800 g, 45 

min, 4°C). The supernatant and myelin layers were discarded and the cell pellet 

enriched with microglia resuspended in separation buffer (0.5% bovine serum 

albumin, 2 mM EDTA in PBS). The cell suspension was incubated with anti-CD11b 

microbeads (Miltenyi Biotec, UK) for 15 min at 4°C then applied to a magnetic LS 

column (Miltenyi Biotec) and cells retained on the column (microglia) were flushed 

and resuspended in appropriate buffer for downstream applications (see below). 

Unretained cells were also collected during initial validation for comparison. Mixed 

brain cell suspensions were prepared for flow cytometry according to the above 

protocol except the procedure was terminated before proceeding to centrifugation on 

Percoll gradient. For preparation of regional brain tissue homogenates for RNA 

extraction, mice were perfused and brain tissue dissected as above, and tissue 

snap-frozen and stored at -80°C. For validating that regional brain dissection did not 

result in cross-contamination of brain regions, the expression profile of established 

regionally enriched neuronal genes (Calb2, cerebellum-enriched; Rorb, cerebral 

cortex-enriched; Drd1a, striatum-enriched; Sstr4, hippocampus-enriched) was 

assessed in the present regional brain homogenates.  This showed the expected 

enrichment of Calb2 in cerebellum, Rorb in cerebral cortex, Sstr4 in hippocampus, 

and Drd1 in striatum and was comparable to the regional pattern reported in the 

Allen Brain Atlas51 (http://mouse.brain-map.org/) (Supplementary Fig 1d). URLs for 

images shown in Supplementary Fig 1 are: Calb2, http://mouse.brain-
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map.org/experiment/show/79556662 (image 78); Drd1a, http://mouse.brain-

map.org/experiment/show/352 (image 293); Rorb: http://mouse.brain-

map.org/experiment/show/79360296 (image 61); Sstr4: http://mouse.brain-

map.org/experiment/show/73636037 (image 234). 

 

Flow cytometry 

For routine verification of purified samples, cells resuspended in FACS buffer (0.1% 

BSA in PBS) were incubated with 1µg/ml anti-CD16/CD32 (Biolegend, UK, cat # 

101301) to block Fc receptors and stained with anti-mouse CD11b-PE (Biolegend, 

cat # 101207, clone: M1/70), CD45-Pacific Blue (Biolegend, cat # 103125, clone: 30-

F11) and F4/80-APC (Biolegend, cat # 123115, clone: BM8). To assess overlap 

between microglial CD11b and EGFP expression in mixed brain cell suspensions 

from Csf1r-EGFP mice, samples were stained as above and microglia identified 

according to their characteristic CD11b+F4/80+CD45lo profile. To measure MHC-II 

expression on microglia from mixed brain cell suspensions, cells were stained with 

RPE-Alexa Fluor 750 anti-mouse CD11b (AbD Serotec UK, cat # MCA74P750T), 

APC anti-mouse CD45 (Biolegend, cat # 103111) and eFluor 450 anti-mouse MHC 

Class II (eBioscience, UK, cat # 48-5321-80). Flow cytometry was performed using a 

FACS Aria IIIu or LSR Fortessa (Becton Dickenson, UK) and data analysed using 

FlowJo software (FlowJo, OR, USA). 

 

Microglial culture and immunocytochemistry 

1 x 105 purified microglial cells were cultured for 7 d in an 8-well chambered 

coverslip µ-slide (Ibidi, Germany) with DMEM/F12 (Life Technologies, UK) containing 
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10% FBS and 1% penicillin/streptomycin before fixation with 4% paraformaldehyde. 

The staining procedure was performed at room temperature. Fixed cells were 

permeabilised with 0.1% Triton X-100 for 5 min, washed and quenched by adding 

0.25% NH4Cl for 5 min. Permeabilised cells were washed and blocked in PBS/0.1% 

BSA/5% donkey serum (Jackson ImmunoResearch, PA,USA) for 1 h before adding 

the primary antibodies prepared in 2.5% donkey serum in PBS. We used the 

following primary antibodies for staining: rabbit anti-IBA-1 (Wako Chemicals, 

Germany; 1:200) and biotinylated anti-mouse F4/80 (eBioscience, 1:200). Cells were 

washed and secondary antibodies anti-rabbit Alexa Fluor 594 (Life Technologies 

1:1000) and Streptavidin Alexa Fluor 488 (Life Technologies; 1:1000) were 

incubated for 1 h before counter staining with DAPI (1µM) for 5 min. Imaging was 

performed using a Zeiss LSM 710 inverted confocal microscope. Maximum 

projection images of Z-stacks at 400x magnification objectives are presented. 

 

RNA extraction 

Microglia purified from individual brain regions were immediately processed for RNA 

extraction using the RNeasy Plus Micro Kit (Qiagen, UK). Preliminary experiments 

showed this method produced the highest yield and quality of RNA. RNA was 

extracted according to the manufacturer’s instructions with the exception of the final 

step where RNA elution was repeated twice with 10 µl RNase-free water. RNA 

quantities were determined by Nanodrop 1000 (Thermo Fisher Scientific, MA, USA) 

and RNA quality assessed using the Agilent Bioanalyzer (Agilent Technologies, CA, 

USA). RNA was also extracted from regional mixed brain cell homogenates using 



33 
 

the RNeasy Midi Kit (Qiagen) following manufacturer’s instructions. All samples 

passed a quality control threshold (RIN ≥ 8) to proceed to microarray. 

 

Transcriptional profiling using gene expression microarrays 

Microarray assays were performed by Edinburgh Genomics, University of Edinburgh 

(https://genomics.ed.ac.uk/). Total RNA was labelled using the IVT Express Kit 

(Affymetrix). First-strand cDNA was synthesised and converted to double-stranded 

DNA template for transcription and synthesis of aRNA incorporating a biotin-

conjugated nucleotide. aRNA was purified and fragmented prior to hybridisation on 

Affymetrix arrays. Biotin-labelled aRNA was hybridized to the whole mouse genome 

HT MG-430 PM array plate (Affymetrix, CA, USA) representing >39,000 transcripts, 

using the GeneTitan multi-channel instrument (Affymetrix). 

 

qPCR 

50ng of total RNA remaining from the microarray samples was reverse transcribed 

using Superscript III Reverse Transcriptase according to the manufacturer’s 

instructions (Life Technologies). The qPCR was performed in a Stratagene Mx3005P  

instrument (Agilent Technologies) using Platinum SYBR Green qPCR SuperMix-

UDG (Invitrogen) and primer pairs: B2m-f TGGCTCACACTGAATTCACCCCCA 

B2m-r TCTCGATCCCAGTAGACGGTCTTGG, Gapdh-f 

TGCATCCACTGGTGCTGCCAA, Gapdh-r ACTTGGCAGGTTTCTCCAGGCG, 

Camp-f AGGAACAGGGGGTGGTGA, Camp-r CACCTTTGCGGAGAAGTCCA, H2-

d1-f TCCGAGATTGTAAAGCGTGAAGA, H2-d1-r GAACCCAAGCTCACAGGGAA. 

qPCR cycles were performed as followed: hot start denaturation cycle 95°C for 10 
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min, 40 cycles of amplification of 95°C for 15 sec, 60°C for 20sec and 72°C for 1 

min.  

 

Bacterial phagocytosis and replication assay 

Purified cortical and cerebellar microglia (pooled from 8 mice, 4 months old) were 

infected with Escherichia coli (K-12 strain). Bacteria were grown in Luria-Bertani (LB) 

broth at 37°C, 190 rpm for 16 hours. Subsequently bacteria were subcultured at 

1:1000 ratio into fresh LB. Bacteria were grown to mid-exponential phase at 37°C, 

190 rpm for 3 hours and growth was monitored at OD600. Bacteria were 

resuspended in DMEM/F12 (no FBS/Penicillin/Streptomycin) at 1 x 107 bacteria/ml. 4 

x 104 purified microglia were infected with 4 x 105 bacteria. 4 x 104 cells only and 4 x 

105 bacteria only served as control. After incubation of microglia with bacteria for 2 

hours to allow uptake, gentamicin was added to kill extracellular bacteria, enabling 

intracellular E. coli to be enumerated 1 and 4 hours later. Cells were then washed, 

lysed with 0.1% Triton X-100 and serial ten-fold dilutions plated on MacConkey agar. 

Bacterial colonies were counted after 17 h incubation at 37°C. Data are from 

triplicate microglial samples with each replicate pooled from eight mice. The 

microglia only control yielded no bacteria and extracellular E. coli treated with 

gentamicin under the same assay conditions was completed eliminated.  

 

Computational analysis and bioinformatics 

(i) Analysis of regional heterogeneity in the young adult (4 months old) 
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Microarray datasets were normalised by the Robust Multiarray Averaging (RMA) 

method in Affymetrix Expression Console (Affymetrix, CA, USA) prior to analysis in 

BioLayout Express3D (http://www.biolayout.org/)20 or directly during import for 

analysis in Partek Genomics Suite (Partek Inc., MO, USA. Analysis was perfomed 

using the ht_mg-430_pm.na33 annotation release (Affymetrix). 4 months datasets 

were first normalised and analysed independently from other ages.  The gross inter-

relationships among regional microglial transcriptomes were assessed by principal 

components analysis (PCA) on the log-transformed and Z-score transformed data 

matrix where every transcript had mean value zero and standard deviation one, 

using built-in functions of Matlab (MathWorks, MA, USA). Gross regional differences 

were also assessed in BioLayout Express3D by plotting a sample-to-sample 

correlation graph with the Pearson correlation threshold r = 0.96. Nodes represent 

individual samples (replicates) and edges between them show correlation of 

expression pattern with Pearson correlation coefficients above the selected 

threshold. The resulting network was clustered using the Markov clustering algorithm 

(MCL) (inflation 2.2) to non-subjectively sub-divide the graph into discrete clusters.  

To assess if there were transcripts differentially expressed by region overall and 

between each individual region, normalised datasets were compared in Partek by 

ANOVA with false discovery rate (FDR) correction (q < 0.05). Data were visualised 

by heatmap with transcripts and samples organised by hierarchical clustering using 

average linkage with the Euclidean distance metric. Heatmap visualization and 

hierarchical clustering were performed on the log-transformed and Z-score 

transformed data matrix using built-in functions of Matlab. To assess gene co-

expression relationships across brain regions, a pairwise transcript-to-transcript 

matrix was calculated in BioLayout Express3D from the set of regionally differentially 
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expressed transcripts using a Pearson correlation threshold r = 0.80. A network 

graph was generated where nodes represent individual probesets (transcripts/genes) 

and edges between them correlation of expression pattern with Pearson correlation 

coefficients above the selected threshold. The graph was clustered into discrete 

groups of transcripts sharing similar expression profiles using the MCL algorithm 

(inflation 2.2, minimum cluster size 10 nodes). The composition and functional 

representation of the three major clusters were explored in more detail.  

Enrichment analysis for Gene Ontology (GO) terms was performed in DAVID52 

(http://david.abcc.ncifcrf.gov/) and visualised using the Enrichment Map plugin 

(http://www.baderlab.org/Software/EnrichmentMap)53 for Cytoscape 

(http://www.cytoscape.org/)54. In DAVID, gene lists were uploaded and the 

GOTERM_BP_FAT annotation category selected. Default settings were used for 

analysis with enrichment based on p < 0.05 with Benjamini correction. Enriched GO 

terms were uploaded to Enrichment Map and a network graph constructed.  Nodes 

represent enriched GO terms and edges the degree of similarity between them using 

the overlap coefficient. Enrichment Map was also used to visualise the expression of 

all genes in the regionally differentially expressed dataset annotated with GO terms 

within the immune regulation cluster (Fig 2d).  Results were visualised by heatmap 

with expression values normalised and transcripts organised by hierarchical 

clustering using default settings (Supplementary Fig 5). Visualisation of GO 

enrichment was also performed using the GOrilla tool55 (http://cbl-

gorilla.cs.technion.ac.il/) with default settings applied. Pathway analysis on individual 

clusters from the BioLayout Express3D transcript-to-transcript network graph was 

performed in DAVID using the KEGG tool and Ingenuity Pathway Analysis (Qiagen). 
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To compare immunophenotypes in the present dataset with microglial activation 

profiles described previously, we mined published microarray datasets from 

microglia stimulated with either lipopolysaccharide (LPS) or interleukin-4 (IL-4)25. 

Raw expression data (.cel files) were downloaded from NCBI GEO DataSets 

(http://www.ncbi.nlm.nih.gov/gds/;GSE49329), imported to Partek and normalised 

with the microglia data. Non-overlapping genes significantly upregulated by LPS or 

IL-4 (>5-fold, FDR q < 0.05) were determined and these genes overlaid on the set of 

regional differentially expressed genes from the present study. The expression 

profile of overlapping transcripts for each stimulus was visualised by heat map using 

the log-transformed and Z-score transformed data matrix using built-in functions of 

Matlab. 

To analyse a specific subset of microglial-enriched genes encoding cell surface 

proteins we assessed overlap between the 100 genes recently described as the 

microglial sensome and the set of regionally differentially expressed genes from the 

present study. The expression profile of overlapping transcripts was visualised by 

heat map using the log-transformed and Z-score transformed data matrix using built-

in functions of Matlab.  

To assess the extent of microglial regional heterogeneity in the context of 

general tissue macrophage diversity, we mined published peritoneal and bone 

marrow macrophage microarray datasets from the GNF MouseAtlas V3 (GEO 

DataSets GSE10246) which were generated on the same platform (MOE430 2.0) as 

the present arrays. All datasets were imported together and normalised in Partek as 

above. The gross relationships among microglia and macrophages were explored by 

PCA. Genes most highly expressed in microglia compared to macrophages (>10-
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fold, q < 0.05) were determined for each brain region and overlapping and unique 

genes among regions identified. 

For the identification of transcriptional regulators which may act as contributing 

factors to the microglial regional diversity we used Clover27 to detect statistical over-

representation of known TFB motifs in the promoter regions of co-expressed genes. 

Refseq IDs for each transcript on the Affymetrix ht_mg-430_pm.na33 array that was 

present in the immune regulatory and energy metabolism cluster were obtained from 

the NetAffx database (https://www.affymetrix.com/analysis/netaffx/index.affx). 

Promoter sequences 300bp upstream and 100bp downstream of the TSS were 

extracted from the mouse genome sequence (version mm9). Transcription factor 

binding site motifs were identified using the JASPAR CORE motif set26 

(http://jaspar.cgb.ki.se) and Clover (p < 0.05, score threshold = 6) was used to detect 

over-represented motifs in promoters for each expression cluster compared with a 

background set27.  

 

(ii) Effect of ageing and analysis of interactions between ageing and brain region 

Analysis was performed on datasets from all ages normalised together and 

performed as above. Gross inter-relationships among regional microglial 

transcriptomes at different ages (4, 12, 22 months of age) were assessed by PCA as 

above and in BioLayout Express3D. For BioLayout Express3D, a sample-to-sample 

correlation network graph (Pearson correlation threshold r = 0.98) was generated 

from the transcripts differentially expressed according to age (FDR q < 0.05) and 

clustered using the MCL algorithm (inflation 2.2) to non-subjectively sub-divide the 

graph into discrete clusters. Nodes represent individual samples (replicates) and 
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edges between them show correlation of expression pattern with Pearson correlation 

coefficients above the selected threshold. To determine effects of ageing and 

interactions between ageing and brain region on individual transcript expression, 

normalised datasets were analysed in Partek Genomics Suite using two-way 

ANOVA with FDR correction (q < 0.05) and appropriate post-hoc tests as indicated. 

Hierarchical clustering and visualisation of the top 150 transcripts with significant 

interaction between age and region on expression levels was performed in Partek.  

Transcript-to-transcript co-expression relationships were assessed using 

BioLayout Express3D. A pairwise transcript-to-transcript matrix was calculated from 

the set of transcripts differentially expressed according to age using a Pearson 

correlation threshold r = 0.85. A network graph was generated where nodes 

represent individual probesets (transcripts/genes) and edges between them 

correlation of expression pattern with Pearson correlation coefficients above the 

selected threshold. The graph was clustered non-subjectively into discrete groups of 

transcripts sharing similar expression profiles using the MCL algorithm (inflation 2.2, 

minimum cluster size 10 nodes). The composition and functional representation of 

selected clusters were explored in more detail using approaches as above (e.g. GO 

and KEGG enrichment analysis).  

Relative expression profiles of genes from selected immunoreceptor families were 

visualised by heat map using the log-transformed and Z-score transformed data 

matrix using built-in functions of Matlab. Genes were classified as activating or 

inhibitory according to known functional effects or prediction from presence of 

receptor ITAM-associating/ITIM domains. 
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Experimental design and statistical analysis 

Experimental design, analysis and reporting followed the ARRIVE guidelines 

(https://www.nc3rs.org.uk/arrive-guidelines) where possible. Mice were randomised 

to treatment group (age) at cage level using using a computer-based random 

number generator (https://www.randomizer.org/).  Microarray data are from n = 4 

biological replicates with each replicate consisting of tissue pooled from 8 mice. No 

formal a priori statistical methods were used to pre-determine sample sizes due to 

insufficient previous data to enable this. However, sample sizes were chosen based 

on estimates of anticipated variability through previous general experience of 

microarray analysis and accounting for pooling of tissues reducing inter-replicate 

variance. To avoid potential confounding cage effects during pooling of tissue, each 

separate pool contained tissue derived from mice housed in all cages for each age 

group selected in a randomised manner using a computer-based random number 

generator (https://www.randomizer.org/). Data collection and analysis were 

performed with the assessor unaware of allocation to treatment group. Statistical 

tests for computational analysis are described above. Flow cytometry and qPCR 

data were analysed using one-way ANOVA with Bonferroni correction. Data from the 

bacterial uptake and replication assay were analysed by two-way ANOVA with 

Bonferroni correction. Data were checked for compliance with statistical assumptions 

for each test, including normal distribution and equal variances across groups. Tests 

were two-tailed throughout. Statistical significance was considered at p < 0.05 (or 

equivalent corrected for multiple comparisons). Data show mean ± SD unless 

otherwise stated. 

 

A methods checklist is available with the supplementary materials. 
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Figure legends 

Figure 1. Validation of multi-region microglial purification. (a) Microglia were purified 

from discrete brain regions and the profile of expression for indicated surface 

markers examined by flow cytometry. A consistent CD11b+F4/80+CD45lo profile was 

observed for all regions (Con denotes isotype control staining of whole brain 

microglia). Data are representative of four independent cell preparations, each from 

tissue pooled from eight mice. (b) Microarray expression profiles for selected genes 

in purified microglia and mixed brain cell homogenates from each brain region. Data 

show mean ± SD, n = 4 independent samples, each from tissue pooled from eight 

mice (c) The fold change (log2) in microarray expression level for purified microglia 

versus mixed cell brain homogenates for indicated genes. (d) Microarray expression 

profiles in purified microglia from discrete brain regions for established marker genes 

of neurons, astrocytes and oligodendrocytes, (e) T cells (Cd3e), B cells (Cd19), 

granulocytes (Ly6g), and (f) non-CNS macrophages with comparison to Itgam. Data 

show mean ± SD, n = 4 independent samples, each from tissue pooled from eight 

mice. (g) Immunofluorescence images of purified microglia cultured for 7d and 

immunostained for indicated markers. Images are representative of two independent 

cultures. Scale bar, 50μm. Str, striatum; Hpp, hippocampus; Ctx, cerebral cortex; 

Cbm, cerebellum. 

 

Figure 2. The adult mouse microglial transcriptome is regionally heterogeneous. (a) 

Principal components analysis on microarray expression profiles for purified 

microglia from discrete brain regions. (b) Sample-to-sample correlation of microarray 

datasets was performed in BioLayout Express3D and a network graph generated 

(Pearson correlation threshold r ≥ 0.96). Nodes represent individual samples and 
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edges the degree of correlation between them. (c) Heat map showing the expression 

pattern of probesets differentially expressed by brain region (p < 0.05 with FDR 

correction). The scaled expression value (row Z-score) is displayed in a blue-red 

colour scheme with red indicating high expression and blue low expression. (d) 

Differentially expressed probesets were analysed for enrichment of Gene Ontology 

(GO) Biological Processes in DAVID. Enriched GO terms were imported to 

Enrichment Map and a network graph generated. Nodes represent individual GO 

terms (gene sets) and edges the relatedness between them. Two major clusters 

defined by immunoregulatory and metabolic function were identified. Str, striatum; 

Hpp, hippocampus; Ctx, cerebral cortex; Cbm, cerebellum. 

 

Figure 3. Three major patterns of gene co-expression underpin regional microglial 

transcriptional heterogeneity. (a) A transcript-to-transcript correlation network graph 

of transcripts significantly differentially expressed by brain region was generated in 

BioLayout Express3D (Pearson correlation threshold r ≥ 0.80). Nodes represent 

transcripts (probesets) and edges the degree of correlation in expression pattern 

between them. The network graph was clustered using a Markov clustering algorithm 

and transcripts assigned a colour according to cluster membership. Three major 

clusters were identified. (b) Mean expression profile of all transcripts within clusters 

1, 2 and 3. (c) Heat maps showing the expression profile of all transcripts contained 

within clusters 1, 2 and 3. Each probeset is represented in a blue-red row Z-score 

scale with red indicating high expression and blue low expression. Str, striatum; Hpp, 

hippocampus; Ctx, cerebral cortex; Cbm, cerebellum. 
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Figure 4. Regional transcriptional heterogeneity in microglial immunophenotype and 

bioenergetics. (a) Cluster 3 transcripts were analysed for enrichment of Gene 

Ontology (GO) Biological Processes in DAVID (p < 0.05 with Benjamini correction) 

and a network graph of enriched GO terms generated in Enrichment Map. Nodes 

represent individual GO terms (gene sets) and edges the relatedness between them. 

(b) Examples of individual genes in cluster 3 manually annotated to functional 

categories of immunoregulatory function. (c) mRNA expression of selected genes in 

purified microglia measured by quantitative PCR. Data show mean ± SD, n = 4 

independent samples, each from tissue pooled from eight mice. *p < 0.05, **p < 

0.01, ***p < 0.001, one-way ANOVA with Bonferroni correction. (d, e) Expression of 

MHC-II protein was measured by flow cytometry on freshly isolated adult microglia 

identified by CD11b+CD45lo profile in mixed brain cell suspensions from discrete 

brain regions. Data show (d) proportion of CD11b+CD45lo microglia positive for MHC-

II and (e) mean fluorescence intensity of MHC-II expression on CD11b+CD45lo cells. 

Data show mean ± SD, n = 3 independent cell preparations. ***p < 0.001, one-way 

ANOVA with Bonferroni correction. (f) Cluster 2 transcripts were analysed for 

enrichment of GO Biological Processes (p < 0.05 with Benjamini correction) and a 

network graph of enriched GO terms generated in Enrichment Map. (g, h) Examples 

of individual genes in cluster 2 manually annotated to functional categories of 

bioenergetic function.  Data show mean ± SD, n = 4 independent samples, each 

from tissue pooled from eight mice. *p < 0.05, **p < 0.01, ***p < 0.001, one-way 

ANOVA with Bonferroni correction. Str, striatum; Hpp, hippocampus; Ctx, cerebral 

cortex; Cbm, cerebellum. Specific p values for all statistical comparisons are 

presented in Supplementary Table 13. 
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Figure 5. Regional microglial heterogeneity in immunophenotype suggests 

differences in immune vigilance. (a) Microarray expression levels in purified microglia 

of selected families of immunoreceptors containing activating and inhibitory 

members. Data show mean ± SD, n = 4 independent samples, each from tissue 

pooled from eight mice. *p < 0.05, **p < 0.01, ***p < 0.001, one-way ANOVA with 

Bonferroni correction. (b,c) Heat maps showing microarray expression patterns of 

immunoreceptor genes arranged according to (b) family and (c) activating (A) or 

inhibitory (I) status. Column Z-score intensities represent the mean of four 

independent samples per region with red referring to a high probeset expression and 

blue low expression (d) Genes uniquely induced (>5-fold, p < 0.05 with FDR 

correction) by LPS or IL-4 in microglia were determined from publicly available 

microarray expression datasets25. (e,f) Heat maps showing microarray expression 

patterns for the subsets of unique (e) LPS- or (f) IL-4-inducible genes that were 

differentially expressed (p < 0.05 with FDR correction) according to brain region. 

Row Z-score intensities represent the mean of four independent samples per region 

with red referring to a high probeset expression and blue low expression. (g) 

Microarray expression levels of archetypal marker genes of M1 (Nos2) and M2 

(Arg1) activation with Itgam as comparison. Data show mean ± SD, n = 4 

independent samples, each from tissue pooled from eight mice. (h) Region-

dependent variation of cortical and cerebellar microglia in response to the stimulation 

with E.coli, Str, striatum; Hpp, hippocampus; Ctx, cerebral cortex; Cbm, cerebellum. 

(h) Purified microglia were incubated with Escherichia coli strain K-12 and net 

replication of bacteria within microglia computed from counts of bacterial colonies 

derived from microglial cell lysates at indicated timepoints. Data are representative of 

two independent cell preparations and show mean ± SEM, n = 3 replicate samples 
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from one cell preparation. p < 0.05, two-way ANOVA with Bonferroni correction. Str, 

striatum; Hpp, hippocampus; Ctx, cerebral cortex; Cbm, cerebellum. Specific p 

values for all statistical comparisons are presented in Supplementary Table 13. 

 

Figure 6. Regional microglial heterogeneity is comparable to inter-tissue 

macrophage diversity. (a) Principal components analysis of the present regional 

microglial expression datasets and systemic macrophage datasets shows the extent 

of regional microglial heterogeneity relative to macrophage tissue diversity. (b) The 

number of highly-enriched genes (>10-fold, p < 0.05 with FDR correction) in 

microglia compared to peritoneal macrophages was similar for microglia from each 

brain region. (c) Venn diagram showing regional overlap of the genes highly 

enriched in microglia versus peritoneal macrophages. (d) The fold-change (microglia 

versus peritoneal macrophages) in expression of selected genes recently identified 

as signature genes distinguishing microglia from systemic macrophages was 

comparable across brain regions. Str, striatum; Hpp, hippocampus; Ctx, cerebral 

cortex; Cbm, cerebellum. 

 

Figure 7.  Region-specific microglial ageing. (a) Transcripts within the 4 months old 

immunoregulatory and bioenergetics clusters (see Fig 3) were assessed for age-

regulated differential expression and the proportion of age-stable and age-altered 

transcripts determined. (b) Principal components analysis plot of microarray 

expression profiles for purified microglia from discrete brain regions at 4, 12 and 22 

months of age. (c) Sample-to-sample correlation network graph of microarray 

datasets was performed in BioLayout Express3D and clustered using a Markov 
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clustering algorithm. Nodes represent individual samples and edges the degree of 

correlation between their expression patterns. Colours denote discrete clusters. (d) 

Comparison of the number of differentially expressed transcripts (p < 0.05 with FDR 

correction, fold change ≥ 1.5) between different ages for each brain region. (e) 

Comparison of the number of up-regulated and down-regulated transcripts (p < 0.05 

with FDR correction, fold change ≥ 1.5) at 22 vs 12 months in each brain region. (f) 

Hierarchical clustering and heat map of top transcripts with significant age-region 

interaction (p < 0.05, two-way ANOVA with FDR correction). The scaled expression 

value (row Z-score) is displayed in a blue-red colour scheme with red indicating 

higher expression and lower expression in blue. Str, striatum; Hpp, hippocampus; 

Ctx, cerebral cortex; Cbm, cerebellum. 

 

Figure 8. Biological pathways underlying region-specific microglial ageing. (a) 

Transcript-to-transcript correlation network graph of transcripts differentially 

expressed according to age (p < 0.05 with FDR correction) and clustered using a 

Markov clustering algorithm. Nodes represent individual transcripts and edges the 

degree of correlation in expression pattern between them. Colours denote discrete 

clusters. Circled region includes clusters with greater expression in cerebellum 

and/or increasing with age; square region includes clusters with greater expression 

in forebrain regions and/or declining expression with age. (b) Cluster position and 

mean expression profile of transcripts from cluster 2 indicating greater and/or earlier 

age-related changes. (c, d) Interferon pathway genes showing (c) earlier and/or (d) 

greater/selective increases in expression in cerebellar microglia compared to 

forebrain regions during ageing. Data show mean ± SD, n = 4 independent samples, 
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each pooled from tissue from eight mice. *p < 0.05, **p < 0.01, ***p < 0.001 vs 4 

month; #p < 0.05, ##p < 0.01, ###p < 0.001 vs 12 month, two-way ANOVA with 

Bonferroni correction. (e) Heat maps showing microarray expression patterns of 

selected immunoreceptor family genes during ageing arranged according to 

activating (A) or inhibitory (I) classification. Row Z-score intensities represent the 

mean of four independent samples per region and age with red indicating higher 

expression and lower expression in blue. (f) Expression patterns of Cd300 family 

genes show interaction between brain region and age for activating but not inhibitory 

members. Data show mean ± SD, n = 4 independent samples, each pooled from 

tissue from eight mice. *p < 0.05, **p < 0.01, ***p < 0.001 vs 4 month; #p < 0.05, ##p 

< 0.01, ###p < 0.001 vs 12 month, two-way ANOVA with Bonferroni correction. (g, h) 

Cluster position and mean expression profile of transcripts from cluster 14 indicating 

selective decline in expression during ageing in hippocampal microglia. (h) 

Expression profiles of selected genes from cluster 14. Data show mean ± SD, n = 4 

independent samples, each pooled from tissue from eight mice. *p < 0.05, **p < 

0.01, ***p < 0.001 vs 4 month; #p < 0.05, ##p < 0.01, ###p < 0.001 vs 12 month, two-

way ANOVA with Bonferroni correction. Str, striatum; Hpp, hippocampus; Ctx, 

cerebral cortex; Cbm, cerebellum. Specific p values for all statistical comparisons are 

presented in Supplementary Table 13. 
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