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Hyper activation of the neuroimmune system is strongly related to the development

of neuropsychiatric disorders. Psychosocial stress has been postulated to play an

important role in triggering anxiety and major depression. In preclinical models, there

is mounting evidence that social defeat stress activates microglial cells in the central

nervous system. This type of stress could be one of the major factors in the development

of these psychopathologies. Here, we reviewed the most recent literature on social

defeat and the associated immunological reactions. We focused our attention on

microglial cells and kept the effect of social defeat over microglia separate from

the effect of this stressor on other immune cells and the influence of peripheral

immune components in priming central immune reactions. Furthermore, we considered

how social defeat stress affects microglial cells and the consequent development of

anxiety- and depressive-like states in preclinical studies. We highlighted evidence for

the negative impact of the over-activation of the neuroimmune system, especially by

the overproduction of pro-inflammatory mediators and cytotoxins. Overproduction of

these molecules may cause cellular damage and loss or decreased function of neuronal

activity by excessively pruning synaptic connections that ultimately contribute to the

development of anxiety- and depressive-like states.

Keywords: microglia, neuroimmunity, immune cells, psychosocial stress, neuropsychiatric disorders,

inflammatory processes

INTRODUCTION

Neuropsychiatric disorders, such as anxiety and major depression (MD), are highly prevalent and

contribute significantly to the worldwide burden of diseases (Ferrari et al., 2013; Whiteford et al.,

2013). As a major contributor to the development of affective and neuropsychiatric disorders in

humans, psychosocial stress has been reported to induce central and peripheral immune pathway

signaling by repeated activation of the neuroendocrine and neurovegetative systems (Glaser and

Kiecolt-Glaser, 2005; Lehmann et al., 2016). When the individual is repeatedly exposed to stress, the

brain homeostatic environment alters and may give rise to various cognitive and mood disorders

that impair everyday functioning and overall quality of life (McKim et al., 2016a).Within the central

nervous system (CNS) immunological defense, microglia are the key immune players and acquire a

reactive profile to cope with altered homeostasis (Hanisch and Kettenmann, 2007). When activated,
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these cells are supposed to trigger anxiety- and depressive-like

behaviors (Lehmann et al., 2016), mainly by increasing the

expression of pro-inflammatory mediators and neurotoxins in

stress-sensitive brain regions (Reader et al., 2015; Ramirez and

Sheridan, 2016), and can ultimately influence the overall cellular

functions and survival, from neurons to glial cells.

Brief and prolonged episodes of social defeat (SD) have

been correlated with anxiety- and depressive-like behaviors,

respectively. While brief episodes can increase self-grooming,

locomotion in novel environments, risk assessment and

binge-like cocaine self-administration, prolonged episodes

induce anhedonic behaviors such as reduced sweet solution

preference, reduced mounting in copulatory behavior, reduced

climbing in the forced swimming test (FST), lower general

activity and sociability and suppressed cocaine intake (Razzoli

et al., 2009; Miczek et al., 2011; Hollis and Kabbaj, 2014;

Vasconcelos et al., 2015). Despite the clear evidence of the role

of social stress triggering mood disorder-related behaviors,

to the best of our knowledge, the exclusive contribution of

SD to microglial over-activation has never been reviewed.

Here, we discuss the emerging field of social stress-induced

microglial over-activation, providing an overview of how

microglial reactions can lead to these mood disorders, and

briefly discuss some relevant translational significance of the

findings. We hypothesized that acute/repeated and chronic

social defeat (CSD) stress can induce microglial activation and

over-activation that can engender anxiety and depressive-like

states, respectively. The repeated social defeat (RSD) paradigm

reported in this review is characterized by the introduction of

an aggressive intruder male into the cages of established male

cohorts of mice for three or six consecutive nights, leading

to the establishment of dominance over the original colony

(Wohleb et al., 2014b). CSD varied from 14 to 20 days of a

24 h/day dyadic social housing, exposing the defeated animal

to continuous psychological stress via sensory interaction

with the aggressor, accompanied by a 5 min/day agonistic

encounter between the aggressor and the defeated animal

(Brachman et al., 2015; Lehmann et al., 2016; Tong et al.,

2017).

Articles used in this mini-review were selected from the

PubMed, Embase and ScienceDirect databases between March

and April 2017. Search terms were ‘‘microglia’’ and ‘‘SD’’,

without any time limitation. Of the 23 selected articles, 11 were

excluded for the following reasons: not an original article, no

clear effect of stress over microglia and the use of mixed stress

protocols.

MICROGLIA: THE FIRST DEFENCE OF THE
CNS

Microglia comprise about 10%–15% of all brain cells and are

crucial players in normal development through the regulation

of functional and structural processes, contributing to plasticity

from individual synapses to neural circuits and behavior

(Wake et al., 2013; Salter and Beggs, 2014; Verkhratsky et al.,

2015). Microglial cells originate from extra-embryonic yolk

sac progenitors, establish unique CNS cell populations and

are maintained throughout life by local proliferation (Ginhoux

et al., 2010, 2013). As tissue-resident macrophages in the CNS,

along with other mononuclear phagocytes, microglia are critical

effectors and regulators of changes in CNS homeostasis during

development, in health and disease (Hanisch and Kettenmann,

2007; Prinz and Priller, 2014).

Some evidence points to new and fundamental roles

for microglia in the control of neuronal proliferation and

differentiation, as well as in the formation of synaptic

connections (Kettenmann et al., 2011; Ginhoux et al., 2013).

These cells are distributed in the brain parenchyma, have small

delineated processes and actively screen the inter-neuronal space

for incoming threats, exhibiting immune regulatory functions,

from local surveillance to the removal of debris (Prinz and Priller,

2014). Microglial activation is the main neuroinflammatory

element in the CNS, providing the front line defense whenever

injury, disease or infection occurs (Lehnardt, 2010; Tang and Le,

2016).

Inflammatory processes are usually self-limited, culminating

with tissue repair; damage to the CNS occurs when the

system is over-activated for a long time, extending the

release of pro-inflammatory mediators and neurotoxins.

This process can worsen tissue damage and negatively impact

disease outcome, leading to anxiety- and depressive-like

states (Reader et al., 2015; Ramirez and Sheridan, 2016).

Increasing evidence points to a heterogeneous status of

microglial activation in the CNS. Although it is not a consensus,

some authors categorize microglia into two opposite activation

states, M1 and M2 phenotypes, which can produce either

cytotoxic or neuroprotective effects (Tang and Le, 2016).

M1-polarized microglia are associated with the production of

pro-inflammatory cytokines such as tumor necrosis factor-

α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6),

superoxide, nitric oxide, reactive oxygen species and proteases

(Ajmone-Cat et al., 2013), whereas M2-polarized microglia

express cytokines and receptors that are implicated in the

inhibition of inflammation and restoration of homeostasis by

tissue repair and extracellular matrix reconstruction (Nakagawa

and Chiba, 2014; Tang and Le, 2016). Nevertheless, as this

nomenclature is not fully accepted and some authors consider

microglia polarization to have derived from studying peripheral

macrophages rather than microglia (Ransohoff, 2016), it is

important to carefully use and interpret these terms to avoid

misunderstandings.

THE SD PARADIGM AS A VALID
STRESSOR

Most stressors in human life arise from interactions within the

social environment. In fact, social stress encompasses various

types of significant life events, ranging from maternal separation

(Meaney, 2001; Nishi et al., 2014), brief episodes of social

confrontations in adolescence and adulthood, to continuous

subordination stress (Miczek et al., 2008). In preclinical studies,

some models of stress are often criticized as being artificial and

not representative of human stress (Björkqvist, 2001; Almeida

et al., 2002).
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The SD paradigm is recognized as an ethological valid

method to engender social stress in rodents (Vasconcelos et al.,

2015; Henriques-Alves and Queiroz, 2016; Koolhaas et al.,

2017). RSD is a stressor that recapitulates key physiological,

immunological and behavioral alterations observed in humans

exposed to chronic psychosocial stress (McKim et al., 2016a).

Models of psychosocial stress rely on innate social behavior

among pairs or groups of male rodents allowing the formation

of stable dominant-subordinate relationships (Krishnan and

Nestler, 2011). Another strong point of these models is the lack

of habituation; despite repeated exposures, animals continue

to generate emotional stress responses (Tidey and Miczek,

1997).

SD stress activates the hypothalamic-pituitary-adrenal

axis and sympathetic nervous system, increasing systemic

glucocorticoids that trigger the release of catecholamines and

pro-inflammatory cytokines (Avitsur et al., 2001; Herman et al.,

2016). Although there are distinct models of social stress, this

review will focus on the role of SD in the development of anxiety

and MD, tracking the contribution of the over-activation of the

main CNS immune component, microglia, in triggering these

psychiatric diseases.

EFFECTS OF SD STRESS ON MICROGLIAL
CELLS

One of the major advances in the field of the study of psychiatric

disorders came from the notion that the immune system

and inflammatory processes can be activated by psychosocial

stressors (Miller and Raison, 2015). Despite the well-established

evidence that the peripheral and central immune systems act in

concert to promote the stress reaction, greater attention has been

given to immune cells of the CNS, in particular, microglia. Social

stress may activate microglial cells in a way different from other

stressors (Glaser and Kiecolt-Glaser, 2005; Calcia et al., 2016) and

seems to exert a direct effect over microglia activity through the

activation of glucocorticoid and mineralocorticoid (Sierra et al.,

2008) and β-adrenergic receptors (Walker et al., 2013; Calcia

et al., 2016). Considering these factors, we directed our attention

to microglial reactions induced by SD; the evidence is presented

in Table 1.

Microglia present increased activation status after SD

(Wohleb et al., 2014b; Ramirez and Sheridan, 2016) and the

effects are mainly observed within brain regions associated

with fear, anxiety and threat appraisal (Wohleb et al., 2015).

From a ramified aspect found in the immunosurveillant state,

microglia change robustly to a de-ramified state with shorter

and thicker processes (Wohleb et al., 2011, 2012, 2013, 2014b),

leading to increased soma size after acute, RSD and CSD

(McKim et al., 2016a; Figure 1). Changes in soma and processes

are usually analyzed by increases in ionised calcium-binding

adapter molecule 1 (Iba-1) or cluster of differentiation 11b

(CD11b) immunoreactivity. However, although the vast majority

of studies report results similar to those described above,

decreases in microglial Iba-1, CD11b and consequently soma

areas were found by others in the dentate gyrus (DG), but

not in the medial prefrontal cortex, in a stress protocol that

consisted of 20 days of exposure to SD (Tong et al., 2017). These

controversial data could be attributed to differences in stress

chronicity.

One additional way to identify changes in microglia activity

is through the analysis of activation markers such as the

chemokine (C-C motif) ligand 2 (CCL2), toll-like receptor 4

(TLR-4) or the CX3 chemokine receptor 1 (CX3CR1) which

are expressed by microglial cells. SD induces an increase in

the gene expression of TLR-4, CCL2 and CX3CR1 (Ramirez

et al., 2015, 2016; Ramirez and Sheridan, 2016). However,

decreases in CX3CR1 gene expression were also observed after

SD, although in enriched brain CD11b+ cells (Wohleb et al.,

2014a). One of the most evident reactions to SD observed in

microglial cells is the rise in gene expression and mRNA levels

of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α and

expression of the surface activation marker CD14. Increases of

these inflammatory mediators were observed after acute, RSD

and CSD (Wohleb et al., 2011, 2012, 2014a; Brachman et al.,

2015; Ramirez et al., 2015, 2016; McKim et al., 2016a; Ramirez

and Sheridan, 2016), even 24 days after stress cessation (Ramirez

et al., 2015). The importance of these findings is reinforced

by the results obtained from either microglial cells analyzed

in fresh CNS tissue, isolated from socially defeated animals

(Wohleb et al., 2012) or in ex vivo SD-sensitized microglia

stimulated with lipopolysaccharide (LPS; Wohleb et al., 2011).

Additionally, reduced levels of glucocorticoid responsive genes

(GILZ and FKBP51) are evident after exposure to SD (Wohleb

et al., 2011). Chronically SD stress-activated microglial cells

increase their phagocytic activity. This effect is achieved by

increasing the expression of CD68hi (a marker for phagocytic

activity; Lehmann et al., 2016). The increasing phagocytic activity

of microglia from CSD animals suggests that cellular debris

or cell damage or death may be a hallmark of chronic stress

effects on the brain. SD can also change microglial cell numbers;

while acute SD enhances the number of microglia (Lehmann

et al., 2016), CSD diminishes these cells (Tong et al., 2017),

mainly in the hippocampus. It seems that a crucial factor is

the intensity of activation of microglia by stress, which can

lead to different psychiatric disorder outcomes (Figure 1).

Taken together, these data highlight the broad spectrum of

effects that can be observed in microglial cells when activated

by SD.

THE LINK BETWEEN MICROGLIAL
ACTIVATION, ANXIETY- AND
DEPRESSIVE-LIKE BEHAVIORS

It is now well known that disturbances in microglial functioning

has an etiological role in mood disorders (Frick et al., 2013;

Kreisel et al., 2014). However, if the effect of social stress

on these deregulated behaviors can be mainly attributed to

microglial over-activation or if the participation of other

CNS immune cells and/or the peripheral immune system

plays a major role remains controversial. While researchers

have shown in some studies that SD stress-induced anxiety-

and depressive-like states are mediated by the activation of
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FIGURE 1 | Different stages of microglial activation caused by changes in the intensity and duration of social stressors that can maintain individuals in a healthy state

or contribute to both anxiety and depressive-like behaviors. In the basal state, microglia can be distinguished by normal levels of immunoreactivity to ionized

calcium-binding adapter molecule 1 (Iba-1) and CD11b. In this state, enable proper coping to stress situations. When activated, microglia proliferate, release higher

levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), present higher expression of toll-like receptor 4 (TLR-4), chemokine (C-C motif)

ligand 2 (CCL2), CX3CR1) and decreased levels of glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein 51 (FKBP51). They can be distinguished

by higher immunoreactivity to Iba-1, CD11b, CD14 and CD68. During the activated state, the release of pro-inflammatory mediators and the altered response to

glucocorticoids may lead to anxiety. The activated state can also be protective by resuming stress effects. As a consequence, microglia return to their basal state.

Otherwise, persistent stress shifts microglia to an over-activated state. Overactive microglia continue to release pro-inflammatory mediators (IL-1β and IL-6). They

can be distinguished by higher immunoreactivity to CD68hi and possibly lower levels of CX3CR1 and iNOS antibodies. Along with the microglial phagocytic activity

occurs a higher rate of cell death, including microglia as well as neuronal and other glial cells. This effect reduces their capacity to remove cell debris and surveillance

of the inter-neuronal space, altogether leading to depression.

microglia with the involvement of peripheral macrophages

and trafficking of monocytes to the brain (Wohleb et al., 2013,

2014b, 2015), other studies excluded the direct involvement

of peripheral monocytes triggering these behaviors (Lehmann

et al., 2016). Stress chronicity and/or peripheral wounds

(triggers of peripheral immune reactions), which can usually

be observed in defeated animals after confrontation with an

aggressor, could be major determinants. This is one of the

main reasons that led researchers to choose alternative stress

protocols, such as variable unpredictable stress and foot shocks

to study microglial activation in neuropsychiatric disorders,

even though these procedures present lower ethological

relevance.

Studies in humans have shown that microglial activation

is positively correlated with psychiatric disorders. For

example, individuals experiencing a major depressive episode

present enhanced positron emission topography labeling

of the translocator protein (TSPO), a putative marker of

neuroinflammation and microglia activation (Setiawan et al.,

2015). It has also been speculated that there is a causal link

between microglial activation and suicidal behavior (Schnieder

et al., 2014); neuroendocrine factors, cytokines and nitric

oxide, which are released from microglial cells and are known to

modulate noradrenergic or serotonergic neurotransmission, may

trigger suicidal behavior (Steiner et al., 2008). Pro-inflammatory

cytokines including IL-1β and TNF-α, can reduce the availability

of serotonin, dopamine and noradrenaline by increasing the

expression and function of reuptake transporters, reducing

synthesis or decreasing monoamine precursors (Miller and

Raison, 2015). Activated microglia can also act on the glutamate

pathway and together with astrocytes stimulate the increased

release of this neurotransmitter and decreased brain-derived

neurotrophic factor, which ultimately leads to excitotoxicity

(Steiner et al., 2012; Miller and Raison, 2015). Additionally, it

has been shown that elevated pro-inflammatory cytokine levels

caused by microglia activation associated with the recruitment

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 October 2017 | Volume 11 | Article 207

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Stein et al. Microglial Over-Activation, Anxiety- and Depressive-Like Behaviors

of monocytes to the brain contribute to the development and

persistent anxiety-like behavior (Wohleb et al., 2014b, 2015).

Moreover, chronic microglial activation in particular can result

in neuronal apoptosis, neurogenesis inhibition, hippocampal

volume reduction, lower neurotransmitters synthesis and

cytotoxicity (Ascoli et al., 2016), which is ultimately related to

depressive behavior.

Although microglia are not the only effectors of the immune

system, it has been suggested that the anti-inflammatory

effect of antidepressants may have protective effects by

silencing RSD-induced priming and activation of microglia,

thus down-regulating the biosynthesis of high levels of

pro-inflammatory cytokines (Ramirez et al., 2015). Recently,

microglia have been recognized as important targets for

pharmaceutical research. Brain diseases, including depression

and anxiety, could potentially be treated with drugs that

are capable of inhibiting or restoring specific microglial

functions (Biber et al., 2016). Anti-inflammatory drugs such

as COX2 inhibitors or minocycline, aimed at inhibiting the

pro-inflammatory status of microglia, have been suggested

as therapeutics for inflammatory brain diseases (Biber et al.,

2016). The CX3CR1, as an exclusive microglial marker, could

also be a potential target. Since the activation of microglia is

not consistent for all patients, it has been recently proposed

that anti-inflammatory treatment targeting microglial activation

could specifically be more effective in patients with increased

microglial activation, leading to the idea that microglial

activation may be a marker for severe and untreatable psychiatric

disorders (Mondelli et al., 2017).

Social stress can alter the number of microglial cells

(Lehmann et al., 2016; Tong et al., 2017), mainly dependent

on the duration of stress exposure. While acute, but not

CSD is supposed to increase microglial proliferation selectively

in telencephalic stress-related brain areas (Lehmann et al.,

2016), a loss of hippocampal microglia was observed and is

supposed to promote the development of MD, indicating that

the restoration of microglial functions and/or numbers may

be beneficial for the therapy of MD (Tong et al., 2017). Since

pro-inflammatory cytokines can also modify neurogenesis in

the hippocampus (Koo and Duman, 2009), RSD has been

shown to induce anxiety-like behavior by impairing the neuronal

differentiation of neural progenitor cells in the hippocampus

that proliferated during stress exposure. These data were

positively correlated to an impairment in performance on

working and spatial memory in the Morris water maze (MWM)

and transiently disrupted short-term memory recall in the

Barnes maze (BM; McKim et al., 2016a). Overall, these data

highlight the magnitude of the microglial over-activation-

induced deficits in monoamine neurotransmission, cytotoxicity,

cellular loss and reduced neurogenesis, ultimately leading to

memory impairment and behaviors that are observed in both,

anxiety and depression.

CONCLUSION REMARKS

Exposure to SD induces microglial cells to assume an activated

state, which initially may be considered beneficial. RSD and

CSD can induce microglia to assume over-activated states that,

by persistently releasing pro-inflammatory mediators, cytotoxins

and reactive oxygen species, may cause cellular dystrophy

and a loss or decreased function of neuronal activity through

excessively pruned synaptic connections. All of these stress

effects over microglia worsen memory and behaviors that are

important factors in psychiatric disorders. The SD paradigm

is an important tool to induce anxiety- and depressive-like

states in laboratory animals for investigating stress-induced

immunological and behavioral alterations.

It seems that the development of anxiety and MD is, besides

microglial activation, dependent on peripheral monocyte

recruitment to the brain (McKim et al., 2016b), attaching

importance to the bidirectional communication between

the brain and peripheral immune system. However, since

the activation of microglia by psychosocial stress might be

different from that of physical injury (Glaser and Kiecolt-

Glaser, 2005), more attention must be given to peripheral

wounds when studying SD stress effects over central immune

reactions. SD protocols that allow physical injuries to the

defeated animal during confrontations with an opponent may

contribute to the participation of peripheral immune cells

in the final outcome. Alternatively, stress protocols that do

not involve physical injuries, such as chronic unpredictable

stress, can be used to overcome this issue. Contradictory

findings have shown that microglial over-activation, as

well as microglial dystrophy and loss, can mediate the

development of MD. Depression is considered to be a

disorder that is associated with microglial over-activation.

That leads to an interpretation that suppressed microglial

hyperactivity should be the focus to treat depressive symptoms

(Tong et al., 2017). However, since microglia in its basal

state is also critical for brain normal function, microglial

dystrophy and loss would also mediate the development of

this disorder (Kreisel et al., 2014; Tong et al., 2017). Therefore,

over-inhibition or over-down-regulation of microglial function

will inevitably produce detrimental effects as well. Focusing

on microglial cells as therapeutic targets for pharmacological

interventions, especially by restoring functions and/or basal

levels, may be a promising strategy for anxiety and depression

therapy.
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