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Aging is the main risk factor for neurodegenerative diseases. In aging, microglia

undergoes phenotypic changes compatible with their activation. Glial activation can

lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis

of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize

that in aging, aberrant microglia activation leads to a deleterious environment and

neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines

and an exacerbated inflammatory response to pathological changes. Whereas LPS

increases nitric oxide (NO) secretion in microglia from young mice, induction of reactive

oxygen species (ROS) predominates in older mice. Furthermore, there is accumulation of

DNA oxidative damage in mitochondria of microglia during aging, and also an increased

intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor

kappa B, which promotes more neuroinflammation, and can be translated in functional

deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are

also necessary for the microglial cell production of interleukin-1β, a key inflammatory

cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the

aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have

reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory

stimulation are reduced in adult mice. Other protective functions, such as phagocytosis,

although observed in aged animals, become not inducible by inflammatory stimuli

and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal

dysfunction could at least partially mediate age-associated microglial cell changes, and,

together with the impairment of the TGFβ1-Smad3 pathway, could result in the reduction

of protective activation and the facilitation of cytotoxic activation of microglia, resulting in

the promotion of neurodegenerative diseases.

Keywords: Alzheimer’s disease, glia, mitochondria, neurodegenerative diseases, neuroinflammation, oxidative

stress, reactive oxygen species, transforming growth factor-βββ

Introduction

Aging is a complex process of cumulative changes. A key hallmark is the progressive decline in

physiological functions and behavioral capacity, which is observed at various levels of the organism,

in particular at the central nervous system (CNS; Smith et al., 2005). These changes can lead to

altered behavior, memory impairment, or loss of several control functions (Lipsitz and Goldberger,

1992; Lipsitz, 2002; Glenn et al., 2004). In addition, some responses of the immune system, in special
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related to adaptive immune system, also decline with age,

increasing the susceptibility to infections and cancer. By contrast,

other immune responses are exacerbated, facilitating the onset

of autoimmune diseases (Yung and Julius, 2008) or the

generation of a mild chronic neuroinflammationmediated by the

dysregulation of the innate immune system, as will be discussed

here. Therefore, aging can affect several tissues and processes,

leading to highly complex functional changes.

Microglia undergoes several age-related changes that

contribute to the generation of a chronic mild inflammatory

environment, including an increased production of

inflammatory cytokines and the production of reactive oxygen

species (ROS). These changes have been linked to the appearance

of cognitive deficits and the onset of chronic neurodegenerative

diseases. Therefore, it has been proposed that aging of microglia

could contribute to other age-associated brain changes and

cognitive decline (Conde and Streit, 2006a,b; Streit, 2006;

von Bernhardi, 2010; Aguzzi et al., 2013; Kettenmann et al.,

2013).

Normal Brain Aging

Several structural and functional changes associated with normal

brain aging have been reported. Brain mass decreases in the

order of 2 to 3% per decade after the age of 50. Individuals

that are 80 years or older, brain mass is reduced by 10%

compared with that of young adults (Drachman, 2006). Magnetic

resonance imaging (MRI) and voxel-based morphometry (VBM)

show that age specially affects the volume of gray and white

matter at prefrontal, parietal, and temporal areas (Ge et al.,

2002; Sowell et al., 2003; Salat et al., 2004). Complex learning

abilities, such as dual tasks (ea. memorizing a word list

while walking), show a progressive decrease during aging

(Lindenberger et al., 2000; Salat et al., 2005). Nevertheless,

cognitive decline in aging is highly variable; many older people

keep intact their cognitive abilities (Shock et al., 1984) until

advanced ages.

At the cellular level, shortening of telomeres and activation

of tumor suppressor genes, as well as accumulation of DNA

damage, oxidative stress, and mild chronic inflammatory activity

are characteristic of aging cells. Various tissues, including the

brain show an imbalance between pro- and anti-inflammatory

cytokine levels. In addition, potentially damaging mediators,

such as cytokines, radical species (Figure 1), and eicosanoids

among others, are produced in response to the exposure to

physical, chemical or biological agents, such as ionic radiation,

pollutants, pathogens, etc. (Dröge and Schipper, 2007; Vijg and

Campisi, 2008). Both humans and mice show decreased levels

of interleukin 10 (IL10; Ye and Johnson, 2001), and increased

levels of tumor necrosis factor α (TNFα) and IL1β in the

CNS (Lukiw, 2004; Streit et al., 2004a), and IL6 in plasma (Ye

and Johnson, 2001; Godbout and Johnson, 2004). In addition,

increased transforming growth factor β1 (TGFβ1) mRNA a key

cytokine regulator, has been observed in the brain of aged mice

and rats (Bye et al., 2001).

At the same time, several changes induced by an aged

micro-environment, such as increased systemic inflammation,

increased permeability of the blood-brain barrier (BBB), and

degeneration of neurons and other brain cells, could contribute

to the production of ROS. It has been proposed that BBB

permeability increases in aged animals (Blau et al., 2012; Enciu

et al., 2013), facilitating perhaps infiltration by monocytes

releasing mitochondria-generated ROS. An age-related increase

in the number of CD11b+ CD45high cells, compatible with

infiltrated monocytes, has been reported in the brain of aged

rats (Blau et al., 2012). Likewise, expression levels of chemotactic

molecules, such as interferon-inducible protein 10 (IIP10) and

monocyte chemotactic protein-1 (MCP-1), are increased in the

hippocampal region (Blau et al., 2012).

Glial Cells, Neuroinflammation and
Oxidative Stress

Neuroinflammation is choreographed by microglia and

astrocytes, and is defined by increased levels of a complex

arrangement of mediators, including IL1β, TNFα and TGFβ,

all of which are increased in aged individuals (McGeer and

McGeer, 2001; von Bernhardi, 2007; von Bernhardi et al., 2010).

Microglia are the brain resident macrophages (Hemmer et al.,

2002; Ransohoff and Perry, 2009; Rivest, 2009) providing its

first line of defense. In the brain of healthy adults, microglia are

slender ramified cells that constantly survey brain parenchyma

(Davalos et al., 2005; Nimmerjahn et al., 2005). When stimulated,

microglia activate, enlarge their cell body (Nimmerjahn et al.,

2005; Frank-Cannon et al., 2009) and change their functional

properties (Liu et al., 2001; von Bernhardi and Eugenín, 2004;

Lue et al., 2010). Microglia sense and act on a broad range

of stimuli, including autoimmune injury, infection, ischemia,

toxic insults and trauma (Streit, 2002; Kim and de Vellis, 2005;

Schwab and McGeer, 2008; Lue et al., 2010; von Bernhardi

et al., 2010). They recognize a broad spectrum of molecular

targets, such as glycolipids, lipoproteins, nucleotides, peptides,

(Nakamura, 2002; van Rossum and Hanisch, 2004; Pocock

and Kettenmann, 2007), abnormally processed, modified or

aggregated proteins (e.g., Aβ), inflammatory cytokines, and

damaged neurons, which are the strongest inducers of microglia

activation (Nakamura, 2002; Hanisch and Kettenmann, 2007;

Ransohoff and Perry, 2009; Lue et al., 2010; Schuitemaker

et al., 2012). Depending on the stimuli, microglia undergoes

different activation patterns (Gordon, 2003; Martinez et al.,

2008; Mosser and Edwards, 2008). They include (i) classical M1

activation, which can associate with cytotoxicity, (ii) alternative

phagocytic/neuroprotective M2 activation (Gordon, 2003;

Martinez et al., 2008) or (iii) regulatory activation (Mosser and

Edwards, 2008). Thus, activated microglia show a continuum

spectrum of activation patterns, resulting in the expression

of different cytokines and cytokine receptors (Town et al.,

2005).

Commitment to the M1 macrophage lineage (Satoh et al.,

2010) is defined by the activation of a member of the

interferon-regulatory factor (IRF) family. IRF5 activates genes

encoding for inflammatory cytokines, such as TNFs, IL6,

IL12 and IL23, and tumor suppressors (Ouyang et al., 2007;

Krausgruber et al., 2011). M2 polarization is controlled by IRF4
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FIGURE 1 | Reactive species participate in normal cellular function or

in pathological mechanisms depending on their overproduction.

Reactive oxygen species (ROS) and reactive nitrogen species (RNS), are

produced through several mechanisms by the cell: the electron transport

chain in mitochondria, various cytosolic and membrane enzymes (i.e.,

xanthine oxidase (XO), nitric oxide synthase (NOS), NADPH oxidase

complex, etc.), as well as exogenously provided by the environment. At the

same time, cells have several antioxidant defense mechanisms for detoxifying

ROS and RNS, including enzymes (i.e., superoxide dismutase (SOD),

catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR)

and nonenzymatic antioxidants (i.e., reduced glutathione (GSH), vitamins E

and C. The main generation pathways of ROS and RNS are also shown: the

reduction of O2 occurs by diverse mechanisms (i.e., mitochondria, XO,

NADPH-oxidase complex) leading to formation of superoxide anion (O2
•−);

which is easily transformed to hydrogen peroxide (H2O2) either

nonenzymatically or by SOD. H2O2 is converted to H2O by CAT, or by GPx,

which together with the GR regenerate GSH. In addition, under stress

conditions and high concentration of transition metal (i.e., iron ions—Fe), O2

•- can generate hydroxyl radical (OH•), which in turn can react with

polyunsaturated fatty acids (PUFAs) and generate peroxyl radical (ROO•).

Finally, O2 •- can react with nitric oxide (NO; depending on NOS), producing

the highly reactive peroxinitrite (ONOO•) anion, whereas H2O2 is converted

to hypochlorous acid (HOCl) by myeloperoxidase (MPO). The balance

between oxidants compounds and antioxidant defense determines the end

result. Optimal physiologic levels leads to beneficial effects, with ROS and

RNS acting as second messengers in intracellular signaling cascades

(modulation of gene regulation and signal transduction pathways, mainly by

activation of NFκB), regulating several physiological functions (i.e., cognitive

and immune functions). However, when overproduction of ROS/RNS is

higher than the antioxidant system, the equilibrium status favors oxidant vs.

antioxidant reactions, leading to oxidative stress, in which ROS/RNS have

harmful effects, because of their reaction with various macromolecules (lipids,

proteins and nucleic acids), contributing to cellular and tissue oxidative

damage, and the development of age-related impairments. Oxidation

products: 3-NT, 3-nitrotyrosine; 8-OHdG, 8-hydroxy-2-deoxyguanosine;

malondialdehyde (MDA); alkoxyl radical (RO•).

(Satoh et al., 2010; Krausgruber et al., 2011). Cyclic AMP-

response element binding protein (CREB)–mediated induction

of transcription factor C/EBPβ upregulates M2-specific genes

(Ruffell et al., 2009), whereas activation of transcription

factor nuclear factor kappa-light-chain-enhancer of activated

B cells (NFκB)-p50 is associated with the inhibition of M1-

activation genes (Porta et al., 2009). Secretion of IL4, IL10

and TGFβ by M2-activated macrophages, promote humoral

immune responses and down-regulate M1-mediated responses,

inhibiting several inflammatory functions (Town et al., 2005).

Originally, it was thought that M2 activation resulted in

protective functions. However, there is evidence that M2

cytokines such as IL4, IL5, IL9, and IL13 also result in the

induction of some chronic inflammatory processes (Wynn,

2003). As for regulatory macrophages; they appear to arise

at later stages of adaptive immune responses, being their

primary role limiting inflammatory activation (Mosser, 2003).

Regulatory macrophages appear to be generated through several

signaling pathways, involving extracellular signal-regulated

kinases/mitogen-activated protein kinases (ERK/MAPK; Lucas

et al., 2005; Mosser and Edwards, 2008).

Microglia are activated in nearly all CNS diseases (Kreutzberg,

1996; Hanisch and Kettenmann, 2007; Neumann et al., 2009),

producing and secreting a broad spectrum of inflammatory

mediators, such as eicosanoids, cytokines (Nakamura, 2002;

Kim and de Vellis, 2005; Tichauer et al., 2007), chemokines,

ROS, nitric oxide (NO·), small metabolites, proteases (ea. α-

antichymotrypsin and α-antitrypsin), and inflammatory markers

(ea. serum amyloid P and C-reactive protein; Li et al., 2007;

Tichauer et al., 2007; Neumann et al., 2009; Lue et al., 2010).
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Those inflammatory mediators regulate innate immune defense

and have profound effects on neuronal properties, modifying

synaptic function (Selkoe, 2002; Di Filippo et al., 2008).

In addition, microglia can also induce bystander damage of

neurons, especially under conditions of strong or long lasting

stimulation, and depending on the environmental context (Li

et al., 2007; von Bernhardi, 2007). In fact, cytotoxic activation of

microglia is associated with neuronal loss and decline of cognitive

and neurobehavioral function (Cagnin et al., 2001; Kim and

de Vellis, 2005; Block et al., 2007). Nevertheless, microglia also

secretes trophic factors and modulator cytokines, being active

partners in neuroprotection.

Neuroinflammation establishes a complex interaction with

oxidizing agents through redox sensors present in enzymes,

receptors, and transcription factors. Those factors affect neuron-

glia crosstalk and neuronal function (Liu et al., 2012),

resulting later in neurodegenerative changes (Raj et al., 2014).

Signal transduction of various cytokines, themselves critical

mediators of oxidative stress, neuroinflammation, and even

neurodegenerative changes, are modified by the redox status

(Mrak and Griffin, 2005; Kierdorf et al., 2010). Oxidative stress, a

result of the equilibrium between production and detoxification

of radical species (Figure 1), further increases inflammatory

cytokines, creating a vicious cycle (Rosales-Corral et al., 2010),

and affects the maintenance of cellular homeostasis and cell

survival (Satoh and Lipton, 2007).

Mitochondria were often thought to be the main responsible

for ROS overproduction and oxidative stress. However, NADPH

oxidase (NOX) enzymes participation is also an important

ROS-generating system (Bordt and Polster, 2014). Activation

of the phagocyte NADPH oxidase (NOX2) in microglia, plays

a role in neuroinflammation, but appears also to contribute to

neuronal death under pathologic conditions (Qin et al., 2013;

Jiang et al., 2015). Moreover, ROS production can also depend

on other NOX isoforms, which are detected also in astrocytes

and neurons (Nayernia et al., 2014). Whereas ROS derived

from normal NADPH oxidase function is required for processes

such as neuronal signaling, memory, and central homeostasis

(Jiang et al., 2015), overproduction of ROS contributes to

excessive oxidative stress, resulting in neuronal dysfunction

and neurotoxicity (Zhang et al., 2014). ROS regulates several

signal transduction pathways, including for some trophic

factors and hormones. NFκB is a transcription factor activated

by ROS and inflammatory mediators that participates both

in protective and deleterious responses, depending on the

context of stimulation that will result in the co-activation of

various signaling pathways. It activates genes regulating cellular

survival, growth, differentiation, inflammation, and cell death.

Under non-stimulated conditions, NFκB is kept inactive by

IκB (inhibitor of κB) in the cytoplasmic compartment. High

concentrations of ROS inactivate NFκB through oxidation of

its p50 subunit, inhibiting its DNA binding. In contrast to the

inhibitory effect of high ROS levels, moderate levels of ROS

lead to the sequential phosphorylation, polyubiquitination

and degradation of IκB, allowing the activation of NFκB

(Figures 1, 2). Once activated, and depending on the context,

NFκB plays a pro-survival role by inhibiting c-Jun N-terminal

kinases/stress-activated protein kinase (JNK) and caspase cell

death pathways and upregulating transcriptional activation

of anti-apoptotic proteins and genes involved in decreasing

mitochondrial ROS (mtROS), especially those coding for

manganese superoxide dismutase (MnSOD; Patten et al., 2010).

TNFα also activates NFκB associated with neuroprotection

against β-amyloid (Aβ) neurotoxicity in vitro (Barger et al.,

1995), and NFκB activates anti-apoptotic responses and

protects neurons from excitotoxicity and ischemic brain

injury (Pennypacker et al., 2001; Bhakar et al., 2002; Mattson,

2005).

On the other hand, NFκB activation can also be detrimental.

NFκB has a key role in the initiation and amplification of

inflammation through its response to inflammatory stimuli

mediated by TNFα or IL1, leading to the induction of several

cytokines and chemokines. Activation of NFκB and MAPK

pathways are conspicuous in oxidative stress- (Chen et al.,

2009; Chongthammakun et al., 2009) and Aβ-induced (Song

et al., 2004) neuronal cell death. In addition to NFκB, other

transcription factors are activated by inflammatory conditions,

such as peroxisome proliferator-activated receptor gamma

(PPARγ) and signal transducer and activator of transcription

(STAT-1) and have also been implicated in Alzheimer’s disease

(AD; Sastre et al., 2006; Cho et al., 2007).

The brain is particularly vulnerable to oxidative stress.

Vulnerability depends on its: (i) high oxygen metabolic rate

(consumes approximately 20% of the total consumption of

oxygen of a mammal), (ii) high dependence on oxidative

metabolism for obtaining energy, (iii) high content of iron, an

endogenous catalyzer for the generation of ROS and reactive

nitrogen species (RNS), (iv) lower content of antioxidant

enzymes compared with other organs (Floyd and Hensley, 2002;

Mattson et al., 2002); and (v) low ability to eliminate mutations

not removed by cell replacement as consequence of the post-

mitotic nature of neurons. Aged, or injured brains of any sort,

show oxidative modifications in nucleic acids, proteins, lipids,

and sugars (Figure 1). Several of those oxidative damage and

changes result in a loss of function (Lovell et al., 2001; Halliwell,

2006).

Age-Related Changes of Microglia

Microglial cell changes have been documented in aging.

However, many of those changes are also observed in

neurodegenerative conditions. Thus, it is still unclear whether

these changes are reactive to the underlying pathophysiology.

Although there is an agreement on the fact that degenerative

diseases are not the natural continuous progression of age-related

decline, both aging and neurodegenerative disease appear to be

highly multifactorial conditions that also share many relevant

factors. Aging is a mayor risk factor for the development of many

neurodegenerative diseases. Furthermore, neuroinflammation

and oxidative stress (both reportedly associated with non-

pathological aging in humans and animal models) are common

features for several disease phenotypes. Studies in cell cultures

and animal models suggest the existence of altered activation

states and cellular senescence in the aged brain. Not only aging
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FIGURE 2 | Reactive oxygen species and inflammation in the aged

microglia. Representation of the participation of mitochondria and

lysosomes in the increased production of ROS and inflammatory cytokines

by aged microglia. Increased intracellular ROS activate redox-sensitive NFκB

through a pathway mediated by mitochondrial ROS (associated with

decreased energetic production and increased release of ROS by the

electron transport chain) and a ROS-independent pathway, potentiating

neuroinflammation. The activation of NFκB induces production of pro-CatB

and pro-IL1β, and the activation of inflammasome in the cytoplasm.

Pro-CatB is processed into CatB in the lysosome, which in turn, mediates

the activation of pro-caspase-1 to caspase 1 and increases the processing

of pro-IL1β, releasing increased amounts of IL1β both in the phagolysosome

and the cytoplasm, as well as potentially potentiate apoptosis. Changes on

the expression of pattern recognition receptors, like TLR4 CD14 and SRA,

result in changes on neuroinflammatory activation and oxidative stress by

activating NFκB and the release of ROS.

appears to be a key risk factor for neurodegenerative as well

as other chronic diseases (Mosher and Wyss-Coray, 2014; Cho

et al., 2015), but the presence of those diseases potentiate also the

appearance of aging and senescence relatedmarkers (Baron et al.,

2014; Mosher and Wyss-Coray, 2014; Bachstetter et al., 2015).

There is high heterogeneity of microglia in various

neurodegenerative diseases and those phenotypes share

common characteristics with aging (Bachstetter et al., 2015)

as well as the pattern of microglia gene expression is shared by

aging and neurodegenerative conditions (Holtman et al., 2015).

Moreover, many of the changes described in aged microglia

represent changes that occur during aging; meaning that, they

do not appear when reaching a certain age threshold, but

they change through life, as the individual ages. Analysis of

transcriptome data from postmortem studies of frontal cortex

from 381 healthy individuals with ages spanning from young

teenagers to people older than 80 years of age, show that

microglia gene markers assemble into a transcriptional module

in a gene co-expression network (Wehrspaun et al., 2015),

whose expression pattern show a negative correlation with

age. Genes that encode microglia surface receptors for neuron

and/or microglia crosstalk are especially affected. In addition,

they found that microglia are controlled by brain-expressed

transcription factors, including RUNX1, IRF8, PU.1, and

TAL1 (Kierdorf and Prinz, 2013), which are master regulators

for the age-dependent microglia module. As the authors

highlighted, identification of age-dependent gene modules

in adulthood are relevant for understanding critical periods

for susceptibility to late-onset diseases (Wehrspaun et al.,

2015).

Senescent microglia display morphological changes

(Figure 3), with fewer and shorter processes, increased soma

volume, and formation of spheroid swellings, which is referred

as ‘‘dystrophic microglia’’ (Streit et al., 2004b; Conde and Streit,

2006a,b; Streit, 2006; Flanary et al., 2007). Microglia co-localize

with neurodegenerating neurons, and show clumping, with loss

of their homogeneous tissue distribution, and accumulation

of phagocytic inclusions (Hart et al., 2012; Tremblay et al.,

2012; Hefendehl et al., 2014). Live imaging shows that the

dynamic response of microglia to injury changes with age.

Young microglia increase their motility and extend ramifications

rapidly when exposed to ATP, an injury-associated signal, or

to a focal tissue injury. In contrast, aged microglia are less

dynamic and ramified and further reduce their dynamism

when exposed to ATP. On the other hand, disaggregation of

aged microglia from the site of injury becomes slow, indicating
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FIGURE 3 | Aging-related morphological changes of microglia. Microglial

cell morphology changes with aging. Immunohistochemistry for Iba-1 (a

constitutive identity marker for monocyte-macrophage cells) and

counterstaining with hematoxylin of hippocampal sections from animals of

different ages (1- to 18-month old). Microglia obtained from young mice have a

small cell body and very long and slender ramifications. As mice age, microglia

gradually show bigger cell bodies and progressively shorter and thicker cell

processes.

that aged microglia tend to show sustained responses (Damani

et al., 2011). Both in aging (Flanary and Streit, 2004) and in AD

(Flanary et al., 2007), microglia show telomere shortening and

decreased telomerase activity, which are speculated to be one

of the factors underlying the diminution of some functional

activities, such as clearance (phagocytosis plus effective removal

of the compounds) and basal proliferation (Harry, 2013).

Reduced microglia replication could also result in a depletion

of healthy microglia, favoring the participation of more

senescent and dysfunctional cells (Mosher and Wyss-Coray,

2014).

Activated microglia are the primary cellular source of both

inflammatory molecules and oxidative products (Figure 4).

(Pawate et al., 2004; Qin et al., 2005b; Hayashi et al., 2008).

Microglia from aged brains show increased basal production of

IL6 and enhanced lypopolysaccharide (LPS)-induced IL6 and

IL1β, compared with microglia from young mice brains in

culture (Ye and Johnson, 1999; Sierra et al., 2007). They appear

to be activated also under normal physiological conditions.

In aging, mild stimulatory events or minor injuries, otherwise

easily solved, could induce damage and initiate a disease

process. TGFβ1 is a strong regulator of neuroinflammation and

cytotoxicity and its signaling pathway could be part of the

switch mechanism from protective to deleterious activation of

microglia. Its downstream canonical signaling involves the Smad

pathway, which transduce extracellular signals from ligands

acting as transcription factors (Derynck and Zhang, 2003),

as well as a complex Smad independent signaling (Weiss

and Attisano, 2013). TGFβ1 secreted by hippocampal neurons

and astrocytes regulates microglial cell activation, attenuating

the release of inflammatory cytokines and reactive species

(Chen et al., 2002; Mittaud et al., 2002; Herrera-Molina and

von Bernhardi, 2005; Herrera-Molina et al., 2012), protecting

neuronal cells in vitro (Hu et al., 1995; Lieb et al., 2003;

Herrera-Molina and von Bernhardi, 2005) and promoting

microglia-mediated Aβ phagocytosis and degradation (Wyss-

Coray et al., 2001). These regulatory effects of TGFβ1 are

mediated by Smad3-dependent mechanisms (Flores and von

Bernhardi, 2012; Tichauer and von Bernhardi, 2012), as well

as the reported inhibition of lipopolysaccharide (LPS)-induced

macrophage and microglial activation (Werner et al., 2000;

Le et al., 2004). TGFβ1 Smad3 pathway also participates in

the inhibition of the production of radical species induced

by inflammatory stimuli and in the induction of amyloid-

β (Aβ) phagocytosis in vitro (Tichauer and von Bernhardi,

2012).

TGFβ1 levels are elevated in aged individual (Blobe

et al., 2000; Tichauer et al., 2014). However, recent reports

show that induction of the Smad3 pathway by inflammatory

conditions is decreased in normal aging (Tichauer et al., 2014).

Interestingly, this signaling pathway is impaired in AD patients

and mouse models for AD, resulting in Aβ accumulation,

Aβ-induced neurodegeneration, and neurofibrillary tangle

formation (Tesseur et al., 2006; Ueberham et al., 2006).

Evidence gathered over the last two decades indicate that

TGFβ signaling impairment often lead to neuroinflammation,

neuronal dysfunction and neurodegenerative changes, and

could be involved in the pathogenesis of neurodegenerative

diseases (Tesseur and Wyss-Coray, 2006). Given the complex

signaling pathway activated by TGFβ, which in addition to

the Smad pathway also activates Smad-independent signaling,

including ERK/MAPK, P38 MAPK, JNK, and PI3K (Derynck

and Zhang, 2003; Weiss and Attisano, 2013), a decreased

activation of Smad3 in an environment presenting elevated

levels of TGFβ, as observed in aging, could result in an increased

activation of MAPKs and PI3K, which are signaling pathways

also involved in inflammatory activation. Such an imbalance on

the signaling activated by TGFβ could explain, at least partially,

the maintenance of increased levels of microglial cell activation,

oxidative stress and mild neuroinflammation, although TGFβ1,
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FIGURE 4 | Age-related changes of microglial cell function. In aged

brains, there is an increased number, size and activation of microglia. This is

affected by additional systemic pathophysiological changes associated with

other age related changes, environmental factors and disease processes, such

as cardiovascular risk factors and metabolic syndrome or injuries. Deleterious

processes further promote an inflammatory environment, increasing cytotoxic

microglial cell activation, whereas risk factor management and pharmacological

interventions can promote a healthy aging. Aged microglia changes depend

both on gained and lost functions. They have increased basal phagocytic

activity, although a reduced capacity to induce phagocytosis when stimulated,

together with reduced lysosomal activity, resulting in a decreased clearance

activity. Microglia also shows an increased production of inflammatory cytokines

and reactive species. Those changes result in a shift of balance towards

decreased protective functions and an increased neurotoxicity.

one of the main regulatory cytokines decreasing inflammatory

activation, is increased in aged mice (Tichauer et al., 2014).

Those results indicate that TGFβ1-Smad3 signaling could be a

therapeutic target for AD treatment.

Another alternative is that stimuli that normally would

trigger a protective response, in conditions of age-related

impairment of normal homeostatic mechanisms result in a

persistent activation, which is associated, for example, to a

robust induction of oxidative stress (Figures 4, 5; von Bernhardi,

2007; Herrup, 2010), or to the upregulation of NFκB. In fact,

NFκB response is age-dependent, and it is another candidate

for age-dependent changes due to its role in the regulation of

immunity, inflammation, and cell death (Adler et al., 2007).

Blockade of NFκB in aged mice has been reported to reverse the

gene expression program and cell morphology, ‘‘rejuvenating’’

old mice (Adler et al., 2008). TNFα signaling involves NFκB,

resulting in a beneficial or detrimental response depending on

the age and the type of stimuli. Stimulation of 24 month-old

rat neurons with TNFα plus Aβ is toxic, whereas those same

stimuli are protective for 10 month-old neurons (Patel and

Brewer, 2008). The down-regulation of TNFs receptors TNFR1

and TNFR2 signaling observed in aging results in defective

NFκB activation and fails to provide a neuroprotective response

against Aβ toxicity by TNFα (Patel and Brewer, 2008). NFκB

accumulates in the nuclei of old neurons; an effect that is

also produced by blocking TNFR2. An alternative explanation

for the failure of NFκB to activate protective pathways could

depend on high concentrations of ROS (Parihar and Brewer,

2007), and the oxidized redox state of aged cells (Parihar

et al., 2008). The redox state of NFκB could be a control

mechanism regulating its availability (Sulciner et al., 1996).

It is unclear whether the over-production of ROS, through a

vicious cycle in the aging mitochondria, may activate redox-

sensitive NFkB, thereby provoking excessive inflammation in

the aged brain (Hayashi et al., 2008; Nakanishi and Wu, 2009;

Figure 2).

When exposed to endotoxins like LPS, microglia derived from

adult mice secrete high amounts of ROS, whereas young animals

microglia predominately produce NO·, with little ROS (Tichauer

et al., 2014). Aged microglia become more inflammatory
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FIGURE 5 | Aging of the nervous and immune system and the

neuroimmune crosstalk. Healthy aging of the nervous and immune systems

depend both on genetic and environmental (lifestyle) factors. Aging is

associated with a state of low grade chronic oxidative stress and inflammation

(with production of reactive mediators and inflammatory compounds and a

decreased antioxidant and anti-inflammatory capacity), which appear to be the

cause of an important part of age-related deterioration of the nervous and the

immune systems, as well as of the neuroimmune communication. Because of

their complex functions, the central nervous system (CNS) and the immune

system are especially vulnerable to oxidative damage (i.e., lipid peroxidation,

protein oxidation, DNA damage), which contributes to oxidative stress and

inflammation. Age-related changes in the immune function, known as

immunosenescence, results in increased susceptibility to infections and cancer,

inflammation and autoimmune diseases. In the CNS, oxidative stress has a

negative impact on function, leading to mitochondrial dysfunction and impaired

energetic metabolism, altered neuronal and glial signaling. There may be

disruption of the cycle glutamate-glutamine and increased levels of neuronal

calcium, which are involved in mechanisms of neuronal damage leading to loss

of function, excitotoxicity and apoptosis. In addition, dysfunction of the

neuron-glia crosstalk leads to a chronic neuroinflammation, which promotes a

prolonged activation of microglia and further induction of dysfunction and

degenerative changes. All these alterations contribute to functional decline and

the development of neurodegenerative diseases. NO, nitric oxide; NOS, nitric

oxide synthase; RNS, reactive nitrogen species; ROS, reactive oxygen species.

than their younger counterparts upon systemic inflammatory

stimulation; thus exacerbating neurodegenerative changes

(Combrinck et al., 2002; Cunningham et al., 2005; Godbout et al.,

2005; Sierra et al., 2007). Systemic inflammation also causes aged

microglia to become more responsive than young microglia,

increasing production of inflammatory cytokines (IL1β, IL6 and

TNFα). The resulting exacerbated response to inflammatory

challenges appears to depend on the priming of microglia by

previous activation experience. Primed microglia undergoes

a phenotypic shift towards a sensitized state, responding to a

secondary ‘‘triggering’’ stimulus more rapidly and robustly than

non-primed cells (Harry, 2013). Therefore, the exacerbated

response to stimuli of aged microglia can contribute to neuronal

damage (Figure 5) and the onset of chronic diseases (Perry et al.,

2003, 2007; Perry, 2004).

Age-related changes on cell response involve changes on

microglia receptors (Figures 2, 4). Aged microglia show

upregulation of Toll-like receptors (TLRs), and TLR4 co-

receptor CD14 (Letiembre et al., 2007), as well as age-related

changes in signal transduction of TLR4. There are changes in

the expression profile of scavenger receptors (SRs; Yamamoto

et al., 2002; Hickman et al., 2008). TLRs, CD14, and SRs

are pattern recognition receptors (PRRs), key participants of

the host defense response and the phagocytosis of pathogen-

associated molecules pattern (PAMPs) and damage-associated

molecules pattern (DAMPs), being crucial for the innate immune

response The activation of these receptors by diverse ligands

is associated with activation of microglial cell (Godoy et al.,

2012; Murgas et al., 2012, 2014), production of inflammatory

mediators, and uptake of pathogens and macromolecules,

including Aβ (Alarcón et al., 2005). Thus, changes on their

expression pattern affect cell activation (Cornejo and Von

Bernhardi, 2013). In addition, aged microglia also express some

surface antigens that are not normally expressed by their young

counterparts, including the major histocompatibility complex

II (MHCII), associated with antigen presentation, and ED1,

the rodent equivalent of CD68, associated with phagocytosis.

Regardless of the increased CD68, aged microglia are not better
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phagocytes than young microglia (Floden and Combs, 2011).

In fact, aged microglia appear to have a decreased ability to

phagocytose Aβ compared with microglia from young mice

(Floden and Combs, 2011). We observed that although basal

phagocytosis by microglia obtained from 1-year old mice is

slightly increased compared with young mice, phagocytosis

fails to be induced by TGFβ (Tichauer et al., 2014) or LPS

(Cornejo et al., 2014), and is not coupled to an effective

clearance machinery (Figure 5). Moreover, in addition to

phagocytosis, protein homeostasis is impaired at several levels,

including chaperone-mediated protein folding and stability,

protein trafficking, protein degradation and autophagy. A major

consequence of these impairments is the aggregation of abnormal

proteins, which is an important neuropathological finding

in several neurodegenerative diseases, such as Parkinson’s

disease (PD) and AD (Taylor and Dillin, 2011). Taken

together, age-related changes in receptors expression could

account for alterations observed in microglial cell function,

providing insight on cell phenotypes that could play a role

in the pathophysiological changes leading to neurodegenerative

diseases.

Autophagy capacity can regulate mitochondrial integrity,

ROS production, and subsequent NLR family, pyrin containing 3

(NLRP3) inflammasome activation (Nakahira et al., 2011; Zhou

et al., 2011; Salminen et al., 2012). NLRP3 activation is negatively

regulated by autophagy, because damaged mitochondria

producing high amounts of ROS are removed by autophagy. In

fact, inhibition of autophagy triggers accumulation of damaged

mitochondria (Zhou et al., 2011), which produce more ROS.

Mitochondrial DNA (mtDNA), which encodes components

of the mitochondria electron transfer complexes, is highly

susceptible to ROS-mediated damage, due to its close proximity

to the ROS generated by the respiratory chain and to its decreased

number of protective histones and DNA-binding proteins.

Aging-related accumulation of mtDNA damage results in a

reduced expression of mitochondria electron transfer complexes,

in especial complexes I and IV, because they contain a relatively

large number of mtDNA-encoded subunits. The reduced activity

of complex I further facilitates the generation of ROS (Lin

et al., 2002), establishing a vicious cycle (Kang et al., 2007;

Figure 2). Most cells have protective mechanisms, depending

on enzymatic breakdown or scavenging of ROS (Figure 1).

However, antioxidant systems appear to be less functional in

the brain, which can lead to persistent increased levels of ROS

and RNS reacting with the various target molecules (Halliwell,

2006).

Functional decline of lysosomes and mitochondria in

microglia produces an exacerbated generation of ROS and

inflammatory mediators, which could further promote microglia

aging (Hayashi et al., 2008). Accumulation of mitochondrial

DNA oxidative damage in microglia during aging, increases

ROS production. The increased intracellular ROS, in turn,

activates the redox-sensitive nuclear factor kappa B, inducing

neuroinflammation (Nakanishi and Wu, 2009), which in turn

also promotes oxidative stress. Mitochondria-derived ROS and

cathepsin B, are also involved in the microglial production of

interleukin-1β (Figure 2).

During aging, autophagy efficiency declines and becomes

dysfunctional, resulting in the accumulation of waste materials

within cells (Salminen et al., 2012). On the other hand, induction

of phagocytosis on LPS-primed microglia can cause lysosomal

damage. The release of cathepsin B (CatB), a lysosomal cysteine

protease, into the cytoplasm triggers the activation of the NLRP3,

leading to the production and secretion of IL1β (Figure 2) and

IL18 (Halle et al., 2008; Hornung et al., 2008). Interestingly, a

NLRP3-deficient AD mice model show improvement of their

spatial memory deficits, a reduced expression of brain caspase-

1 and IL1β, and enhanced Aβ clearance (Heneka et al., 2013). In

addition of Aβ, cholesterol crystals is also amajor causative factor

of age-related diseases such as atherosclerosis, and also shows

activation of the inflammasome in a CatB-dependent manner

(Duewell et al., 2010; Masters et al., 2010).

Aged Microglia-Related Neuronal
Impairment and Neurodegenerative
Diseases

Age-dependent changes gradually have a toll on brain

homeostasis and function (Herrup, 2010; von Bernhardi

et al., 2010), changing glial cell reactivity (von Bernhardi, 2007).

Cytotoxic activation of microglia, increased production of

inflammatory cytokines, and ROS combined with impaired

ability to regulate increased oxidative stress in the aging brain

(Conde and Streit, 2006b; von Bernhardi et al., 2010). Those

changes appear to be causative factors for neurodegenerative

processes, (Figure 5; Block et al., 2007) and the associated decline

in motor and cognitive functions (Forster et al., 1996; Navarro

et al., 2002).

Chronic inflammation induces deficits in long-term

potentiation (LTP), the major neuronal substrate for learning

and memory, in middle-aged but not in young rats (Liu et al.,

2012). Similarly, in vivo microinjection of fibrillary Aβ in the

cortex of aged rhesus monkeys showed neurodegeneration,

tau phosphorylation, and microglial cell proliferation, but

not in young monkeys, suggesting that Aβ neurotoxicity

is a pathological response of the aging brain (Geula et al.,

1998). In this context, microglia upregulated production

of IL1β, is possibly implicated in age-associated cognitive

impairments (Rachal Pugh et al., 2001; Maher et al., 2006). As

mentioned above, aged microglia actively participate in the

genesis of neuronal damage in neurodegenerative diseases,

through production of inflammatory mediators and ROS

(Block et al., 2007), but also because of the impairment of

their neuroprotective functions (Figure 5). Thus, microglia

contribute to the death of dopaminergic neurons in PD,

forebrain neurons in AD, and motor neurons in amyotrophic

lateral sclerosis (ALS; Boillée et al., 2006; Mount et al., 2007).

Similarly, TNFα promotes PD progression (McCoy et al.,

2006), whereas the absence of TNFR1 protects against AD-

and PD-like disease in mice (Sriram et al., 2002; He et al.,

2007).

Neurodegenerative diseases often have increased generation

of RNS and ROS as an early event (Perry et al., 2002; Shi

and Gibson, 2007), which can contribute to neuronal cell
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injury via various redox reactions (Figure 1). Deficiency

in antioxidant enzymes, such as superoxide dismutase

(SOD), increases disease associated phenomena (Li et al.,

2004a), increasing tau phosphorylation (Melov et al., 2007),

and amyloid and tau aggregation (Li et al., 2004a), and

accelerates behavioral impairment (Esposito et al., 2006).

Thus, oxidative damage in the brain of AD patients and

animal models is more abundant than that observed in age-

matched control individuals. Conversely, increased expression of

antioxidant enzymes attenuates AD phenotype (Dumont et al.,

2009).

There are additional mechanisms for reactive species-related

impairment, NO· target cysteine residues of proteins to form

S-nitrosothiols (SNOs). The interaction with proteins that are

targets of S-nitrosylation represents NO· signal transduction

(Hess et al., 2005). S-nitrosylation switches the on-off functions

of receptors, GTPases, and transcription factors, and can affect

mitochondrial function. NO· reversibly inhibits complexes I

and IV (Clementi et al., 1998), further increasing release

of ROS by mitochondria, further promoting dysfunction

of mitochondrial dynamics (Bossy-Wetzel and Lipton, 2003;

Barsoum et al., 2006). Moreover, S-nitrosylation modulates

GTPase activity of the mitochondrial fission protein dynamin-

related protein 1 (Drp1), favoring altered mitochondrial

dynamics, synaptic damage, and eventually neuronal death

(Cho et al., 2009). Other examples relevant for aging and

neurodegeneration are: (i) the S-nitrosylation of protein-

disulfide isomerase (PDI, an enzyme relevant for the maturation

and transport of unfolded secretory proteins), which abolishes

PDI-mediated inhibition of neurodegenerative changes triggered

by endoplasmic reticulum (ER) stress, misfolded proteins,

or proteasome inhibition (Uehara et al., 2006); and (ii) the

S-nitrosylation of ApoE, resulting in changes of its interaction

with low-density lipoprotein (LDL) receptors (Abrams et al.,

2011).

Microglia and Alzheimer’s Disease

Neurodegenerative diseases, including AD, involve several

converging disease mechanisms, generating a functional

interplay between neurons and glial cells (Figure 5). The

AD brain is characterized by the presence of senile plaques,

constituted by aggregated Aβ, and neurofibrillary tangles

(NFTs), formed by hyper-phosphorylated tau, as well by

synapse and neuronal loss (Uylings and de Brabander, 2002),

and glial cell activation (Kim and de Vellis, 2005; Jellinger,

2006; Heneka and O’banion, 2007; von Bernhardi, 2007; von

Bernhardi et al., 2010). Interestingly, Alzheimer, on his original

descriptions, already stated that these lesions were markers

of an upstream process rather than the disease cause (Davis

and Chisholm, 1999). The fact that brain innate immune

response could be involved in the genesis of neurodegenerative

diseases (Nguyen et al., 2002; Björkqvist et al., 2009; von

Bernhardi et al., 2010), lead to re-consider the role of Aβ and

propose glia to be a leading factor in the pathology of AD

(von Bernhardi, 2007). The hippocampus, one of the regions

affected early by neurodegeneration in AD, is one of the most

densely populated by microglia together with the Substantia

nigra. However, most scientists who adhere to the ‘‘amyloid

cascade hypothesis’’ of AD, view Aβ as the cause of AD and

neuroinflammation just as a consequence of glia activation

(Akiyama et al., 2000; Heneka and O’banion, 2007; Hirsch and

Hunot, 2009).

Microglia are intimately associated with Aβ plaques in

AD, but not with the diffuse Aβ plaques of the normal

aged brain (Itagaki et al., 1989; von Bernhardi et al., 2001;

von Bernhardi, 2007; Hashioka et al., 2008; Heurtaux et al.,

2010). The trigger for microglia activation is unclear, but the

invasion of plaques by active microglia has been reported

in AD transgenic mice models, when Aβ is injected into

the brain or in in vitro experiments (von Bernhardi et al.,

2001; Alarcón et al., 2005; Reed-Geaghan et al., 2009; Njie

et al., 2012; Thanopoulou et al., 2010). Their activation by Aβ

(Simard et al., 2006; Hashioka et al., 2008; Koenigsknecht-Talboo

et al., 2008) results in cell transformation (Husemann et al.,

2001). Microglia aging is associated with several mechanisms

underlying the formation and accumulation of Aβ aggregates.

Microglia clearance (phagocytosis plus degradation) of Aβ is

reduced leading to its initial accumulation (Floden and Combs,

2011; Zhao et al., 2014), as well as its capacity to migrate

(Sheng et al., 1998; Damani et al., 2011) and shift among

inflammatory activation patterns towards a more phagocytic

stage (Sierra et al., 2007; Streit et al., 2009; Schuitemaker

et al., 2012). Similar results have been reported on AD patients

(Mawuenyega et al., 2010). There is an age-related impairment

of phagocytosis (Harry et al., 2000; Zhao et al., 2014) and

clearance. Clearance by both microglia and astrocytes appears

to depend on peroxisome proliferator-activated receptor-γ

(PPARγ) and apolipoprotein E (apoE) levels, which promote

the proteolytic clearance of soluble forms of Aβ (Mandrekar-

Colucci et al., 2012). In addition, human genetic studies

indicate that coding variants of TREM2, a regulator of microglia

activation and phagocytosis, are suggestive of microglia immune

senescence (Guerreiro et al., 2013), and results in a substantial

risk for AD. Plaque-associated reactive microglia in these

animals show enhanced staining for TNFα and IL-1β (Benzing

et al., 1999). Neuroinflammation as well as other stressors

promote production and release of Aβ (Lee et al., 2007;

Mosher and Wyss-Coray, 2014) as well as its amyloidogenicity,

favoring its aggregation. However, acute increased levels of

various inflammatory factors, including IL1β and IL6 are

associated with activation of glial cells and reduced amyloid

pathology (Chakrabarty et al., 2010; Jiang et al., 2015), although

chronic neuroinflammation fails promoting amyloid removal.

Promotion of Aβ production and aggregation has been also

observed secondary to microglia-related ROS through a stress

response or depending on oxidative modifications of the peptide

(Giasson et al., 2002).

Importantly, Aβ is also clearly indicated as a source of

oxidative stress (Varadarajan et al., 2000), as Aβ activates

microglia to produce extracellular superoxide radical (O2·-; Qin

et al., 2002; Bamberger et al., 2003), and can be a potent inducer

of NFκB via the induction of intracellular ROS (Lee et al., 2005;

Valerio et al., 2006) as well as through the TNFR1 signaling,
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which results in neuronal apoptosis (Li et al., 2004b; Valerio et al.,

2006).

In addition to the role of oxidative stress in neuron

dysfunction and degeneration, secondary to Aβ neurotoxicity,

excitotoxicity, aggregation of proteins, and impaired calcium

metabolism (Kuchibhotla et al., 2008; Lopez et al., 2008; Santos

et al., 2010a,b), ROS appears to be a common mediator

unifying the spectrum of cellular mechanisms leading to AD

(Figure 6). Oxidative damage of the brain of AD patients and

animal models include lipid peroxidation (Praticò et al., 1998;

Butterfield and Lauderback, 2002; Butterfield, 2002; Butterfield

et al., 2002), and oxidation of proteins and nucleic acids

(Nunomura et al., 2001, 2004). RNA and DNA oxidation could

impair protein synthesis, DNA repair, and transcription, and

could eventually lead to cell death (Figure 1; Ding et al.,

2006). Oxidation of mtDNA is 10-fold more abundant than

that of nDNA. Increased mtDNA oxidation could lead to the

reported mitochondrial abnormalities, which may contribute

to the increase of O2·- leakage, ultimately resulting into

FIGURE 6 | The “Glial Cell Dysregulation Hypothesis” of Alzheimer’s

disease (AD). The glial cell dysregulation hypothesis proposes that AD has its

cause on changes on the activation of microglia and on impaired regulation,

which become increasingly cytotoxic decreasing their defensive functions.

Impaired activation results in oxidative stress, persistent neuroinflammation

and neuronal dysfunction, all of which can also induce production and

aggregation of Aβ, and additional neuronal dysfunction. Inflammatory

activation, secondary to aging and to various forms of stimuli or injury through

life, can result in glial cell dysregulation. Dysregulated activation of glia,

through the abnormal release of cytokines, reactive species, and other

mediators, contributes to the increased expression of Aβ as well to functional

and degenerative changes of neurons, perpetuating abnormal activation of

glia, synaptic dysfunction and cell damage.

elevated oxidative stress (Swerdlow, 2007; Swerdlow et al.,

2010).

Glia actively promote neuronal dysfunction and

neurodegeneration (von Bernhardi, 2007) through oxidative

stress mechanisms by: (i) modifying intracellular proteins and

lipids (Lovell et al., 2001; Halliwell, 2006; Zhu et al., 2007);

(ii) inducing mitochondrial dysfunction, which increases

production of ROS, and activates caspases, activating cell

death pathway (Baloyannis, 2006; Lin and Beal, 2006a,b)

and ATP depletion (Baloyannis, 2006); (iii) facilitating

formation of ubiquitinated aggregates of misfolded proteins

(Oddo, 2008) as consequence of the impairment of energy-

dependent ubiquitin–proteasome pathway and abnormal

phosphorylation of cytoskeleton components (Arnaud et al.,

2006); (iv) inhibiting glial cell excitatory amino-acid transporter

2 (EAAT2) activity (Tian et al., 2010) inducing release of

glutamate by astrocytes (Lauderback et al., 2001). Overactive

glutamate receptors increase intracellular free calcium, causing

mitochondrial toxicity (Mahad et al., 2008; Kawamata and

Manfredi, 2010) and affect several calcium-dependent enzymes

leading to dysfunction and initiation of apoptosis (Mattson

and Chan, 2003); and (v) activating microglia (Figure 4) and

astrocytes to produce and release inflammatory cytokines (von

Bernhardi, 2007; Agostinho et al., 2010; Lee et al., 2010; von

Bernhardi et al., 2010) and other reactive mediators (NO·,

ROS; Zhu et al., 2007; von Bernhardi, 2007; Block, 2008;

Agostinho et al., 2010; von Bernhardi et al., 2010). These

factors activate signaling pathways of cytokines as well as of

eicosanoids produced by cyclooxygenase-2 (COX-2; Wang

et al., 2004; Trepanier and Milgram, 2010). Aging and AD also

present changes in enzymes involved in glutathione (GSH)

metabolism (Figure 1; comprehensive view on glutathione

peroxidase (GPx), in Toppo et al. (2009). glutathione S-

transferase (GST) activity is decreased in the AD amygdale,

hippocampus, parietal lobe, and nucleus basalis of Meynert

(Lovell et al., 1998). Decreased glutathione S-transferase

omega-1 (GSTO1; Li et al., 2003), can be involved in the

activation of IL1β (Laliberte et al., 2003), a fundamental

component in the early inflammatory response of AD

(Grimaldi et al., 2000; Griffin and Mrak, 2002).

Recapitulating, we consider that neurodegenerative changes

in AD are consequence of ‘‘mis-activated’’, dysfunctional

microglia, proposing the ‘‘glia dysregulation hypothesis’’

(Figure 6; von Bernhardi, 2007). The innate immune response,

normally protective, becomes abnormally activated, contributing

to cytotoxicity (Figure 5; Nguyen et al., 2002; Wyss-Coray

and Mucke, 2002; Saud et al., 2005; von Bernhardi, 2007).

Normally activated microglia are important as the scavenger

cells of the CNS. However, if they fail responding to their

normal regulatory feedback and/or they show an impaired

ability to clear Aβ (Paresce et al., 1997; von Bernhardi,

2007), glial cells could become predominantly cytotoxic.

The distinction is relevant when developing therapeutic

approaches. The aim of therapy should be oriented to potentiate

a protective pattern of microglial cell function rather than

functionally inhibiting microglia as it is most often proposed

now.
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Treatment Strategies for
Neurodegenerative Diseases

Modulation of Microglial Cell Activation
Microglia are important actors for maintenance, repair and

defense, although dysregulated microglia have deleterious

effects. An effective microglia/neuroinflammation based therapy

should target regulation of microglial cell response towards a

beneficial pattern of activation, rather than their elimination.

Because microglial function, as well as the deleterious effect of

oxidative damage are associated with the activation of NADPH

oxidase and the production of ROS that will act on both

intracellular and extracellular targets (Block et al., 2006, 2007),

this enzyme complex appears as a relevant therapeutic target.

Originally linked only to respiratory burst in phagocytes, over

the last decade it has been reported that NADPH oxidase

homologues on diverse cells including neurons also play roles

in normal function. Several peptides and small molecules,

have been reported to inhibit NADPH oxidase, with potential

neuroprotective effect over the last decade (Choi et al., 2005;

Qin et al., 2005a). Because inhibition of NADPH oxidase

activation targets the major generator of high amounts of ROS

by microglia, its inhibition would reduce several inflammatory

factors, including eicosanoids like PGE2 (Wang et al., 2004). The

challenge is to develop tools targeting NADPH oxidase isoforms

responsible for overproduction of ROS by phagocytes like

microglia. The efficacy as neuroprotector of the NADPH oxidase

inhibitor diphenyleneiodonium has been reported in both

LPS- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated

mice (Wang et al., 2015). Diphenyleneiodonium attenuates

progressive dopaminergic degeneration, with high efficacy in

protecting the remaining neuronal population and restoring

motor function even at late stages of disease progression

in PD mouse models. Neuroprotection is associated with

inhibition of microglial cell activation, decreased α-synuclein

aggregation, and reduction of inflammatory mediators (Wang

et al., 2015).

Also some inflammatory cytokines have been considered

as possible therapeutic targets for AD (Greig et al., 2004;

Heneka and O’banion, 2007; Lee et al., 2010). However,

a side effect on therapies blocking inflammatory cytokines

is the immune suppression caused by these drugs that

leaves the patient prone to suffer grave infections. Systemic

administration of the anti-inflammatory antibiotic minocycline,

which inhibits microglia activation (Kohman et al., 2013a)

affects strongly microglia, but also astrocytes, perivascular,

meningeal, and infiltrating macrophages. It has been reported

that minocycline restores LTP deficits, while normalizing

the level of IL1β. These beneficial effects indicate that

neuroinflammation could contribute to the deficits in synaptic

plasticity, learning and memory observed during normal aging.

However, minocycline use reveals the complexity of the effects

of microglia function in neurodegenerative disease models.

Minocycline show different effects on microglial cell activation

and cognitive function along different phases of the life

spans of animal models (Kohman et al., 2013a) suggesting

that although inhibition of microglia can be beneficial at

one stage of disease progression, it becomes detrimental at

others.

Activation of Antioxidant Pathways
Reduction of ROS and oxidative stress could be also achieved

through the activation of antioxidant pathways. In addition

to the relatively weak antioxidant defenses of the brain, brain

aging also determines loss of the endogenous mechanisms of

free radical scavenging. Among cellular antioxidant defenses,

heat shock proteins have been regarded as cytoprotector for

oxidative damage-dependent mechanisms in neurodegenerative

diseases. Among the stress proteins, the redox-regulated heme-

oxygenase 1 (HO-1) gene, and its activation represents a

protective system potentially active against brain oxidative

injury. HO-1 polymorphisms have been associated with

increased AD susceptibility, and dysregulation of the HO system

has been associated with brain aging and the pathogenesis of

AD (Markesbery, 1997; Pappolla et al., 1998). AD patients’

brains present microglia recruitment by neurons with tau

abnormalities. Those cell clusters correlate with increased

levels of NRF2 and HO-1, suggesting an attempt of the

diseased brain to limit microgliosis. Microglial cells HO-1

could be especially relevant for the regulation of neurotoxic

mediators, being responsible of the antinflammatory effect

of compounds such as schizandrin C (Park et al., 2013)

and several other compounds (Foresti et al., 2013). Lastres-

Becker et al. recently showed that fractalkine activated AKT

in microglia, upregulating the transcription factor NRF2,

and its target genes including HO-1. Fractalkine regulates

microglial cell activation in neurodegenerative diseases. In

a mouse model of tauopathy, they confirmed that NRF2-

and fractalkine receptor-KO mice did not express HO-

1 in microglia and showed they played a crucial role in

the attenuation of neuroinflammation. Those observations

suggest that NRF2-dependent induction of HO-1 could limit

over-activation of microglia (Lastres-Becker et al., 2014). In

vitro studies report a decreased HO-1 expression in HIV-

infected macrophages. HO-1 deficiency correlates with increased

glutamate and neurotoxicity, whereas HO-1 siRNA knockdown

or its enzymatic inhibition in HIV-infected macrophages

increased supernatant glutamate and neurotoxicity. In contrast,

induction of HO-1 by dimethyl fumarate (DMF) decreased

glutamate and neurotoxicity. Furthermore, increased IFNγ, as

observed in CNS HIV infection, reduced HO-1 expression in

cultured human astrocytes and macrophages (Gill et al., 2014).

There are reports that activation of HO-1 is strongly protective

against oxidative damage and cell death in neurons. Thus,

modulation of HO-1 should represent a potential pharmaceutical

strategy for the treatment of neurodegenerative disorders (Racchi

et al., 2008; Schipper and Song, 2015).

Mitochondrial Antioxidants
Mitochondria have key roles in the production of ROS

and in apoptosis signaling. Several compounds targeting

mitochondria are currently being tested in clinical trials

for treatment of neurodegenerative diseases. Mitochondrial

antioxidants appear to be especially interesting at preclinical
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level (Szeto et al., 2014). Coenzyme Q10 (CoQ10), a carrier of

the electron transport chain of oxidative phosphorylation, has

been shown to be neuroprotective by attenuating mitochondrial

dysfunction and aging (Shetty et al., 2014). However, the

fact that these oral antioxidants cross poorly the BBB, has

slowed down their therapeutical use; directing new research

towards more soluble, shorter chain CoQ10 derivatives, such

as idebenone [6-(10-hydroxydecyl-2,3-dimethoxy-5-methyl-1,4-

benzoquinone], decylubiquinone (dUb), andMitoQ10. MitoQ10

has the advantage of being accumulated within mitochondria,

where it is activated into ubiquinol, which can reduce

mitochondrial oxidative damage (Lu et al., 2008). Other

class of mitochondrial antioxidants are Szeto-Schiller (SS)

peptides (Szeto, 2014), which localize in mitochondria at a

broad condition of mitochondrial membrane potential. In vivo

experiments revealed that SS peptides are protective, increasing

survival and motor performance, and decreasing cell death

(Moreira et al., 2010). In PD animal models, SS peptides

also protect dopaminergic neurons against MPTP neurotoxicity

(Moreira et al., 2010).

Therapeutic effects of the regulation of NADPH oxidase

and antioxidant treatment will not be restricted exclusively

to microglia. However, the development of drugs for specific

isoforms and the fact that neuroinflammation is mostly driven

by microglia and astrocytes, will have an enormous impact

on the cytotoxic activation of glial cells, by reducing both

ROS, inflammatory cytokines and endogenous inflammatory

mediators.

Life-Style Changes Prevent Microglia
dysrEgulation and Cytotoxic Activation

Accumulating evidence show that exercise, dietary restriction,

cognitive intervention (enriched environment) as well as other

mild stressors can play a role in reducing microglial activation

and priming during aging (Figure 7). Moderate exercising is

capable of even reducing the exaggerated neuroinflammation in

response to infection-type of stimuli in aged animals, with its

increased cytokine production and cognitive deficit (Barrientos

et al., 2011), and age-related microglial sensitization (Barrientos

et al., 2011; Kohman et al., 2013b), suggesting that exercise

could be an effective intervention to prevent microglial cell

aging. Furthermore, In adult APP/PS1 mice, exercise increase

neurobehavioral performance, which is associated with increased

numbers of certain populations of cholinergic and serotoninergic

neurons, and reduced Aβ levels and microglia activation

(Ke et al., 2011). Beneficial effects of exercise and cognitive

intervention could, at least in part, result from its induction of

brain-derived neurotrophic factor (BDFN; Barrientos et al., 2011;

Polito et al., 2014). Although most of reports are related to the

effect of BDNF on neuron function and survival, there are reports

on its effect on inhibiting activation of microglia (Garofalo

et al., 2015). Dietary restriction also appears to attenuate age-

related activation of microglia, resulting in beneficial effects on

neurodegeneration and cognitive decline (Morgan et al., 2007).

It has anti-inflammatory and anti-apoptotic effects (Loncarevic-

Vasiljkovic et al., 2012), and has been shown to elicit many

FIGURE 7 | Life style changes as a strategy for aging well. Cognitive

activity, dietary caloric restriction and moderate physical exercise induce mild

stress responses which results in a decreased production of stress proteins

and reduction of oxidative stress. In additions, there is an increased

production of neurotrophic factors, among which brain-derived neurotrophic

factor (BDNF) appears to be one of the most important, but also participate

growth hormone (GH) and insulin growth factor 1 (IGF1). Decreased stress

signal and increased trophic signal acts on mitochondrial function, improving

energetic metabolism and reducing oxidative stress to a protective level.

Stress signals and ROS, below a certain threshold concentration, induce

survival signals capable of restoring cellular homeostasis but, at higher or

continued levels, can contribute to aging and degenerative changes.

health promoting benefits, delaying immunosenescence and

attenuating neurodegeneration in animal models of AD and

PD. However, the mechanisms involved in the effect of dietary

restriction on microglial cell activation are poorly understood.

Exposure to dietary restriction attenuates LPS-induced fever,

and LPS-induced microglial activation in some specific brain

regions, including the arcuate and ventromedial nuclei of the

hypothalamus and the subfornical organ. Activation of microglia

in the hypothalamic nuclei was positively correlated with body

temperature (Radler et al., 2014). Dietary restriction suppresses

LPS-induced secretion of inflammatory cytokines, and shifts

hypothalamic signaling pathways to an anti-inflammatory bias

(Radler et al., 2015).

Interestingly, both exercise and dietary restriction have

been recently shown to promote mitochondrial biogenesis and

expression of mitochondrial transcription factor A (TFAM)

in the rat brain (Picca et al., 2012; Zhang et al., 2012).

Collectively, exercise, cognitive activity, and dietary restriction

could be effective ways to slowdown brain aging by preventing

microglia aging through secretion of growth factor and

regulatory cytokines. Although those effects are not restricted

to microglia, the fact that microglia are the major drivers

of neuroinflammation, determines that interventions affecting

them can have an enormous impact on the brain homeostatic

response.
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Concluding Remarks

Aging is a major risk factor for the great majority of

neurodegenerative diseases. Age dependent changes, including

increased glial cell activation, neuroinflammation, oxidative

stress, impaired mitochondrial function, and impaired protein

processing, could lead to the dysregulation of microglial cell

functions resulting, among several alterations in cytotoxicity and

accumulation of Aβ, generating the hallmark histopathology

of AD. Whereas each of these age-dependent changes are

discreet in the normal aging process, their combined effect,

together with the genetic background and environmental

conditions could initiate the vicious circle of cytotoxic activation

(von Bernhardi, 2007). Participation of oxidative stress could

be both a trigger and a consequence of Aβ accumulation,

mitochondrial impairment, cytotoxic activation of microglia,

proteasome dysfunction and protein misfolding, contributing to

the potentiation of the other disease mechanisms. Additionally,

oxidative stress, cytotoxicity and Aβ aggregation further decrease

proteasome activity, creating a vicious circle leading to more Aβ

and tau aggregation.

Microglia, in a close crosstalk with astrocytes, neurons and

other brain cells, serve crucial functions as the scavenger

system of the CNS, providing beneficial functions as

tissue repair in the CNS. However, chronic, dysregulated

activation of microglia appears to lead to deleterious effects

inducing malfunction and damage of brain cells. What drives

this dysregulation is not fully understood, but age-related

impairment of regulatory mechanisms, as observed for TGBβ

transduction signaling (Tichauer et al., 2014) are a promising

hypothesis for understanding cytotoxic activation in aged

individuals (von Bernhardi et al., 2011). Nonetheless, despite

the undeniable potential of activated microglia to become

deleterious, microglia have a profound immune-modulatory

and reparative potential in the CNS. Thus, instead of abolishing

microglia activation as it is most often proposed, strategies

to potentiate those beneficial functions while inhibiting

cytotoxic activation should be developed. Such strategy

may well constitute the way to treat neurodegenerative

disorders, but demands a better understanding of the

protective and modulatory pathways of immune activation.

Additional research is needed for the identification of new

pathways that may decrease the impact of microglial cell

dysfunction, in order of breaking the vicious circle leading to

neurotoxicity.

Further research is necessary to develop effective

pharmacological interventions against brain aging. Most of

the proposed targets, antioxidants, anti-inflammatory drugs

affecting cytokines, and microglia inhibitors, deeply affect

physiological cell signaling and functions, including pro-survival

signaling pathways, resulting in unacceptable side effects. In that

perspective, multi-target pharmacological approaches aimed

to reestablish normal regulation of microglia in the aged brain

may be future research avenue for slowing senescence-related

impairment. Furthermore, non-pharmacological strategies, like

exercise, life style changes and dietary restriction, could promote

a healthy aging through their effects on promoting microglial

physiological functions, while reducing inflammation and ROS

production.
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