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Microglia, often described as the brain-resident macrophages, play crucial roles

in central nervous system development, maintenance, plasticity, and adaptation to

the environment. Both aging and chronic stress promote microglial morphological

and functional changes, which can lead to the development of brain pathologies

including Parkinson’s disease (PD). Indeed, aging, and chronic stress represent

main environmental risk factors for PD. In these conditions, microglia are known to

undergo different morphological and functional changes. Inflammation is an important

component of PD and disequilibrium between pro- and anti-inflammatory microglial

functions might constitute a crucial component of PD onset and progression. Cumulated

data also suggest that, during PD, microglia might lose beneficial functions and

gain detrimental ones, in addition to mediating inflammation. In this mini-review, we

aim to summarize the literature discussing the functional and morphological changes

that microglia undergo in PD pathophysiology and upon exposure to its two main

environmental risk factors, aging, and chronic stress.
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INTRODUCTION

Parkinson’s disease (PD) affects one to two individuals per 1000 (Tysnes and Storstein, 2017),
making it the most common neurodegenerative movement disorder (Morin et al., 2014). The
diagnosis is based on four clinical cardinal signs: rigidity, bradykinesia, resting tremors, and
postural instability (Jankovic, 2008). PD is often preceded by a prodromal stage, which includes
non-motor symptoms like mood and sleep disorders (Poewe, 2008). In PD, motor symptoms arise
from the progressive degeneration of dopaminergic (DA) neurons in the substantia nigra (SN)
pars compacta. DA neurons innervate the striatum and their degeneration is associated with a
significant decrease of DA striatal content (Morin et al., 2014; Tysnes and Storstein, 2017). DA
neurons loss is often associated with an accumulation of Lewy bodies (LB), which are formed by
the aggregation of misfolded α-synuclein, mainly in the SN, but also across several brain regions

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 August 2018 | Volume 12 | Article 282

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2018.00282
http://creativecommons.org/licenses/by/4.0/
mailto:tremblay.marie-eve@crchudequebec.ulaval.ca
mailto:tremblay.marie-eve@crchudequebec.ulaval.ca
https://doi.org/10.3389/fncel.2018.00282
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2018.00282&domain=pdf&date_stamp=2018-08-30
https://www.frontiersin.org/articles/10.3389/fncel.2018.00282/full
http://loop.frontiersin.org/people/225379/overview
http://loop.frontiersin.org/people/590895/overview
http://loop.frontiersin.org/people/51155/overview
https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Lecours et al. Microglial Implication in Parkinson’s Disease

(Tansey and Goldberg, 2010). PD pathogenesis is associated
with genetic variations and environmental risk factors that
mainly comprise aging and chronic psychological stress, as
well as infection, brain trauma, and exposure to pesticides or
herbicides (Tansey and Goldberg, 2010; Schapira and Jenner,
2011; Vyas et al., 2016; Niraula et al., 2017). Levodopa (L-
DOPA) is the gold-standard symptomatic treatment for PD,
as no DA agonist demonstrates an equal efficacy on motors
symptoms. However, adverse effects limit its chronic use.
Within 5–10 years of treatment, most patients experience motor
complications including L-DOPA-induced dyskinesia (LID),
abnormal involuntary movements that can be more debilitating
than the disease itself (Mercuri and Bernardi, 2005).

Inflammation, among the central nervous system (CNS)
and periphery, is also a main hallmark of PD (Vawter et al.,
1996; Nagatsu et al., 2000; Imamura et al., 2003; Mount et al.,
2007; Litteljohn and Hayley, 2012; Doorn et al., 2014). In the
CNS, microglia which are known as the resident immune cells
were proposed to mediate the inflammatory response in PD.
The two main environmental risk factors for PD, aging, and
chronic stress, are linked to increased levels of pro-inflammatory
mediators in the CNS and periphery (Vyas et al., 2016; Niraula
et al., 2017; Tian et al., 2017). Nevertheless, the implication of
microglia in the development and progression of PD is still
unclear, and it remains undetermined whether their alterations
are a cause or consequence of DA neurons loss (Le et al.,
2016). Microglia were recently shown to exert throughout the
lifespan crucial physiological roles (Tay et al., 2018), which could
become compromised and contribute to PD pathophysiology.
Transcriptomic studies also shed light on the complex signature
of microglia, defining several phenotypes across contexts of
health and disease (Butovsky et al., 2014; Gosselin et al., 2017;
Hanamsagar et al., 2017; Wlodarczyk et al., 2017). In the present
mini-review, we aim to summarize microglial functions in health
and their potential implications in PD.

DIVERSE ROLES OF MICROGLIA IN
HEALTH

The origin of microglia has long been a subject of debate until
elegantly designed in vivo lineage studies in mice identified
erythromyeloid cells from the embryonic yolk sac as their
progenitors (Ginhoux et al., 2010; Schulz et al., 2012; Kierdorf
and Prinz, 2013; Gomez et al., 2015; Hoeffel et al., 2015).
These progenitors colonize the brain during the first trimester
of fetal development, in both rodents, and humans, then mature
into microglia (Kierdorf and Prinz, 2013). Thereafter, microglial
pools are maintained by self-renewal, at least under normal
physiological conditions (Hashimoto et al., 2013; Askew et al.,
2017).

Mature microglia which display a ramified morphology,
referred to as homeostatic microglia, constantly survey the CNS
environment and contribute to its maintenance and plasticity
through specific molecular pathways (Tremblay et al., 2011;
Kierdorf and Prinz, 2013; Nayak et al., 2014; Schafer and Stevens,
2015; Tay et al., 2017). In particular, homeostatic microglia

contribute to synaptogenesis, synaptic pruning, and myelination
(Schafer and Stevens, 2015; Kaur et al., 2017; Li and Barres, 2017;
Paolicelli and Ferretti, 2017; Tay et al., 2017; Low and Ginhoux,
2018). Microglia are also required for the adaptation of the brain
and behavior to the living environment (Tremblay et al., 2011;
Schafer and Stevens, 2015; Tay et al., 2017, 2018). Upon injury
or infection, and even chronic psychological stress, microglia
undergo various morphological and functional changes often
designated as microglial “activation” or reactivity to pathological
or traumatic challenges (Nayak et al., 2014; Tay et al., 2017).
Morphological and functional changes of microglia also occur
during aging where these cells become “senescent,” i.e., impaired
in their surveillance and response to injury (Streit et al., 2014).
Considering that changes in microglial density and morphology
profoundly impact on their functions (summarized in Figure 1),
these findings indicate that microglia could play an important
role in PD.

MICROGLIA IN PARKINSON’S DISEASE
PATHOPHYSIOLOGY

In macaque monkeys treated with the neurotoxin 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), microglia
immunopositive (+) for major histocompatibility complex
(MHC) class II were found to be highly heterogeneous. They
showed ramified, amoeboid or multinucleated morphologies, in
the SN, nigrostriatal tract, and globus pallidus. Of note, MHC
class II is considered a marker of antigen presentation (Weenink
and Gautam, 1997). However, in the striatum of macaque
monkeys receiving MPTP, microglia mainly displayed a ramified
morphology with little evidence of active phagocytosis associated
with the accumulation of fat granules in their processes (Hurley
et al., 2003). By contrast, amoeboid microglia were observed in
both the SN and striatum of mice exposed toMPTP (Kurkowska-
Jastrzebska et al., 1999; Wu et al., 2002). Differences in MPTP
administration paradigms or between species could explain
this apparent discrepancy (Hurley et al., 2003). In fact, PD
progression in humans has been shown to be best recapitulated
in non-human primates (Table 1 summarizes different animal
models used in PD research) (Grow et al., 2016).

Various brain regions (e.g., pons, basal ganglia, striatum,
frontal, and temporal cortices) of PD patients also showed
increased binding of the radiotracer 11C-(R)-PK11195
compared to age-matched healthy controls by positron emission
tomography (Ouchi et al., 2005; Gerhard et al., 2006). The
radiotracer 11C-(R)-PK11195 binds to 18-kDa translocator
protein (TSPO) expressed mainly by microglia, in association
with inflammatory stimuli (Mondelli et al., 2017). In the SN
of post-mortem PD samples, MHC class II+ microglia were
first described in 1988 (McGeer et al., 1988). Since then,
other studies confirmed the presence of reactive microglia
in the SN of PD patients (Hirsch and Hunot, 2009). Besides
MHC class II, microglia were shown to express intracellular
adhesion molecule (ICAM)-1, integrin receptors CD11a, the
lysosomal activity marker CD68, and the scavenger receptor
TLR2 in the SN, putamen, and hippocampus of PD patients
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FIGURE 1 | Microglial phenotypes that could be differently implicated in PD. Schematized morphologies are represented and their main characteristics summarized.

The following symbols are used; ↑, increased; ↔, unchanged; ↓, decreased.

(Imamura et al., 2003; Doorn et al., 2014). Microglia also stained
positively for pro-inflammatory cytokines such as tumor necrosis
factor (TNF)α and interleukin (IL)-6 in the striatum of PD
patients (Imamura et al., 2003). Other investigators nevertheless
failed to observe evidence of microglial reactivity in the same
region of PD patients (Knott et al., 1999; Mirza et al., 2000).
Cytokines such as IL-1β, IL-2, IL-4, IL-6, TNFα, transforming
growth factor (TGF)α, and TGFβ1 were also increased at the
protein level in the striatum, and in the ventricular and lumbar
cerebrospinal fluid of PD patients (Vawter et al., 1996; Nagatsu
et al., 2000). Additionally, high levels of interferon (IFN)γ were
measured in blood plasma from PD patients (Mount et al.,
2007). Taken together, this data suggests that PD patients possess
an increased brain inflammatory status. Neurotoxic reactive
species that microglia can produce, such as superoxide and
nitric oxide, were proposed to induce cellular stress and, in
turn, contribute to neuronal loss in PD (Block et al., 2007; Le
et al., 2016). Moreover, the cerebrospinal fluid of PD patients
was shown to be toxic to DA neurons in vitro due to the high
concentration of cytokines and auto-antibodies against quinone
proteins altered by DA oxidation (He et al., 2002; Nagatsu and
Sawada, 2005).

Loss of Beneficial Physiological
Functions
Signaling between the microglial complement receptor 3 (CR3)
and its ligand, the complement component C3, enriched at
synapses, plays a key role in synaptic pruning during brain
circuits refinement (Schafer et al., 2012). In rats chronically
receiving rotenone, a pesticide acting as a mitochondrial complex
I inhibitor, CR3+ microglia were more abundant in the striatum
and the SN. They also possessed an enlarged cell body with
shorter, stubby processes in these two regions, contrary to the
cerebral cortex, suggesting an exacerbated phagocytic activity

(Sherer et al., 2003). Microglia release neurotrophic and anti-
inflammatory factors that promote neuronal survival (Le et al.,
2016). These cells can also modulate the formation of dendritic
spines through the release of brain-derived neurotrophic factor
(BDNF) in mouse primary motor cortex, a role that was required
for motor learning and procedural memory (Parkhurst et al.,
2013). In PD, BDNF levels were reduced in the nigrostriatal
region and/or cerebrospinal fluid of PD patients and animal
models, notably exposed to MPTP or 6-hydroxydopamine (6-
OHDA) (Nagatsu and Sawada, 2005). Furthermore, glial-derived
neurotrophic factor (GDNF) was shown to protect and rescue
DA neurons from degeneration inmodels, including rats exposed
to methyl-4-phenylpyridinium (MPP+), the active metabolite of
MPTP (Ding et al., 2004; Nam et al., 2015). Additionally, in a
mouse model overexpressing human mutant α-synuclein, within
neurons mostly of the spinal cord, an increase in ionized calcium
binding adaptor molecule 1 (IBA1)+ microglial staining was
measured in this region alongside an increased co-expression
of AXL (Fourgeaud et al., 2016). With TYRO3 and MER,
AXL is part of the TAM receptor family of tyrosine kinases
that regulates microglial phagocytic removal of apoptotic cells,
notably during adult neurogenesis. In the α-synuclein transgenic
mouse, loss of both receptors modestly prolonged the lifespan
(Fourgeaud et al., 2016). The authors speculated that microglia
might remove distressed motor neurons in PD, through TAM
receptor-mediated “phagoptosis” of living neurons causing their
death (Brown andNeher, 2012), thus accelerating PD progression
(Fourgeaud et al., 2016). In this case, a beneficial microglial
function was proposed to become detrimental upon disease.

Gain of Detrimental Inflammatory
Functions
Midbrain DA neurons may be particularly vulnerable to
detrimental microglial functions due to the abundance of these
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TABLE 1 | Summary of the main animal models used in PD research.

Animal models Symptoms

Motor Degeneration LID Others

Rodent

6-OHDA rat model ↓ Locomotion, modified

behavior

↑↑↑ SN loss, ↑↑↑ striatal DA

loss, no LB, unilateral lesion

AIM scale available to measure

LID

Not specific to DA neurons, not

progressive, DA priming

needed for antiparkinsonian

effects

6-OHDA mouse model − − Poor LID −

MPTP mouse model ↓ Locomotion, bradykinesia ↑↑↑ SN neuron loss, ↑↑↑

striatal DA neuron loss, no LB

Need high L-DOPA doses to

induce AIM, poor LID

−

Rotenone rat model ↓ Locomotion ↑↑ SN neuron loss, ↑↑↑

striatal DA loss, LB

− −

α-synuclein transgenic

mouse model

Modified behavior, ↓ or ↑

motor activity

SN neuron loss (variable),

striatal DA loss, LB (old

animals)

Poor LID −

Non-human primate

MPTP cynomolgus and

rhesus macaque model

Modified behavior, tremor and

rigidity, ↓ locomotion

↑↑↑ SN neuron loss, ↑↑↑

striatal DA loss, no LB (but

α-synuclein accumulation),

bilateral lesion (if systemic)

LID (best model), LID

reappearance after L-DOPA

withdrawal, different pattern of

LID: stereotypic behaviors

First L-DOPA dose induces

antiparkinsonian response, best

to test surgical treatments

MPTP marmoset model Modified behavior, tremor and

rigidity, ↓ locomotion,

movement indistinguishable,

hyperkinesia

↑↑↑ SN neuron loss, ↑↑↑

striatal DA loss, no LB (but

α-synuclein accumulation)

LID Allows to test surgical

treatments, not the best to test

anti-dyskinetic drugs

MPTP squirrel monkey

model

Modified behavior, tremor and

rigidity, ↓ locomotion

↑↑↑ SN neuron loss, ↑↑↑

striatal DA loss, possibility of

LB (α-synuclein aggregates)

LID, have LID under unlesioned

conditions

Limited for study of motor

complication (no abnormal PD

movements observed)

The following symbols are used; ↑, increase; ↓, reduction; ↑↑↑, severe; ↑↑, moderate, summary of (Tieu, 2011; Blesa and Przedborski, 2014; Morin et al., 2014; Jagmag
et al., 2016; Morissette and Di Paolo, 2018).

cells in this region (Lawson et al., 1990). This susceptibility is
also conferred by the enrichment of DA neurons with iron, a
redox active element, associated with antioxidant glutathione
deficiency and monoamine oxidase activity, which all contribute
to DA oxidation resulting in the production of reactive species
(Block et al., 2007; Tansey and Goldberg, 2010; Wang and
Michaelis, 2010). This susceptibility of the SN was further
emphasized by the finding that local lipopolysaccharide (LPS;
a bacterial component) injection into the SN, hippocampus or
cerebral cortex of wild-type rats induced neuronal loss only
in the SN (Kim et al., 2000). Further in vitro characterization
of neuron-glial cultures identified a key role for microglia
in the regional sensitivity to LPS. Indeed, supplementation
of microglia into cortical neuron-glial cultures was sufficient
to promote LPS-induced neurotoxicity (Kim et al., 2000).
Microglia might over-produce pro-inflammatory mediators and
reactive species, notably when performing phagocytosis, which
could lead to neuronal damage and in turn contribute to
sustaining inflammation in PD (Whitton, 2007; Tansey and
Goldberg, 2010). In rat primary neuron-glial cell cultures,
the exogenous application of α-synuclein aggregates induced
microglial transformation into amoeboid cells, which produced
reactive species resulting in DA neurons loss (Zhang et al.,
2005). In vitro, neuromelanin (NM), a dark pigment formed by
melanin that is found in catecholaminergic neurons (containing
DA or norepinephrine) (Fedorow et al., 2005), induced loss

of DA neurons when added to human primary mesencephalic
neuron-glia cultures (Zhang et al., 2011). The phagocytic
clearance of NM by microglia also induced the production
of superoxide, nitric oxide, hydrogen peroxide and pro-
inflammatory TNFα and IL-6, which could be prevented by
genetic deletion of CR3 in vitro (Zhang et al., 2011). Besides
NM,matrix metalloproteinase 3 (MMP3) and α-synuclein, which
are released by degenerating DA neurons, promote microglial
production of reactive species (Block et al., 2007).

MICROGLIA IN AGING AND CHRONIC
STRESS

Normal Aging and Microglial Alterations
Aging is associated with an increased expression level of pro-
inflammatory cytokines (e.g., IL-1β, IL-6, and TNFα) as well
as decreased expression level of anti-inflammatory cytokines
(e.g., IL-10) and anti-oxidants (e.g., glutathione levels) in rodent
brain (Frank et al., 2006; Sierra et al., 2007; Ritzel et al.,
2015). Furthermore, during aging, LPS-immune-challenged mice
display an exacerbated inflammatory response (Godbout et al.,
2005; Sierra et al., 2007; Njie et al., 2012). With relevance to PD,
analyses of IBA1+ microglia in the SN and striatum of wild-type
mice, from birth until 24 months of age, revealed that cellular
density is decreased while clustering is increased after 18 months
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of age in both regions (Sharaf et al., 2013). Moreover, microglia
underwent dystrophic morphological changes in the SN (see
Figure 1), such as reduced ramifications, starting at 12 months
(Sharaf et al., 2013). In aged rhesus monkeys, an increase in
human leukocyte antigen-DR (HLA-DR), a component of MHC
class II+ microglia, and similar morphological alterations were
observed in the SN, together with an increased prevalence of
amoeboid-shaped microglia, upon administration of the MPTP
toxin (Kanaan et al., 2008).

Chronic Stress and Pathological Aging
Aging can induce important alterations of brain homeostasis
notably through its effects on microglia. In addition, aging might
become “pathological” under the influence of an environmental
risk factor, such as chronic psychological stress, thus triggering
disease onset and progression (Streit et al., 2014).

Chronic psychological stress can accelerate cellular aging by
acting on both oxidative stress and inflammation (Tay et al.,
2017; Tian et al., 2017). Upon stress, microglia become “primed”
and show exaggerated response to a subsequent challenge
(Cunningham et al., 2005; Frank et al., 2007). Other than the
neuroinflammation changes, chronic restraint stress in otherwise
healthy rodents was associated with a loss of neurons expressing
tyrosine hydroxylase (TH), the enzyme that converts L-DOPA
into DA, in the SN (Sugama et al., 2016; Ong et al., 2017).
This TH+ neuronal loss correlated with an increase of insoluble
α-synuclein monomers leading to the formation of aggregates
and decreased numbers of IBA1+ microglia in the SN (Ong
et al., 2017). Furthermore, when MPTP was administered after
inducing stress, using the same paradigm, the loss of TH+

neurons in the SN was found to be more important in stressed
rats than in unstressed littermates, which also displayed motor
learning deficits (assessed with the rotarod) (Lauretti et al.,
2016). However, different outcomes of stress on DA neurons
were reported according to the type of stressor used and the
brain region examined (Belujon and Grace, 2015). The overall
evidence nevertheless suggests a close relationship between
chronic stress and PD, which highlights the importance of
investigating microglial changes as a contributing factor to PD
pathophysiology.

Another subset of microglia, “dark microglia” identified
by electron microscopy, was observed in adult mice exposed
to maternal immune activation (Hui et al., 2018), chronic
unpredictable stress, or aging (Bisht et al., 2016). Dark
microglia display several markers of oxidative stress including
a condensed cytoplasm and nucleoplasm, which led to their
name, accompanied by dilation of the endoplasmic reticulum and
Golgi apparatus, as well as mitochondrial alteration. They are
highly ramified (see Figure 1) with their processes extensively

encircling excitatory synapses and making direct contacts with
synaptic clefts (Bisht et al., 2016) suggesting an involvement in
synaptic remodeling under pathological or traumatic conditions.
The involvement of dark microglia in PD still remains unknown,
however.

CONCLUSION

Overall, various studies using in vivo and in vitro approaches
have improved our knowledge of microglial involvement in
PD despite the differences in paradigms and species used.
Aging and chronic stress, two main environmental risk factors
for PD, exacerbated inflammation and altered microglial
functions. These changes might trigger pathological pathways
notably in vulnerable CNS regions, such as the SN. Microglia
produce both pro- and anti-inflammatory mediators, but upon
neurodegeneration this tight equilibrium might get disrupted
and become mainly pro-inflammatory. The death of DA
neurons and associated reactive species production lead to
pro-inflammatory and “phagoptotic” microglial phenotypes.
Considering the inflammatory component of PD, it is important
to study microglial implication with its onset, progression,
and symptomatic treatment using L-DOPA for a translation to
human patients. A better comprehension of the roles of different
microglial phenotypes in PD might one day help to find anti-
parkinsonian and/or anti-dyskinetic drugs targeting microglia.
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