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A B S T R A C T

Microgrids are now emerging from lab benches and pilot demonstration sites into commercial markets, driven by
technological improvements, falling costs, a proven track record, and growing recognition of their benefits. They
are being used to improve reliability and resilience of electrical grids, to manage the addition of distributed clean
energy resources like wind and solar photovoltaic (PV) generation to reduce fossil fuel emissions, and to provide
electricity in areas not served by centralized electrical infrastructure. This review article (1) explains what a
microgrid is, and (2) provides a multi-disciplinary portrait of today's microgrid drivers, real-world applications,
challenges, and future prospects.

1. Background

It has been noted recently that the world's electricity systems are
starting to “decentralize, decarbonize, and democratize”, in many cases
from the bottom up [1]. These trends, also known as the “three Ds”, are
driven by the need to rein in electricity costs, replace aging infra-
structure, improve resilience and reliability, reduce CO2 emissions to
mitigate climate change, and provide reliable electricity to areas
lacking electrical infrastructure. While the balance of driving factors
and the details of the particular solution may differ from place to place,
microgrids have emerged as a flexible architecture for deploying dis-
tributed energy resources (DERs) that can meet the wide ranging needs
of different communities from metropolitan New York to rural India.

In industrialized countries, microgrids must be discussed in the
context of a mature “macrogrid” that features gigawatt-scale generating
units, thousands or even hundreds of thousands of miles of high voltage
transmission lines, minimal energy storage, and carbon-based fossil
fuels as a primary energy source. Today's grid is not a static entity,
though; we are traveling a historic arc that began with small-scale
distributed generation (recognized as the original DC microgrids) pio-
neered by Thomas Edison in the late 19th century, that underwent
consolidation and centralization driven by growing demand, and that is
now experiencing the beginnings of a return to decentralization. From
the 1920s through the 1970s, the increased reliability afforded by

connecting multiple generating units to diverse loads, decreased con-
struction costs per kilowatt (kW), and ability to draw power from dis-
tant large generating resources like hydropower drove the development
of the grid we see today [2,3]. However, those advantages seem to have
reached their limits and are increasingly undermined by environmental
and economic concerns. Driven by utility restructuring, improved DER
technologies, and the economic risks that accompany the construction
of massive generating facilities and transmission infrastructure, com-
panies that generate electricity have been gradually shifting to smaller,
decentralized units over time [3]. This transition is driven by a range of
DER benefits that have been studied in detail; [4,5], such as deferral of
generation, transmission, and distribution capacity investments; vol-
tage control or VAR (reactive power) supply, ancillary services, en-
vironmental emissions benefits, reduction in system losses, energy
production savings, enhanced reliability, power quality improvement,
combined heat and power, demand reduction, and standby generation.
These benefits accrue not only to small, dispatchable fossil-fueled plants
– many also accompany deployment of intermittent renewable gen-
erating sources, as shown by a foundational study of a 500 kW dis-
tributed generation PV plant in California [6,7]. The challenge of ra-
dically decreasing greenhouse gas emissions to avoid catastrophic
climate disruption has also led to governmental policies that incentivize
deployment of carbon-free generating sources, many of which lend
themselves to distributed applications. While this paper focuses on
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microgrids in areas with existing centralized electrical grids, it is im-
portant to remember that they also present many advantages to rural
and remote communities in developing countries; these are covered in
more detail below.

Starting in the late 1990s, as described below in Section 1.2, sci-
entists and engineers in the United States and Europe began to explore
decentralized solutions that could manage the integration of thousands
or tens of thousands of distributed energy resources in a way that also
maximizes reliability and resilience in the face of natural disasters,
physical and cyber attacks, and cascading power failures. The solution
they settled on was a grid architecture that could manage electricity
generation and demand locally in sub-sections of the grid that could be
automatically isolated from the larger grid to provide critical services
even when the grid at large fails. This approach was given the name
“Microgrid”.

1.1. Microgrid definitions

A number of microgrid definitions [8] and functional classification
schemes [9] can be found in the literature. A broadly cited definition,
developed for the U.S. Department of Energy by the Microgrid Ex-
change Group, an ad hoc group of research and deployment experts,
reads as follows:

‘‘[A microgrid is] a group of interconnected loads and distributed energy
resources within clearly defined electrical boundaries that acts as a single
controllable entity with respect to the grid. A microgrid can connect and
disconnect from the grid to enable it to operate in both grid-connected or
island mode [10].”

This description includes three requirements: 1) that it is possible to
identify the part of the distribution system comprising a microgrid as
distinct from the rest of the system; 2) that the resources connected to a
microgrid are controlled in concert with each other rather than with
distant resources; and 3) that the microgrid can function regardless of
whether it is connected to the larger grid or not. The definition says
nothing about the size of the distributed energy resources or the types
of technologies that can or should be used.

1.2. Foundational microgrid research

Systematic research and development programs [10,11] began with
the Consortium for Electric Reliability Technology Solutions (CERTS)
effort in the United States [12] and the MICROGRIDS project in Europe
[13]. Formed in 1999 [14], CERTS has been recognized as the origin of
the modern grid-connected microgrid concept [15]. It envisioned a
microgrid that could incorporate multiple DERs yet present itself to the
existing grid as a typical customer or small generator, in order to re-
move perceived challenges to integrating DERs [12,16,17]. Emphasis
was placed on seamless and automatic islanding and reconnection to
the grid and on passive control strategies such as reactive power versus
voltage, active power versus frequency, and flow versus frequency [18].
The goals of these strategies were: 1) to remove reliance on high-speed
communications and master controllers, yielding a “peer-to-peer” ar-
chitecture; and 2) to create a flexible “plug-and-play” system that
would not require extensive redesign with the addition or removal of
DERs, in order to lower system first costs and provide the freedom to
locate cogeneration facilities near thermal loads. The CERTS microgrid
concept has been deployed in a test-bed setting [19,20] and in real-
world microgrid projects [21,22]. While the initial motivation of CERTS
was to improve reliability rather than to reduce greenhouse gas emis-
sions, per se, CERTS microgrids can incorporate renewable micro-
generation sources. The European Union MICROGRIDS project explored
similar technical challenges such as safe islanding and reconnection
practices, energy management, control strategies under islanded and
connected scenarios, protection equipment, and communications pro-
tocols [13]. Active research continues on all of the topics pioneered in
these early studies [23].

2. Microgrid characteristics

2.1. Generation and storage options

Several multidisciplinary studies cover the wide variety of dis-
tributed energy resources that can be deployed in microgrids [24–27].
Some examples of the options available for generation and storage

Table 1
Overview of microgrid generation and storage options.

Category Options Advantages Disadvantages

Generation Diesel and spark ignition reciprocating internal combustion engines
[24]

• Dispatchable

• Quick startup

• Load-following

• Can be used for combined heat and power (CHP)

• Nitrogen oxide and particulate
emissions

• Greenhouse Gas Emissions

• Noise generation
Microturbines [25] • Dispatchable

• Multiple fuel options

• Low emissions

• Mechanical simplicity

• CHP-capable

• Greenhouse Gas Emissions

Fuel cells (including solid oxide, molten-carbonate, phosphoric acid,
alkaline, and low-temperature Proton Exchange Membrane or PEM)
[117–119]

• Dispatchable

• Zero on-site pollution

• CHP-capable

• Higher efficiency available versus microturbines

• Relatively expensive

• Limited lifetime

Renewable Generation (solar photovoltaic cells, small wind
turbines, and mini-hydro)

• Zero fuel cost

• Zero emissions
• Not dispatchable without

storage

• Variable and not controllable
Storage Batteries (including lead acid, sodium-sulfur, lithium ion, and

nickel-cadmium) [28]
• Long history of research and development • Limited number of charge-

discharge cycles

• Waste disposal
“Flow batteries”, also know as “regenerative fuel cells” (including
zinc-bromine, polysulphide bromide, vanadium redox) [28]

• Decouple power and energy storage [30]

• Able to support continuous operation at maximum
load and complete discharge without risk of damage

• Relatively early stage of
deployment

Hydrogen from hydrolysis [29] • Clean • Relatively low end-to-end
efficiency

• Challenge to store hydrogen
Kinetic energy storage (flywheels) [29] • Fast response

• High charge-discharge cycles

• High efficiency

• Limited discharge time

• High standing losses
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today, including their advantages and disadvantages, are provided in
Table 1, below. In general, microgrids are somewhat “technology ag-
nostic” and design choices will depend on project-specific requirements
and economic considerations. While not strictly required, incorporating
some energy storage will help prevent microgrid faults [28]. Since most
microgrid generating sources lack the inertia used by large synchronous
generators, a buffer is needed to mitigate the impact of imbalances of
electricity generation and demand. Microgrids also lack the load di-
versity of larger geographical regions, so they must deal with much
greater relative variability. The array of technologies for energy storage
currently under development that could potentially play a role in mi-
crogrids is extensive [29,30]. Much of the attention is focused on sto-
rage of electricity; however, storage of thermal and mechanical energy
should be kept in mind where appropriate. The ability of storage
technologies to provide ancillary services like voltage control support,
spinning reserves, load following, and peak shaving among others, has
also been analyzed [29].

2.1.1. Power electronics
Microgrids often include technologies like solar PV (which outputs

DC power) or microturbines (high frequency AC power) that require
power electronic interfaces like DC/AC or DC/AC/DC converters to
interface with the electrical system. Inverters can play an important
role in frequency and voltage control in islanded microgrids as well as
facilitating participation in black start strategies [15]. The static dis-
connect switch (SDS) is a key microgrid component for islanding and
synchronization; it can be programmed to trip very quickly on over-
voltage, undervoltage, overfrequency, underfrequency, or directional
overcurrent [21].

The interface with the main grid can be a synchronous AC con-
nection or an asynchronous connection using a direct current coupled
electronic power converter [28]. The former approach has the ad-
vantage of simplicity, while the later isolates the microgrid from the
utility regarding power quality (frequency, voltage, harmonics) and is a
natural match with DC-only microgrid strategies.

Since most distributed energy resources (including fuel cells, solar
PV, and batteries) provide or accept DC electricity and many end loads,
including power electronics, lighting, and variable speed drives for
heating, ventilation, and air conditioning, use direct current internally,
all-DC microgrids have been proposed to avoid losses from converting
between DC and AC (and often again back to DC) power [2,31–35].
These losses can waste from 5% to 15% of power generation depending
on the number of back-and-forth conversions. Additionally, faults in DC
systems can be isolated with blocking diodes and issues of synchroni-
zation, harmonic distortion, and problematic circulating reactive cur-
rents are alleviated [34]. Lastly, a grid-tied DC-based, non-synchronous
architecture simplifies interconnection with the AC grid and permits
straightforward plug-and-play capabilities in the microgrid, allowing
addition of components without substantial re-engineering [36].

It is worth noting that while the success of promising initiatives like
“DC homes”, i.e. low voltage DC grids for residential applications, has
been limited by a lack of DC appliances and the need for large grid-
connected AC-DC converters, DC or hybrid AC/DC microgrids have
flourished in maritime applications, datacenters, and so-called mini-
grids (another name used historically for remote microgrids) utilizing
PV solar generation and batteries to charge electronic devices like
laptops or cellphones.

2.2. Controls and functionality

Microgrids feature special control requirements and strategies to
perform local balancing and to maximize their economic benefits
[8,37–41]. There is general agreement that microgrid controls must
deliver the following functional requirements: present the microgrid to
the utility grid as single self-controlled entity so that it can provide
frequency control like a synchronous generator [37]; avoid power flow

exceeding line ratings; regulate voltage and frequency within accep-
table bounds during islanding; dispatch resources to maintain energy
balance; island smoothly; and safely reconnect and resynchronize with
the main grid [42]. Microgrids can essentially be controlled in the same
way as the main grid, i.e. by using a three level hierarchical control
[37]. Control of frequency and voltage – so-called primary and sec-
ondary control – can be achieved either under the guidance of a mi-
crogrid central controller (MGCC) that sends explicit commands to the
distributed energy resources [43] or in a decentralized manner, like
CERTS, in which each resource responds to local conditions. In addi-
tion, microgrids generally include a tertiary control layer to enable the
economic and optimization operations for the microgrid, mainly fo-
cused on managing battery storage, distributed generation scheduling
and dispatch, and managing import and export of electricity between
the microgrid and the utility grid [39,40,44,45]. Hierarchical control
architectures that manage power within a microgrid and mediate ex-
changes with the main grid have been deployed using a “multi-agent
system” approach in two European microgrids, one in the Greek island
of Kythnos and another in the German ‘Am Steinweg’ project [46].
Increasingly, microgrid research and development is focusing on adding
“intelligence” to optimize operational controls and market participation
[18,37,38,46–54].

3. Microgrid motivation

The factors driving microgrid development and deployment in lo-
cations with existing electrical grid infrastructure fall into three broad
categories: Energy Security, Economic Benefits, and Clean Energy
Integration, as described in Table 2, below.

The main driver of microgrid development in the United States has
been their potential to improve the resiliency (the ability to bounce
back from a problem quickly) and reliability (the fraction of time an
acceptable level of service is available) of “critical facilities” such as
transportation, communications, drinking water and waste treatment,
health care, food, and emergency response infrastructure. One major
area of activity is the Northeastern U.S., where aging infrastructure and
frequent severe weather events have led to billions of dollars of losses in
recent years. As a result, States have been exploring the feasibility of
extending microgrids beyond critical facilities to serve whole commu-
nities [55,56] and have begun funding demonstration projects [57,58].
The most notable example of state support for community microgrids is
New York State's “New York Prize”, a $40M competition to assist
communities on the path from feasibility studies through implementa-
tion.1 States in the U.S. are also looking to microgrids to replace retiring
generation capacity and to relieve congestion points in the transmission
and distribution system.

In Europe, climate change and the need to integrate large amounts
of clean renewable energy generation into the grid have been more
significant drivers spurring microgrid activity. Climate scientists have
concluded that to avoid a global average temperature rise exceeding
2 °C over pre-industrial levels, currently accepted as the threshold be-
tween “safe” and “dangerous” climate change, human society needs to
reduce the proportion of electricity produced by burning fossil fuels
from 70% (in 2010) to under 20% by 2050 [59]. Many of the energy
resources scaling up to fill this gap are decentralized, intermittent, and
non-dispatchable, making them a challenge to integrate into a legacy
grid designed for a one-way flow of electricity from centralized gen-
erating plants to customer loads. Deploying intermittent renewables in
with co-located flexible loads and storage technologies in microgrids
allows for local balancing of supply and demand makes widespread
distributed renewable deployment more manageable. Rather than
having to track and coordinate thousands or millions of individual
distributed energy resources, each microgrid appears to the distribution

1 https://www.nyserda.ny.gov/All-Programs/Programs/NY-Prize.
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utility as a small source or consumer of electricity with the ability to
modify the net load profile in ways that benefit the main grid [12].

Despite differences in the priority given to resilience and emissions
in the U.S. and Europe, microgrid fuel savings and ancillary grid ser-
vices are important components of the business case in both areas.
Extensive research is now underway to design microgrids using ad-
vanced analytical approaches in order to maximize these benefits across
a broad range of criteria, including land use, water use, employment,
CO2 emissions, investment costs and cost of electricity, among others
[60–62].

4. Deployment

While much has been written about the concept and promise of
microgrids, much can also be learned from examples of real, operating
microgrids. For an exhaustive list of existing, experimental, and simu-
lated microgrid systems, the reader is recommended to consult a recent
review by Mariam et al. (2016) in this journal [27]. According to Na-
vigant Research, which has tracked microgrid deployment since 2011,

the United States has been the historical leader in deployed capacity;
today, though, the U.S. and Asia have roughly the same capacity of
operating, under development, and proposed microgrids, each with
42% of the market. Europe trails with 11%, Latin America with 4%, and
the Middle East and Africa currently have just a 1% share. Total ca-
pacity was approximately 1.4 GW in 2015 and is expected to grow to
roughly 5.7 GW (considered a conservative estimate) or 8.7 GW (under
an “aggressive” scenario) by 2024 [63]. Navigant breaks the microgrid
market into the following segments (with % of total deployed power
capacity as of Q1 2016): Remote (54%), Commercial/Industrial (5%),
Community (13%), Utility Distribution (13%), Institutional/Campus
(9%), and Military (6%) [36]. It should be noted that Navigant Re-
search does not track purely diesel-generator based remote microgrid
systems; to be considered, they must include at least one renewable
generating source. While it is not possible here to present an exhaustive
description of different microgrid applications, we highlight a few
below.

Table 2
Drivers of microgrid development and deployment.

Category Driver Overview Recent Examples

Energy Security Severe Weather There is a growing concern that weather-related disruptions
will become more frequent and more severe over time across
the United States due to climate change, lending a sense of
urgency to addressing grid resilience. Microgrids can provide
power to important facilities and communities using their
distributed generation assets when the main grid goes down.

• Grid outage costs from severe weather in the United
States alone from 2003 to 2012 averaged $18B-$33B per
year due to lost output and wages, spoiled inventory,
delayed production, and damage to the electric grid [120]

Cascading Outages Because electrical grids are run near critical capacity, a
seemingly innocuous problem in a small part of the system
can lead to a domino effect that takes down an entire
electrical grid [121]. Microgrids alleviate this risk by
segmenting the grid into smaller functional units that can be
isolated and operated autonomously if needed.

• The United States Northeast Blackout of August 2003
impacted 50 million people and 61,800MW of load [122]

Cyber- and Physical
Attacks

The grid today increasingly relies on advanced information
and communications technologies, making it vulnerable to
cyberattack [123]. The centralized grid also contains large,
complex components that are expensive and slow to replace
if damaged. Microgrids, through their decentralized
architecture, are less vulnerable to attacks on individual
pieces of key generation or transmission infrastructure.
Natural [124,125] or man-made [126–129] electromagnetic
pulse (EMP) events could also have potentially catastrophic
results.

• Cyberattacks on Ukraine [130] in 2015 and Israel in 2016
(successfully thwarted) [131].

• Large transformers were physically attacked at a major
California substation in 2013 [132,133].

Economic Benefits Infrastructure Cost Savings Investment in the U.S. electricity grid has not kept pace with
generation. As a result, capacity is constrained in many areas
and components are quite old, with 70% of transmission lines
and transformers now over 25 years old. The average power
plant age is over 30 years [120,134]. Microgrids could avoid
or defer investments for replacement and/or expansion.

• Defered construction of a $1B substation in the Brooklyn
and Queens area of New York [135]

• It costs $40,000 to $100,000 per mile (depending on design,
terrain, and labor costs) to build new primary distribution
systems [2]

Fuel Savings Microgrids offer several types of efficiency improvements
including reduced line losses; combined heat, cooling, and
power; and transition to direct current distribution systems
to avoid wasteful DC-AC conversions. Use of absorption
cooling technology in a combined heat and power
application could help address summer critical peak
electrical demand [11].

• Transmission and distribution losses waste between 5%
and 10% of gross electricity generation [2,3]

• If the supply of reused waste heat is well matched to the
thermal loads, efficiencies of combined heat and power
systems can reach 80–90% [2], much higher the average
efficiency of the existing U.S. grid (only ~30–40% [2136]).

Ancillary Services Traditional ancillary services include congestion relief;
frequency regulation and load following; black start; reactive
power and voltage control; and supply of spinning (due to
their ability to mimic the inertia of traditional generation),
non-spinning, replacement reserves [137,138]. Power
quality (reactive power and voltage harmonics
compensation). When discussing microgrids, intentionally
islanded operation should be added to this list [15].

• Recent rulings 755 and 784 from the U.S. Federal Energy
Regulatory Commission (FERC) mandate that fast
responding reserves like those used in microgrids be
compensated based on their speed and accuracy, opening
new revenue possibilities [139,140].

Clean Energy
Integration

Need to firm variable and
uncontrollable resources

Important clean energy sources to address climate change
like solar PV and wind are variable and non-controllable,
which can cause challenges like overgeneration [141], steep
ramping [141,142], and voltage control [143,144] problems
for the existing grid if deployed in large quantities.
Microgrids are designed to handle variable generation, using
storage technologies to locally balance generation and loads.

• In locations with high renewable penetration like
California, Texas, and Germany, electricity prices have
occasionally gone negative, reflecting an imbalance
between supply and demand [145,146]
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4.1. Campus/Institutional

Deploying onsite generation, especially in a combined cooling, heat,
and power (CCHP, also known as “trigeneration”) application with
multiple loads collocated on a campus owned by a single entity has
been a successful model so far and typically includes the largest mi-
crogrids to date, with capacities ranging from 4 to over 40MW [63].
Santa Rita Jail, located in Alameda County, California, is a real in-
stitutional microgrid proof-of-concept employing the CERTS concept
[21]. The microgrid includes a 1-MW fuel cell, 1.2 MW of solar PV, two
1.2-MW diesel generators, a 2-MW/4-MWh Lithium Iron Phosphate
electrical storage system (chosen because this chemistry features high
AC-AC round trip efficiency and offers improved thermal and chemical
stability compared to other battery technologies, despite some sacrifice
in energy density), a fast static disconnect switch, and a power factor
correcting capacitor bank. The CERTS protocol allowed all of these
distributed energy resources to work together during grid-connected
and island modes without requiring a customized central controller.
The ability of an institutional microgrid to deliver peak load reduction,
and the tradeoffs between optimizing net load shape for the facility
versus for grid needs, has been demonstrated using Santa Rita Jail as an
example, using DER-CAM software to determine optimal equipment
scheduling and dispatch [64].

4.2. Military microgrids

Cost-effective energy security, “the ability of an installation to ac-
cess reliable supplies of electricity and fuel and the means to use them
to protect and deliver sufficient energy to meet critical operations
during an extended outage of the local electrical grid [65],” is the main
driver for grid-connected military microgrids (off-grid solutions for
operational deployment are also being developed). A good example of
military microgrid research and demonstration efforts is the Smart
Power Infrastructure Demonstration for Energy Reliability and Security
(SPIDERS) Joint Capability Technology Demonstration (JCTD) [66], a
three-phase program, with the scope and complexity growing with each
phase. Phase 1 took place at Joint Base Pearl Harbor-Hickam, Hawaii in
2012 and 2013 featuring a single distribution feeder, two electrically
isolated loads, two diesel generators, and a PV array. Phase 2 took place
in 2013 and 2014 at Fort Carson, Colorado and included three dis-
tribution feeders, seven building loads, three diesel generators, a 1-MW
PV array, and 5 bidirectional electric vehicle chargers. The final phase
3, at Camp Smith, Hawaii, finished in late 2015; it used new and ex-
isting generation sources to support the loads of the entire base. A more
detailed description of SPIDERS, including the project's cyber-security
components, and comparisons to other military microgrids are avail-
able in the literature [65,67].

4.3. Residential

The question of optimal aggregation scale is an open one in the
microgrid literature and an active area of investigation. For example, is
it better to integrate detached home residential customers into large
community microgrids or to deploy microgrid technology at the level of
individual homes? The advantages of a fully decentralized building-
integrated microgrid approach [68] include control over energy re-
sources by customers and the fact that individual homes are already
connected to the electrical distribution network, so that any changes
performed behind the utility meter to add microgrid capabilities will
likely not introduce significant legal or regulatory complications be-
yond what is already encountered for interconnection of rooftop solar
installations today. At the same time, this fully decentralized approach,
especially if it includes islanding capability, forfeits cost-saving
economies of scale and the generation and load diversity that comes
with networking multiple generators and loads. For example, the cost of
interconnection protection can add as much as 50% to the cost of a

microsource (i.e. serving an individual home or small building) project
so it may be better to site multiple microsources behind a single utility
interface [69]. Some authors envision a nested system where energy
management systems at the building level communicate with each
other and neighborhood-level master controllers to coordinate dis-
tributed energy resources, including shared community energy re-
sources and loads like street lighting [47]. The building-integrated
microgrid deployment model would likely benefit from innovative fi-
nancing (akin to solar leasing models) due to the expense of generating
resources, controllers, power electronics, and integration with existing
building systems. Literature exploring so-called “customer microgrids”
examines the technical feasibility and economic viability of this mode
of broad decentralized residential deployment [70,71]. Many of these
studies are motivated by the question of whether it is feasible and or/
desirable to cost-effectively gain full autonomy from the electrical grid
using PV and battery storage [70,72].

One appealing residential microgrid application combines market-
available grid-connected rooftop PV systems, electrical vehicle (EV)
slow/medium chargers, and home or neighborhood energy storage
system (ESS). During the day, the local ESS will be charged by the PV
and during the night it will be discharged to the EV. The effect is
twofold: (1) feed-in tariff schemes are not necessary since little power
needs to be exchanged with the main grid; and (2) voltage quality at the
PCC is improved [48]. The inclusion of the ESS alleviates overvoltages
during the day due to excess PV power generation and undervoltages
during the night caused by the huge current drained to charge the ve-
hicle.

4.4. Remote and rural microgrids

More than 1 billion people in developing and underdeveloped
countries currently lack access to reliable electricity – or to any elec-
tricity at all. Often, the limited electricity that is available is generated
using expensive diesel fuel. In particular, for rural areas in these
countries, electricity is a key resource for meeting basic human needs,
and microgrids may be the best way to deliver that electricity [73,74].
Remote microgrids combining clean generation and storage, in some
cases facilitated by innovative mobile payment platforms, can provide a
lifeline to those people, allowing children to study at night, medical
systems to provide reliable service, and entrepreneurs to improve their
livelihoods. These remote microgrids are leveraging the same advances
in power electronics, information and communications technologies,
and distributed energy resources that are driving changes in the grid in
industrialized countries, allowing developing nations to potentially
leapfrog to a world of smart microgrids, in the same way that mobile
communications allowed them to connect to each other and the outside
world without building up extensive landline networks.

So-called “hybrid” microgrids [75] that incorporate renewable en-
ergy sources, often as an add-on to diesel generator-based systems,
show great potential to diversify generation and lower microgrid op-
erating costs in island communities that rely on expensive imported oil
for generating electricity and in remote areas far from existing elec-
tricity infrastructure [76–81]. Remote microgrids need not use a one-
size fits all approach to system design; with careful resource evaluation
and understanding of demand profiles, projects can be optimized to fit
local conditions [82,83]. However, careful attention needs to be paid to
the impact of resource variability on level of service as well as the level
of maintenance required to keep the system running or to restore ser-
vice in the case of generator failure. Examples of research featuring
remote microgrids include Huatacondo Island in Chile [84], Xing-
xingxia in Xinjiang, China [85], and Lencois island in Brazil [86].
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5. Challenges

5.1. Legal and regulatory uncertainty

There are two key legal issues that impact microgrids: first, whether
they are deemed to be electrical distribution utilities and are therefore
subject to oversight by state regulatory agencies; and second, even if
they are exempt from state regulation as utilities, do they fit into ex-
isting legal frameworks governing the sale and purchase of electricity
and rights to generate and distribute electricity? A clear legal identity
for microgrids is needed to achieve the regulatory certainty required to
make microgrid projects “bankable” – otherwise the potential costs are
too high and benefits too uncertain to justify investing time and money
[55]. Several states in the United States have evaluated microgrids in
the context of the current legal and regulatory framework pertaining to
electricity generation, transmission, and distribution. The resulting re-
ports are a good starting point for understanding the issues states are
wrestling with regarding the future of their electrical distribution sys-
tems [55,56,87,88].

5.2. Interconnection policy

One fundamental source of legal uncertainty centers on the laws
regulating connection of distributed energy resources to the grid.
Following deregulation in the United States in the late 1990s, there
were no nation-wide standardized requirements for small independent
power producers to connect their equipment to the grid. Manufacturers
and project developers had to deal with a patchwork of requirements
that varied from utility to utility [89], adding substantial cost and time
to the microgrid development process. The development of IEEE 1547
(released in 2003) was an important step toward a consistent set of
rules for integrating distributed energy resources (< 10 MVA) to the
grid in a safe manner [90]. Until recently, though, the main focus of
interconnection policy for distributed energy resources, including IEEE
1547, was on ensuring that those resources would disconnect in the
case of grid failure (a so-called “unintentional islanding” situation) to
protect the safety of line workers. It wasn’t until the IEEE approved
standard 1547.4 in 2011, that standardized protocols became available
for safe intentional islanding and reconnection of microgrid systems.
IEEE 1547.4 includes guidance for planning, design, operation, and
integration of distributed resource island systems with the larger utility
grid. It covers functionality of microgrids including operation in grid-
connected mode, the transition to intentionally islanded mode, opera-
tion in islanded mode, and reconnection to the grid, specifying correct
voltage, frequency, and phase angle. Finally, IEEE 1547.4 also covers
safety considerations, protection, monitoring, communications, control,
and power quality. California's Rule 21 also addresses interconnection
requirements, to help remove barriers put in place by legacy utility
providers, by establishing standardized technology- and size-neutral
requirements, a clear review process, testing and certification proce-
dures, set fees, and a streamlined application process. Interconnection
is of paramount importance: if microgrids are not able to connect to the
utility grid, they must operate permanently in an islanded mode, for-
feiting the opportunity to derive revenue from grid services they could
otherwise provide and crippling their business case.

5.3. Utility regulation

A microgrid is likely to be considered an electric corporation if it
intends to serve multiple, otherwise unrelated, retail customers, cross a
public way with power lines, and/or obtain a franchise from a local
authority. The reasons for this conclusion are discussed below in more
detail. If a state utility regulatory agency decides that services provided
by microgrids qualify them as utilities, that body can regulate the rates
charged for electricity and decide whether to approve facility con-
struction, among other powers, all of which have major implications for

microgrid developers and owners. In the event that the microgrid is
deemed to be a distribution utility, it may assume an obligation to
serve, meaning that it would be required to provide service upon the
written or oral request of a potential retail customer.

All microgrids that intend to use public ways to distribute electricity
to customers (for example sending thermal energy or electricity across a
public street) require permission from the local municipal authority
[55]. This permission can be in the form of a “franchise” or other “lesser
consent”. A microgrid's ability to obtain this permission depends in
large degree on whether a pre-existing electric utility has been given an
exclusive franchise, effectively blocking out competitors. In New York,
for example, if the existing franchise is non-exclusive, state law still
mandates that a competitive process be used to determine the franchise
grantee, allowing incumbents and other service providers to compete
against the microgrid developer for the franchise.

Due to their small scale and limited scope of services, it is unlikely
in most cases that a microgrid would require a franchise and therefore,
that most microgrids would not be under the jurisdictional authority of
the utility regulatory agency; however, these cases are being decided on
a project-by-project basis in the courts. In addition, microgrids selling
to retail customers may have to comply with various consumer pro-
tection laws. Finally, regardless of their status as a distribution utility,
microgrids that produce power through combustion (such as micro-
turbines or diesel generators) are subject to federal and state laws
governing emissions and will require a permit under certain conditions.
The choice of business or ownership model will also impact the degree
to which utility franchise or lesser consent come into play; these con-
siderations are discussed in more detail below.

Today's regulations governing electric utilities in the United reflect a
process referred to as “restructuring”, and colloquially as “deregula-
tion”, that occurred in the mid- to late-1990s in many states in the U.S.,
following the example of deregulation in other major industries like
airlines, railroads, telecommunications, and others [91]. In general,
restructuring introduced a separation between the generation, trans-
mission, and distribution functions of what were previously vertically
integrated monopolies. In the case of New York, generators can sell
electricity into a competitive wholesale markets or directly to local
distribution utilities or retailers for resale to customers. A system op-
erator (in the case of New York, the NYISO) is responsible for main-
taining a balance between supply and demand at all times. The eco-
system of players in the restructured New York electricity market
includes smaller generating companies called Independent Power Pro-
ducers (IPPs). Microgrids, as such, do not fit neatly into the classes of
market participant defined by restructuring, perhaps because they
transcend the categories of generation, transmission, and distribution.
As a result, further work is needed to incorporate them into the reg-
ulatory legal structure.

5.4. Utility opposition

Although grid-tied microgrid customers will likely stay connected to
the grid for the foreseeable future, only islanding in the case of utility
grid failure, self-consumption of microgrid generated energy could
erode the revenue base that has traditionally paid for utility infra-
structure investments. There is also still reluctance to add large
amounts of distributed energy resources to the grid because of per-
ceived management, safety, and protection challenges. As a result,
many utilities are seeking to impose additional fees on DER owners and
threatening to halt net metering programs. Market restructuring, like
that proposed in New York's “Reforming the Energy Vision (REV)” ef-
fort, will be required to move from a situation where microgrids are
viewed as a threat to one in which distributed energy resource services
are valued by the utility grid and fairly compensated [92]. As part of
this restructuring, utility regulators will fully unbundle generation,
transmission, and distribution services and allow independent power
producers to compete in wholesale (and potentially retail) markets.
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Real time or time of use (ToU) electricity prices will become the norm
so that microgrids receive the economic signals they need to manage
their DERs to provide grid services like frequency regulation, black
start, and congestion relief, and to maximize their own revenues.
However, utility restructuring has not been a universal phenomenon
and progress slowed dramatically following the challenges experienced
in California in the early 2000s [91].

Even for deregulated utilities, the structure of electricity markets
and the manner in which investor-owned utilities are paid for providing
service (using so-called “cost of service” accounting) still represent
impediments to distributed energy resource adoption in general, in-
cluding microgrids. Decoupling electric company revenues from elec-
tricity sales, which is already done in 14 states in the USA, is a major
step toward removing utility resistance to microgrids based on concerns
about a so-called “utility death spiral” where widespread self-genera-
tion leads to demand reduction for the grid's electricity, which in turn
leads to higher electricity costs for traditional customers, fueling ad-
ditional uptake of self-generation to the point that utilities cannot cover
their costs.

A potential path forward is to move from the traditional cost-of-
service paradigm to a performance-based approach [93] that recognizes
that the utility grid is being asked to provide functions that are much
different from those they have historically been responsible for, such as
resilience, security, and clean generation. In this new paradigm, uti-
lities would be incentivized to invest in upgrading infrastructure and
improving efficiency as opposed to selling the maximum number of
kilowatt hours. Several States in the USA have taken it upon themselves
to commission or formulate their own plans for how to modernize their
grids and electricity markets to provide more reliable, efficient, and
clean, electricity to their customers [94–96]. Countries like Great
Britain are also formulating plans for evolution of the grid to a more
clean, secure, and distributed energy future and examining the social,
legal, and regulatory factors that help or hinder that transition [97].

Utilities are also coming around to the view that they may be well
positioned, if allowed by regulators, to provide microgrid services to
their existing customers since they have extensive knowledge, dis-
tribution infrastructure already in place, and franchise rights from local
authorities. Electrical utilities have begun testing microgrid concepts in
laboratory-type settings. One example is Duke Energy, which maintains
two test microgrid facilities: one in Gaston County, North Carolina [98],
and one in Charlotte, North Carolina [99]. The first installation focuses
on interoperability and building partnerships with manufacturers; the
second, originally built to test virtual power plant capabilities, is a solar
PV and storage microgrid serving a fire station. The partnership be-
tween the CERTS team and American Electric Power (AEP) to develop a
CERTS test bed represents a productive partnering model between in-
dustry and the government [19]. Other utility companies [100], like
Arizona Public Service, Consolidated Edison, Commonwealth Edison,
Green Mountain Power, NRG Energy, San Diego Gas and Electric and
Southern California Edison [101] are also exploring microgrids as a way
to provide additional services to customers, defer capital investments,
improve overall reliability, and to manage potential disruption to their
business model.

6. Future prospects and open questions

6.1. Competing smart grid paradigms

While it has been argued that microgrids are a better approach to
contain and manage local problems [102] and could even serve as a
possible pathway to a “self-healing” smart grid of the future [103], it is
possible that society will find grid architecture paradigms like “smart
supergrids” [104,105] or “virtual power plants” [44,106,107] – which
do not feature local balancing of generation and loads or isolating
segments of the grid – to be more compelling architectures. Smart su-
pergrids rely on improved fault detection, isolation, and restoration

capabilities to alleviate congestion, route power around faults, and
shorten recovery time from outages. Virtual power plants rely on soft-
ware and analytics to manage widely dispersed distributed energy re-
sources, although grid-connected microgrids can also function as virtual
power plants, as mentioned above. New information and communica-
tions developments, broadly known as the “Internet of Things (IoT)” are
also facilitating the emergence of a decentralized, so-called “transac-
tive” energy market platform where individual distributed energy re-
sources and loads can bid to buy and sell electricity from each other
[108]. Whether microgrids become the dominant strategy to deploy
large amounts of intermittent renewables and improve resilience de-
pends on whether the benefits are perceived to be great enough in re-
lation to the costs, when compared to the alternative smart grid para-
digms. It is possible that – even in situations where there is low value
placed on islanding for resilience and reliability – it will be deemed
advantageous to collocate virtual power plant assets in microgrid-like
architectures.

6.2. Market structure and degree of market decentralization

The EU “More Microgrids” project [109] presented four different
scenarios of microgrid resource ownership including: ownership by the
distribution system operator (DSO), where the DSO owns the distribu-
tion system and is responsible for retail sales of electricity to the end
customer; ownership by the end consumer or even consortium of pro-
sumers (entities that both import and export electricity); ownership by
an independent power producer; or, ownership by an energy supplier in
a free market arrangement. According to Navigant Research [36], the
majority of grid-tied microgrids today are owned and financed by fa-
cility owners, especially in the campus/institutional category. It is im-
portant to recognize that microgrids, especially community microgrids,
can utilize the existing distribution system infrastructure, radically re-
ducing their costs.

Three models have been proposed for integrating energy prosumers
into the grid – peer-to-peer, prosumer-to-grid, and prosumer commu-
nity groups – and identified barriers to their adoption [110,111]. In the
peer-to-peer model, perhaps the farthest from today's centralized grid
model, the underlying platform would support the ability of electricity
producers and consumers to directly buy and sell electricity and other
services from each other, with a fee going to the manager of the dis-
tribution grid for providing distribution services [112]. Pilot projects of
this type are starting to appear in places like Brooklyn, New York, the
Netherlands, and the United Kingdom. Researchers, practitioners, and
even large European energy companies, for applications like electric
vehicle charging, are starting to apply secure peer-to-peer platforms
like blockchain-based distributed ledgers to peer-to-peer energy mar-
kets [113,114].

One focus area is the market for voltage control in distribution
networks with microgrids. Some researchers propose that each micro-
grid in a future multi-microgrid network act as a virtual power plant –
i.e. as a single aggregated distributed energy resource – with each mi-
crogrid's central controller (assuming a centralized control archi-
tecture) bidding energy and ancillary services to the external power
system, based on the aggregation of bids from the distributed energy
resources in the microgrid (responsive loads, microgenerators, and
storage devices) [115]. They conceive of the distribution system op-
erator running a day-ahead market for reactive power, which is re-
quired for the flow of power from large generators to customers across a
radial transmission and distribution network, and propose a mechanism
for optimal market settlement. This vision is similar to that presented in
New York's Distributed Energy Resource Roadmap [116] which pro-
poses to open the state's wholesale electricity market to DER ag-
gregators.

Innovative business models such as power purchase or energy ser-
vices agreements and design-build-own-operate-maintain (DBOOM)
will likely play a big role in the ability of microgrids to scale [36]. Once
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microgrid design and procurement becomes more streamlined, power
purchase agreements (PPAs) are poised to play a larger role in the
microgrid market [36]. The PPA is currently a very successful business
model in the U.S. residential and commercial solar PV markets because
it can be used to capture tax and other related incentives while avoiding
large upfront capital costs for the facility hosting the system. The in-
frastructure in a PPA is owned by a third party and leased to customers
to provide electricity and related services to end customers. In the case
of microgrids, improved security, reliability, and sustainability can be
marketed along with economic benefits like energy cost savings. In the
case of combined cooling, heat, and power projects, thermal energy can
be bundled in the PPA along with electricity. It is reasonable to expect
that operations and maintenance will be included in the PPA, since PPA
revenues depend on systems performing to their potential.

7. Conclusion

The costs of solar photovoltaic generation and battery storage are
rapidly dropping, to the point that they are closing in on cost parity
with traditional electricity sources. As a result, broad adoption of these
technologies may soon accelerate to the point that energy prosumption,
where end users import and export electricity, is the norm rather than
the exception. Before millions of distributed energy resources are con-
nected to the electrical grid, it behooves society to plan ahead and to
understand what architecture will best integrate these and other dis-
tributed energy technologies. Microgrids are poised to manage this
transition by balancing supply and demand locally while ensuring re-
liability and resilience against what appear to be escalating natural and
man-made disturbances.

Whether microgrids remain a niche application or become ubiqui-
tous depends on two main factors: (1) to what degree regulatory and
legal challenges can be successfully surmounted, and (2) whether the
value they deliver to property owners and communities in terms of
power quality and reliability (PQR) and other economic benefits out-
weigh any cost premiums incurred to capture those benefits. These
questions are now being answered in court rooms and commercial
markets around the globe as electricity grids evolve to address social
and economic concerns and incorporate 21st century technology to
update Thomas Edison's original vision of the grid.
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