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Abstract The classical wavelet transform is a remarkably effective tool for the anal-
ysis of pointwise regularity of functions and distributions. During the last decade,
the emergence of a new generation of multiscale representations has extended the
classical wavelet approach leading to the introduction of a class of generalized
wavelet transforms - most notably the shearlet transform – which offer a much more
powerful framework for microlocal analysis. In this paper, we show that the shearlet
transform enables a precise geometric characterization of the set of singularities of
a large class of multidimensional functions and distributions, going far beyond the
capabilities of the classical wavelet transform. This paper generalizes and extends
several results that previously appeared in the literature and provides the theoretical
underpinning for advanced applications from image processing and pattern recog-
nition including edge detection, shape classification and feature extraction.

1 Introduction

How do you detect the location of a jump discontinuity in a function? One possible
approach consists in using as probes a collection of well-localized functions of the
form ψa,t(x) = a−n/2ψ(a−1(x− t)), a > 0, t ∈ Rn, where ψ ∈ L2(Rn). We assume
that ψ is chosen such that ψ̂ ∈ C∞

c (Rn), with 0 /∈ supp ψ̂ . Since ψ has rapid decay
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in space-domain, the functions ψa,t are mostly concentrated around t, with the size
of the essential support controlled by the scaling parameter a. We can then analyze
the local regularity of a function or distribution f via the mapping

f → ⟨ f ,ψa,t⟩, a > 0, t ∈ Rn.

To illustrate this approach, let us consider as a prototype of a jump discontinuity
the one-dimensional Heaviside function f (x) = 1 if x ≥ 0 and f (x) = 0 otherwise.
Using Plancherel theorem and the distributional Fourier transform of f , a direct
calculation using the analyzing functions ψa,t with n = 1 shows that 1

⟨ f ,ψa,t⟩ = ⟨ f̂ , ψ̂a,t⟩

=
√

a
∫
R

f̂ (ξ ) ψ̂(aξ )e−2πiξ t dξ

=
√

a
∫
R

1
2πiξ

ψ̂(aξ )e−2πiξ t dξ

=
√

a
∫
R

γ̂(η)e−2πiη t
a dη ,

where γ̂(η) = 1
2πiη ψ̂(η). If t = 0, the calculation above shows that |⟨ f ,ψa,t⟩| ≈

√
a,

provided that
∫

γ̂(η)dη ̸= 0. On the other hand, if t ̸= 0, an application of the Inverse
Fourier Transform theorem yields that ⟨ f ,ψa,t⟩ =

√
aγ(−t/a). Since γ̂ ∈ C∞

c (R),
γ has rapid decay in space-domain, implying that ⟨ f ,ψa,t⟩ decays rapidly to 0, as
a → 0; that is, for any N ∈N, there is a constant CN > 0 such that |⟨ f ,ψa,t⟩| ≤CNaN ,
as a → 0.

In summary, the elements ⟨ f ,ψa,t⟩ exhibit rapid asymptotic decay, as a → 0, for
all t ∈ R except at the location of the singularity t = 0, where ⟨ f ,ψa,t⟩ behaves as
O(

√
a).

The mapping f → ⟨ f ,ψa,t⟩ is the classical continuous wavelet transform and
this simple example illustrates its ability to detect local regularity information of
functions and distributions through its asymptotic decay at fine scales (cf.[16, 17,
18, 22]).

The generalization of the example above to higher dimensions is straightforward.
Let us consider the two-dimensional Heaviside function H(x1,x2) = χ{x1>0}(x1,x2)
and let us proceed as in the example above. Using the analyzing functions ψa,t with
n = 2 and denoting t = (t1, t2) ∈ R2 we have:

⟨H,ψa,t⟩ = ⟨Ĥ, ψ̂a,t⟩

= a
∫
R2

Ĥ(ξ1,ξ2) ψ̂(aξ1,aξ2)e−2πi(ξ1t1+ξ2t2) dξ1 dξ2

= a
∫
R2

δ (ξ2)

2πiξ1
ψ̂(aξ1,aξ2)e−2πi(ξ1t1+ξ2t2) dξ1 dξ2

1 Note that the distributional Fourier transform of f is f̂ (ξ ) = 1
2 δ (ξ ) + 1

2πi p.v. 1
ξ , but the term

1
2 δ (ξ ) gives no contribution in the computation for ⟨ f ,ψa,t⟩ since ψ̂(0) = 0.
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= a
∫
R

1
2πiξ1

ψ̂(aξ1,0)e−2πiξ1t1 dξ1

= a
∫
R

γ̂(η)e−2πiη t1
a dη ,

where γ̂(η) = 1
2πiη ψ̂(η ,0). A similar argument to the one above shows that the

elements ⟨H,ψa,t⟩ exhibit rapid asymptotic decay, as a → 0, at all t ∈ R2 except at
the location of the singularity t1 = 0, where ⟨H,ψa,t⟩ behaves as O(a), provided that∫

γ̂(η)dη ̸= 0.
However, even though the continuous wavelet transform is able to identify the

location of the singularities also in this case, the result of this second example is not
completely satisfactory since it provides no information about the orientation of the
singularity line. In dimensions larger than one, when the singularity points are sup-
ported on a curve or on a higher dimensional manifold, it is useful not only to detect
the singularity location but also to capture its geometry, such as the orientation of a
discontinuity curve or boundary.

As a matter of fact, it is possible to overcome this limitation by introducing gen-
eralized versions of the continuous wavelet transform which are more capable of
dealing with directional information. The idea of considering generalized (discrete
or continuous) wavelet transforms with improved directional capabilities has a long
history, going back to the steerable filters [8, 23] introduced for the analysis of
discrete data and to the notion of directional wavelets [1]. More recently, starting
with the introduction of ridgelets [2] and curvelets [3, 4], a new generation of more
flexible and powerful multiscale transforms has emerged, which has led to several
successful discrete applications in signal and image processing. Among such more
recent generalizations of the wavelet transform, the shearlet transform [9, 20] is
especially remarkable since it combines a simple mathematical structure which is
derived from the general framework of affine systems together with a special ability
to capture the geometry of the singularity sets of multidimensional functions and
distributions. For example, in the case of the two-dimensional Heaviside function,
the continuous shearlet transform is able to determine both the location and the ori-
entation of the discontinuity line. More generally, by extending and generalizing
several results derived previously by two of the authors, in this paper we show that
the continuous shearlet transform provides a precise geometric description of the set
of discontinuities of a large class of multivariate functions and distributions. These
results provide the theoretical underpinning for improved algorithms for image anal-
ysis and feature extraction, cf. [25].

The rest of the paper is organize as follows. In Section 2, we recall the definition
of the continuous shearlet transform; in Section 3, we present the shearlet analysis
of jump discontinuities in the two-dimensional case; in Section 4 we illustrate the
generalization of the shearlet approach to other types of singularities.
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2 The continuous shearlet transform

To define the continuous shearlet transform, we recall first the definition of the ‘gen-
eralized’ continuous wavelet transform associated with the affine group on Rn.

2.1 Wavelet transforms

The affine group A on Rn consists of the pairs (M, t) ∈ GLn(R)×Rn, with group
operation (M, t) · (M′, t ′) = (MM′, t +Mt ′). The affine systems generated by ψ ∈
L2(Rn) are obtained from the action of the quasi regular representation of A on ψ
and are the collections of functions of the form{

ψM,t(x) = |detM|−
1
2 ψ(M−1(x− t)) : (M, t) ∈ A

}
.

Let Λ = {(M, t) : M ∈ G, t ∈ Rn} ⊂ A , where G is a subset of GLn(R). If there is
an admissible function ψ ∈ L2(Rn) such that any f ∈ L2(Rn) can be recovered via
the reproducing formula

f =
∫
Rn

∫
G
⟨ f ,ψM,t⟩ψM,t dλ (M)dt,

where λ is a measure on G, then such ψ is a continuous wavelet associated with Λ
and the mapping

f → Wψ f (M, t) = ⟨ f ,ψM,t⟩, (M, t) ∈ Λ ,

is the continuous wavelet transform with respect to Λ . Depending on the choice of
G and ψ , there is a variety of continuous wavelet transforms [21, 24]. The simplest
case is G = {aI : a > 0}, where I is the identity matrix. In this situation, we obtain
the classical continuous wavelet transform

Wψ f (a, t) = a−n/2
∫
Rn

f (x)a−1 ψ(a−1(x− t))dx,

which was used in the Section 1 for n= 1,2. Note that, in this case, the dilation group
G is isotropic since the dilation factor a acts in the same way for each coordinate
direction. It is reasonable to expect that, by choosing more general dilation groups
G, one obtains wavelet transforms with more interesting geometric properties.

2.2 The shearlet transform

The continuous shearlet transform is the continuous wavelet transform associated
with a special subgroup AS of A called the shearlet group (cf. [6, 7, 19, 20]). For
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a fixed β = (β1, . . . ,βn−1), where 0 < βi < 1, 1 ≤ i < n− 1, AS consists of the
elements (Mas, t), where

Mas =


a −aβ1 s1 ... −aβn−1 sn−1

0 aβ1 ... 0
...

...
...

...

0 0 ... aβn−1

 ,

a> 0, s= (s1, . . . ,sn−1)∈Rn−1, and t ∈Rn. Note that each matrix Mas is the product
of the matrices Bs Aa, where

Aa =


a 0 ... 0
0 aβ1 ... 0
...

...
...

...

0 0 ... aβn−1

 , Bs =


1 −s1 ... −sn−1

0 1 ... 0
...

...
...

...
0 0 ... 1

 ,

where Aa is an anisotropic dilation matrix and Bs is non-expanding matrix called a
shear matrix. Hence, for an appropriate admissible function ψ ∈ L2(Rn) and β =
(β1, . . . ,βn−1), where 0 < βi < 1, the continuous shearlet transform is the mapping

f → ⟨ f ,ψMas,t⟩, (Mas, t) ∈ AS.

The analyzing elements ψMas,t are called shearlets and are the affine functions

ψMas,t(x) = |detMas|−
1
2 ψ(M−1

as (x− t)).

In the following we will show that, thanks the geometric and analytic properties
of shearlets, the continuous shearlet transform enables a very precise description of
jump discontinuities of functions of several variables. For example, if f = χS, where
S ⊂Rn, n = 2,3, is a bounded region with piecewise smooth boundary, the continu-
ous shearlet transform provides a characterization of the location and orientation of
the boundary set through its asymptotic decay at fine scales.

2.3 The shearlet transform (n = 2)

Before applying the shearlet framework in dimensions n = 2, we need to specify the
definition of the continuous shearlet transform that will be needed for our analysis.

For appropriate admissible functions ψ(h),ψ(v) ∈ L2(R2), a fixed 0 < β < 1 and
matrices

Mas =

(
a −aβ s

0 aβ

)
, Nas =

(
aβ 0

−aβ s a

)
,

we define the horizontal and vertical (continuous) shearlets by

ψ(h)
a,s,t(x) = |detMas|−

1
2 ψ(h)(M−1

as (x− t)), a > 0,s ∈ R, t ∈ R2,
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and
ψ(v)

a,s,t(x) = |detNas|−
1
2 ψ(v)(N−1

as (x− t)), a > 0,s ∈ R, t ∈ R2,

respectively. To ensure a more uniform covering of the range of directions through
the shearing variable s, rather than using a single shearlet system where s range over
R, it will be convenient to use the two systems of shearlets defined above and let s
range over a bounded interval.

To define our admissible functions ψ(h),ψ(v), for ξ = (ξ1,ξ2) ∈ R2 let

ψ̂(h)(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1
), ψ̂(v)(ξ1,ξ2) = ψ̂1(ξ2) ψ̂2(

ξ1
ξ2
), (1)

where ∫ ∞

0
|ψ̂1(aω)|2 da

a
= 1, for a.e. ω ∈ R, and supp ψ̂1 ⊂ [−2,− 1

2 ]∪ [ 1
2 ,2]; (2)

∥ψ2∥2 = 1 and supp ψ̂2 ⊂ [−
√

2
4 ,

√
2

4 ]. (3)

Observe that, in the frequency domain, a shearlet ψ(h)
a,s,t has the form:

ψ̂(h)
a,s,t(ξ1,ξ2) = a

1+β
2 ψ̂1(aξ1) ψ̂2(aβ−1( ξ2

ξ1
− s))e−2πiξ ·t .

This shows each function ψ̂(h)
a,s,t has support:

supp ψ̂(h)
a,s,t ⊂ {(ξ1,ξ2) : ξ1 ∈ [− 2

a ,−
1
2a ]∪ [ 1

2a ,
2
a ], |

ξ2
ξ1
− s| ≤ a1−β}.

That is, its frequency support is a pair of trapezoids, symmetric with respect to the
origin, oriented along a line of slope s. The support becomes increasingly thin as
a → 0. This is illustrated in Figure 1. The shearlets ψ(v)

a,s,t have similar properties,
with frequency supports orientated along lines of slopes 1

s .
For 0 < a < 1

4 and |s| ≤ 3
2 , each system of continuous shearlets spans a subspace

of L2(R2) consisting of functions having frequency supports in one of the horizontal
or vertical cones defined in the frequency domain by

P(h) = {(ξ1,ξ2) ∈ R2 : |ξ1| ≥ 2 and | ξ2
ξ1
| ≤ 1}

P(v) = {(ξ1,ξ2) ∈ R2 : |ξ1| ≥ 2 and | ξ2
ξ1
|> 1}.

More precisely, the following proposition, which is a generalization of a result
in [19], shows that the horizontal and vertical shearlets form a continuous repro-
ducing system for the spaces of L2 functions whose frequency support is contained
in P(h) and P(h), respectively.

Proposition 1. Let ψ(h) and ψ(v) be given by (1) with ψ̂1 and ψ̂2 satisfying (2) and
(3), respectively. Let

L2(P(h))∨ = { f ∈ L2(R2) : supp f̂ ⊂ P(h)},
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HHY
(a,s) = ( 1

32 ,1)@
@@R

(a,s) = ( 1
4 ,0)

6

(a,s) = ( 1
32 ,0)

ξ1

ξ2

Fig. 1 Supports of the shearlets ψ̂(h)
ast (in the frequency domain) for different values of a and s.

with a similar definition for L2(P(v))∨. We have the following.

(i) For all f ∈ L2(P(h))∨,

f =
∫
R2

∫ 2

−2

∫ 1
4

0
⟨ f ,ψ(h)

a,s,t⟩ψ(h)
a,s,t

da
a3 dsdt.

(ii) For all f ∈ L2(P(v))∨,

f =
∫
R2

∫ 2

−2

∫ 1
4

0
⟨ f ,ψ(v)

a,s,t⟩ψ(v)
a,s,t

da
a3 dsdt.

The equalities are understood in the L2 sense.

Note that da
a3 dsdt is the left Haar measure of the shearlet group AS.

Using the horizontal and vertical shearlets, we define the (fine-scale) continuous
shearlet transform on L2(R2) as the mapping

f ∈ L2(R2 \ [−2,2]2)∨ → SHψ f (a,s, t), a ∈ (0, 1
4 ],s ∈ [−∞,∞], t ∈ R2,

given by

SHψ f (a,s, t) =

{
SH

(h)
ψ f (a,s, t) = ⟨ f ,ψ(h)

a,s,t⟩, if |s| ≤ 1

SH
(v)

ψ f (a, 1
s , t) = ⟨ f ,ψ(v)

a,s,t⟩, if |s|> 1.

In this expression, it is understood that the limit value s = ±∞ is defined and that
SHψ f (a,±∞, t) = SH

(v)
ψ f (a,0, t).

The term fine-scale refers to the fact that this shearlet transform is only defined
for the scale variable a ∈ (0,1/4], corresponding to “fine scales”. In fact, as it is
clear from Proposition 1, the shearlet transform SHψ f defines an isometry on
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L2(R2 \ [−2,2]2)∨, the subspace of L2(R2) of functions with frequency support
away from [−2,2]2, but not on L2(R2). This is not a limitation since our method
for the geometric characterization of singularities will require to derive asymptotic
estimates as a approaches 0.

3 Shearlet analysis of jump discontinuities in dimension n = 2

To introduce the main ideas associated with the shearlet-based analysis of singular-
ities, let us examine first the two-dimensional Heaviside function which was con-
sidered in Section 1. Using Plancherel theorem and denoting t = (t1, t2) ∈R2, when
|s|< 1 we have

SHψ H(a,s, t) = ⟨H,ψ(h)
a,s,t⟩

=
∫
R2

Ĥ(ξ1,ξ2) ψ̂(h)
a,s,t(ξ1,ξ2)dξ1 dξ2

=
∫
R2

δ2(ξ1,ξ2)

2πiξ1
ψ̂(h)

a,s,t(ξ1,ξ2)dξ1 dξ2

=
∫
R

1
2πiξ1

ψ̂a,s,t(ξ1,0)dξ1

= a
1+β

2

∫
R

1
2πiξ1

ψ̂1(aξ1) ψ̂2(aβ−1s)e2πiξ1t1 dξ1

= a
1+β

2 ψ̂2(aβ−1s)
∫
R

γ̂(η)e2πiη t1
a dη ,

where γ̂(η) = 1
2πiη ψ̂1(η). Hence, using the same argument from the introduction,

under the assumption that ψ̂1 ∈ C∞
c (R) we have that SHψ H(a,s, t) exhibits rapid

asymptotic decay, as a → 0, for all (t1, t2) ∈R2 when t1 ̸= 0. If t1 = 0 and s ̸= 0, the
term ψ̂2(aβ−1s) will vanish as a → 0, due to the support assumptions on ψ̂2. Finally,
if t1 = 0 and s = 0, we have that

SHψ H(a,0,(0, t2)) = a
1+β

2 ψ̂2(0)
∫
R

γ̂(η)dη .

Hence, provided that ψ̂2(0) ̸= 0 and
∫
R γ̂(η)dη ̸= 0, we have the estimate

SHψ H(a,0,(0, t2)) = O(a
1+β

2 ).

A similar computation shows that SHψ H(a,s, t) exhibits rapid asymptotic decay,
as a → 0, for all |s|> 1. In summary, under appropriate assumptions on ψ1 and ψ2,
the continuous shearlet transform of H decays rapidly, asymptotically for a → 0,
for all t and s, unless t is on the discontinuous line and s corresponds to the normal
direction of the discontinuous line at t.
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The same properties of the continuous shearlet transform observed on the two-
dimensional Heaviside function can be extended to any function of the form f = χS
where S ⊂ R2 is a compact region whose boundary, denoted by ∂S, is a simple
piecewise smooth curve, of finite length L. To define the normal orientation to the
boundary curve ∂S, let α(t), 0 ≤ t ≤ L be a parametrization of ∂S. Let p0 = α(t0)
and let s0 = tan(θ0) with θ0 ∈ (−π

2 ,
π
2 ). We say that s0 corresponds to the normal

direction of ∂S at p0 if (cosθ0,sinθ0) =±n(t0).
The following theorem generalizes a result proved originally in [10] for the spe-

cial case β = 1
2 .

Theorem 1. Let ψ1,ψ2 be chosen such that

• ψ̂1 ∈C∞
c (R), supp ψ̂1 ⊂ [−2,− 1

2 ]∪ [ 1
2 ,2], is odd, nonnegative

on [ 1
2 ,2] and it satisfies

∫ ∞

0
|ψ̂1(aξ )|2 da

a
= 1, for a.e. ξ ∈ R; (4)

• ψ̂2 ∈C∞
c (R), supp ψ̂2 ⊂ [−

√
2

4 ,
√

2
4 ], is even, nonnegative,

decreasing in [0,
√

2
4 ), and ∥ψ2∥2 = 1. (5)

Let 1
3 < β < 1. For B = χS, where S ⊂ R2 is a compact set whose boundary ∂S is a

simple piecewise smooth curve, the following holds.

(i) If p /∈ ∂S then, for all s ∈ R,

lim
a→0+

a−N SHψ B(a,s, p) = 0, for all N > 0.

(ii) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S at p0
and s ̸= s0, then

lim
a→0+

a−N SHψ B(a,s, p0) = 0, for all N > 0.

(iii) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S at p0
and s = s0, then

∞ > lim
a→0+

a−
1+β

2 SHψ B(a,s0, p0) ̸= 0.

That is, if p0 ∈ ∂S, the continuous shearlet transform decays rapidly, asymptotically
for a → 0, unless s = s0 corresponds to the normal direction of ∂S at p0, in which
case

SHψ B(a,s0, p0) = O(a
1+β

2 ), as a → 0.

Theorem 1 generalizes to the case of functions of the form f = χS where S ⊂R2

and the boundary curve ∂S contains corner points. In this case, if p0 is a corner point
and s corresponds to one of the normal directions of ∂S at p0, then the continuous

shearlet transform has a decay rate of order O(a
1+β

2 ), as a → 0, similar to the sit-
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uation of regular points. For other values of s, however, the asymptotic decay rate
depends both on the tangent and the curvature at p0 (cf. [10]).

Theorems 1 was originally proved in [10] for the case β = 1/2 and its proof was
successively simplified ans streamlined in [13]. In the following section, we sketch
the main ideas of the proof, highlighting how to extend the proof from [13] to the
case β ̸= 1/2.

3.1 Proof of Theorems 1 (sketch)

The argument used for the two-dimensional Heaviside function cannot be extended
to this case directly since this would require an explicit expression of the Fourier
transform of the function B = χS. Instead, we can apply the divergence theorem
which allows us to express the Fourier transform of B as a line integral over ∂S:

B̂(ξ ) = χ̂S(ξ ) =
∫

S
e−2πiξ ·x dx (6)

=− 1
2πi∥ξ∥2

∫
∂S

e−2πi⟨ξ ,x⟩ ξ ·n(x)dσ(x),

for all ξ ̸= 0, where ∂S is the boundary of S, n is the unit outward normal to S, and
σ is 1-dimensional Hausdorff measure on R2.

Hence, using (6), we have that

SHψ B(a,s, p) = ⟨B,ψ(d)
a,s,p⟩

= ⟨B̂, ψ̂(d)
a,s,p⟩

=
∫
R2

B̂(ξ ) ψ̂(d)
a,s,p(ξ )dξ (7)

=− 1
2πi

∫
R2

ψ̂(d)
a,s,p(ξ )
∥ξ∥2

∫
∂S

e−2πiξ ·x ξ ·n(x)dσ(x)dξ ,

where the upper-script in ψ(d)
a,s,p is either d = h, when |s| ≤ 1, or d = v, when |s|> 1.

One can observe that the asymptotic decay of the shearlet transform SHψ B(a,s, p),
as a → 0, is only determined by the values of the boundary ∂S which are “close”
to p. Hence, for ε > 0, let D(ε, p) be the ball in R2 of radius ε and center p, and
Dc(ε, p) = R2 \D(ε, p). Using (7), we can write the shearlet transform of B as

SHψ B(a,s, p) = I1(a,s, p)+ I2(a,s, p),

where
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I1(a,s, p) =− 1
2πi

∫
R2

ψ̂(d)
a,s,p(ξ )
∥ξ∥2

∫
∂S∩D(ε,p)

e−2πiξ ·x ξ ·n(x)dσ(x)dξ , (8)

I2(a,s, p) =− 1
2πi

∫
R2

ψ̂(d)
a,s,p(ξ )
∥ξ∥2

∫
∂S∩Dc(ε,p)

e−2πiξ ·x ξ ·n(x)dσ(x)dξ . (9)

The Localization Lemma below (whose assumptions are satisfied by the shearlet
generator function in Theorem 1) shows that I2 has rapid asymptotic decay at fine
scales. For its proof, we need the following “repeated integration by parts” lemma
whose proof follows easily from induction and the standard integration by parts
result. Note that this version of the Localization Lemma is more general than the
one appeared in [10, 13], since it does not assume a special form of the function ψ .

Lemma 1. Let N ∈Z+= {1,2,3, . . .} and let f ,g∈CN(R) be such that f (n)g(N−1−n)

vanishes at ∞, for all n = 0, . . . ,N −1, and f (n)g(N−n) ∈ L1(R), for all n = 0, . . . ,N.
Then, ∫

R
f (x)g(N)(x)dx = (−1)N

∫
R

f (N)(x)g(x)dx.

Lemma 2 (Localization Lemma). Fix p ∈ R2 and let N ∈ Z+. Suppose that

(i) ψ̂(d) ∈CN(R2), for d = h,v;
(ii) ∂ ω ψ̂(d) ∈ L1(R2)∩L∞(R2), for all 0 ≤ |ω| ≤ N −1 and d = h,v;
(iii) ∂ ω ψ̂(d)/rN+1−|ω|

d ∈ L1(R2), for all 0 ≤ |ω| ≤ N and d = h,v, where

rd(ξ ) =

{
|ξ1|, if d = h
|ξ2|, if d = v.

Then, there exists a constant 0 <C < ∞ such that

|I2(a,s, p)| ≤C aNβ+(1−β )/2,

for all a and s.

Proof. Fix 0< a≤ 1/4 and s∈R. We may assume that s≤ 1 and d = h. Substituting
for ψ̂(h)

a,s,p and using (9), the change of variable η1 = aξ1 and η2 = aβ ξ2−aβ sξ1, and
some algebraic manipulation, we have

I2(a,s, p)

=
−a(1+β )/2

2πi

∫
R2

ψ̂(h)(aξ1,aβ ξ2 −aβ sξ1)

∥ξ∥2

∫
∂S∩Dc(ε,p)

e−2πiξ ·(x−p) ξ ·n(x)dσ(x)dξ

=
−a−(1+β )/2

2πi

∫
R2

ψ̂(h)(η)

a−2η2
1 +(a−β η2 +a−1sη1)2

∫
∂S∩Dc(ε,p)

e−2πi(a−1η1,a−β η2+a−1sη1)·(x−p)

× (a−1η1,a−β η2 +a−1sη1) ·n(x)dσ(x)dη

=
−a(1−β )/2

2πi

∫
R2

ψ̂(h)(η)

η2
1 +(a1−β η2 + sη1)2

∫
∂S∩Dc(ε,p)

e−2πia−1η1[(x1−p1)+s(x2−p2)]
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× (η1,a1−β η2 + sη1) ·n(x)e−2πia−β η2(x2−p2) dσ(x)dη . (10)

Note also that∫
R2

∣∣∣∣∣ ψ̂(h)(η)

η2
1 +(a1−β η2 + sη1)2

∣∣∣∣∣
∫

∂S∩Dc(ε,p)

∣∣∣(η1,a1−β η2 + sη1) ·n(x)
∣∣∣

×
∣∣∣e−2πia−1η1[(x1−p1)+s(x2−p2)]e−2πia−β η2(x2−p2)

∣∣∣ dσ(x)dη

≤
∫
R2

|ψ̂(h)(η)|
η2

1 +(a1−β η2 + sη1)2

∫
∂S∩Dc(ε,p)

∥(η1,a1−β η2 + sη1)∥∥n(x)∥dσ(x)dη

≤ σ(∂S)
∫
R2

|ψ̂(h)(η)|
rh(η)

dη < ∞, (11)

where, in the last inequality, we have used properties (ii) and (iii) in the statement
of this lemma.

Choose δ > 0 not depending on s and disjoint Borel measurable subsets Eq ⊂R2,
for q = 1,2, satisfying

Eq ⊂ {x ∈ R2 : |(xq − pq)+ sq(x2 − p2)| ≥ δ} and E1 ∪E2 = ∂S∩Dc(ε, p), (12)

where s1 = s and s2 = 0. Then, using (10), (11), and the Fubini-Tonelli theorem it
follows that

I2(a,s, p) =
−a(1−β )/2

2πi ∑
q=1,2

∫
Eq

∫
R2

fa(x,η)

× e−2πia−1η1[(x1−p1)+s(x2−p2)]e−2πia−β η2(x2−p2) dη dσ(x), (13)

where fa : ∂S×R2 → C is defined by

fa(x,η) =
(η1,a1−β η2 + sη1) ·n(x)

η2
1 +(a1−β η2 + sη1)2 ψ̂(h)(η)

for a.e. (x,η). We require the following claim, whose proof is a straightforward
application of induction and the quotient rule.

For each q ∈ {1,2} and n ∈ {0, . . . ,N}, there exists Lq
n ∈ Z+ and, for each l =

1, . . . ,Lq
n, there exist γqn

l ≥ 0, cqn
l ∈ L∞(S,σ) not depending on a, η , or s, a monomial

mqn
l : R2 →R, and a multi-index ωqn

l with |ωqn
l | ≤ n and |ωqn

l |= deg(mqn
l )−2n+1+

n+1 such that

∂ n

∂ηn
q

fa(x,η) =
Lq

n

∑
l=1

aγqn
l cqn

l (x)mqn
l (η1,a1−β η2 + sη1)

(η2
1 +(a1−β η2 + sη1)2)2n ∂ ωqk

l ψ̂(h)(η),

for a.e. (x,η). We are using monomial in the strict sense (i.e., η1η2 is a monomial
but −η1η2 and 2η1η2 are not).
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If q ∈ {1,2}, choose r such that {q,r}= {1,2}. If m : R2 →R is a monomial and
γ ∈ R, then, by switching to spherical coordinates, it is clear that |m(η)|/∥η∥γ ≤
1/∥η∥γ−deg(m), for all η ̸= 0. Using this and the claim, if n ∈ {0, . . . ,N}, we have∣∣∣∣∣ ∂ n

∂ηn
q

fa(x,η)

∣∣∣∣∣≤ Lq
n

∑
l=1

∥cqn
l ∥∞

∣∣∣∣∣ mqn
l (η1,a1−β η2 + sη1)

(η2
1 +(a1−β η2 + sη1)2)2n

∣∣∣∣∣ |∂ ωqn
l ψ̂(h)(η)|

≤
Lq

n

∑
l=1

∥cqn
l ∥∞

|∂ ωqn
l ψ̂(h)(η)|

∥(η1,a1−β η2 + sη1)∥k+1−|ωqn
l |

(14)

≤
Lq

n

∑
l=1

∥cqn
l ∥∞

|∂ ωqn
l ψ̂(h)(η)|

rh(η)n+1−|ωqn
l |

,

for a.e. (x,η). The second inequality, together with the claim and property (ii) of
ψ(h), implies that ∂ n

∂ηn
q

fa(x, ·) vanishes at ∞, for n = 0, . . . ,N − 1 and σ -a.e. x. The

third inequality, together with the claim and properties (ii) and (iii) of ψ(h) implies
that ∂ n

∂ηn
q

fa(x, ·) ∈ L1(R2), for n = 0, . . . ,N and σ -a.e. x.
Using the observations of the previous paragraph, the Fubini-Tonelli theorem,

Lemma 1, (12), (14), the claim, and property (i) of ψ(h), we obtain∣∣∣∣∫Eq

∫
R2

fa(x,η)e−2πia−1η1[(x1−p1)+s(x2−p2)]e−2πia−β η2(x2−p2) dη dσ(x)
∣∣∣∣

≤
∫

Eq

∫
R

∣∣∣∣∫R fa(x,η)e−2πia−βq ηq[(xq−pq)+sq(x2−p2)] dηq

∣∣∣∣dηr dσ(x)

=
∫

Eq

∫
R

∣∣∣∣∫R fa(x,η)
∂ N

∂ηN
q

(
e−2πia−βq ηq[(xq−pq)+sq(x2−p2)](

−2πia−βq [(xq − pq)+ sq(x2 − p2)]
)N

)
dηq

∣∣∣∣dηr dσ(x)

=
∫

Eq

∫
R

∣∣∣∣∫R ∂ N

∂ηN
q

fa(x,η)
e−2πia−βq ηq[(xq−pq)+sq(x2−p2)](

−2πia−βq [(xq − pq)+ sq(x2 − p2)]
)N dηq

∣∣∣∣dηr dσ(x)

≤ aNβq

(2πδ )N

∫
Eq

∫
R2

∣∣∣∣∣ ∂ N

∂ηN
q

fa(x,η)

∣∣∣∣∣ dη dσ(x)

≤ σ(∂S)aNβq

(2πδ )N

Lq
N

∑
l=1

∥cqN
l ∥∞∥∂ ωqN

l ψ̂(h)/r
N+1−|ωqN

l |
h ∥1,

where β1 = 1 and β2 = β . The lemma follows from the claim, property (iii) of ψ(h),
the above inequality, and (13). ⊓⊔

For the analysis of the term I1, we will use a local approximation of the curve ∂S.
Let α(t) be the boundary curve ∂S, with 0 ≤ t ≤ L, and p ∈ ∂S. Without loss

of generality, we may assume that L > 1 and p = (0,0) = α(1). We can write the
boundary curve near p as C = ∂S∩D(ε,(0,0)), where
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C = {α(t) : 1− ε ≤ t ≤ 1+ ε}.

Rather than using the arclength representation of C , we can also write C =
{(G(u),u),−ε ≤ u ≤ ε}, where G(u) is a smooth function. Since p = (0,0), then
G(0) = 0. Hence we define the quadratic approximation of ∂S near p = (0,0) by
∂S0 = (G0(u),u), where G0 is the Taylor polynomial of degree 2 of G centered at
the origin, given by G0(u) = G′(0)u+ 1

2 G′′(0)u2. Accordingly, we define B0 = χS0 ,
where S0 is obtained by replacing the curve ∂S in B = χS with the quadratic curve
∂S0 near the point p = (0,0).

The following lemma, which is a generalization from [13], shows that to derive
the estimates of Theorem 1 it is sufficient to replace the set B with set B0, since
this produces a “low-order” error. Note that this approximation result only holds for
1
3 < β < 1, that is, when the anisotropic scaling factor of the dilation matrices is
not too high. The argument provided below does not extend to smaller values of β .
Possibly this restriction could be removed by considering a higher order polynomial
approximation for the boundary curve ∂S, but this would make the rest of the proof
of Theorem 1 significantly more involved.

Lemma 3. Let 1
3 < β < 1. For any |s| ≤ 3

2 , we have

lim
a→0+

a−
1+β

2
∣∣SHψ B(a,s,0))−SHψ B0(a,s,0)

∣∣= 0.

Proof. Let p = (0,0) ∈ ∂S. Since we assume |s| ≤ 3
2 , we need to use the system of

‘horizontal’ shearlets only.
Let γ be chosen such that 1+β

4 < γ < β (this can be satisfied for 1
3 < β < 1) and

assume that a is sufficiently small, so that aγ ≪ 1. A direct calculation shows that∣∣SHψ B(a,s,0)−SHψ B0(a,s,0)
∣∣ ≤ ∫

R2
|ψ(h)

a,s,0(x)| |χS(x)−χS0(x)|dx

= T1(a)+T2(a),

where x = (x1,x2) ∈ R2 and

T1(a) = a−
1+β

2

∫
D(aγ ,(0,0))

|ψ(h)(M−1
as x)| |χS(x)−χS0(x)|dx,

T2(a) = a−
1+β

2

∫
Dc(aγ ,(0,0))

|ψ(h)(M−1
as x)| |χS(x)−χS0(x)|dx.

Observe that:

T1(a) ≤ C a−
1+β

2

∫
D(aγ ,(0,0))

|χS(x)−χS0(x)|dx.

To estimate the above quantity, it is enough to compute the area between the regions
S and S0. Since G0 is the Taylor polynomial of G of degree 2, we have
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T1(a)≤C a−
1+β

2

∫
|x|<aγ

|x|3dx ≤C a4γ− 1+β
2 .

Since γ > 1+β
4 , the above estimate shows that T1(a) = o(a

1+β
2 ).

The assumptions on the generator function ψ(h) of the shearlet system ψ(h) imply
that, for each N > 0, there is a constant CN > 0 such that |ψ(x)| ≤CN (1+ |x|2)−N .

Also note that (Mas)
−1 = A−1

a B−1
s , where B−1

s =
(

1 s

0 1

)
and A−1

a =

(
a−1 0

0 a−β

)
. It is

easy to verify that, for all |s| ≤ 3
2 , there is a constant C0 > 0 such that ∥B−1

s x∥2 ≥
C0∥x∥2, or (x1 + sx2)

2 + x2
2 ≥ C0(x2

1 + x2
2) for all x ∈ R2. Thus, for a < 1, we can

estimate T2(a) as:

T2(a) ≤ C a−
1+β

2

∫
Dc(aγ ,(0,0))

|ψ(h)(Masx)|dx

≤ CN a−
1+β

2

∫
Dc(aγ ,(0,0))

(
1+(a−1(x1 + sx2))

2 +(a−β x2)
2
)−N

dx

≤ CN a−
1+β

2

∫
Dc(aγ ,(0,0))

(
(a−β (x1 + sx2))

2 +(a−β x2)
2
)−N

dx

≤ CN a2βN− 1+β
2

∫
Dc(aγ ,(0,0))

(x2
1 + x2

2)
−N dx

= CN a2βN− 1+β
2

∫ ∞

aγ
r1−2N dr

= CN a2N(β−γ) a2γ− 1+β
2 ,

where the constant C0 was absorbed in CN . Since γ < β and N can be chosen arbi-

trarily large, it follows that T2(a) = o(a
1+β

2 ). ⊓⊔

The proof of Theorem 1 can now be completed using Lemmata 2 and 3, following
the arguments from [13].

4 Shearlet analysis of general singularities

The shearlet analysis of singularities extends beyond the case of functions of the
form χS considered in the previous sections. The results presented below illustrate
the shearlet analysis of singularities of rather general functions.

As a first case, we will examine the case of ‘general’ functions of two vari-
ables containing jump discontinuities. Let S be a bounded open subset of R2 and
assume that its boundary ∂S is generated by a C3 curve that can be parametrized
as (ρ(θ)cosθ ,ρ(θ)sinθ) where ρ(θ) : [0,2π) → [0,1] is a radius function. We
will consider functions of the form f χS, where f is a smooth functions. Note that
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this model is a special case of the class of cartoon-like images, where the set ∂S
describes the edge of an object. Similar image models are commonly used, for ex-
ample, in the variational approach to image processing (cf. [5, Ch.3]).

We have the following result, which is a refinement from an observation in [14].

Theorem 2. Let ψ1,ψ2,β be chosen as in Theorem 1. Let B = f χS, where S ⊂ R2

is a bounded region whose boundary ∂S is a simple C3 curve and f ∈C∞(R2). Then
we have the following results.

(i) If p /∈ ∂S then, for all s ∈ R,

lim
a→0+

a−N SHψ B(a,s, p) = 0, for all N > 0.

(ii) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S at p0
and s ̸= s0, then

lim
a→0+

a−N SHψ B(a,s, p0) = 0, for all N > 0.

(iii) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S at
p0, s = s0 and f (p) ̸= 0, then

lim
a→0+

a−
1+β

2 SHψ B(a,s0, p0) ̸= 0.

For simplicity of notation, we will prove Theorem 2 in the special case where
β = 1

2 . The case of general 1
3 < β < 1 can be easily derived from here. For the

proof, we need first the following lemma (where we assume β = 1
2 ).

Lemma 4. Let S⊂R2 be a bounded region whose boundary ∂S is a simple C3 curve.
Assume that p0 ∈ ∂S is a regular point and PS is a polynomial with PS(p0) = 0. For
any N > 0, we have

(i) lima→0 a−N⟨PS χS,ψ
(h)
a,s,p0⟩= 0, s ̸=±n(p0),

(ii) lima→0 a−
5
4 ⟨PS χS,ψ

(h)
a,s,p0⟩=C, s =±n(p0),

where C is a finite real number.

Proof. We only prove the lemma when PS is a polynomial of degree 2, since the
same argument works for a polynomial of degree > 2. Without loss of generality, we
may assume p0 =(0,0) and that near p0, we have that ∂S= {(g(u),u), −ε < u< ε},
where g(u) = Au2 +Bu. Also we may write s = tanθ0 with θ0 = 0.

Recall that, by the divergence theorem,

χ̂S(ρ,θ) = − 1
2πiρ

∫
∂S

e−2πiρΘ(θ)·x Θ(θ) ·n(x)dσ(x)

= − 1
2πiρ

∫ L

0
e−2πiρ Θ(θ)·α(t)Θ(θ) ·n(t)dt.
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Since PS(0) = 0, we can write PS(x) as A1x1 +A2x2 +A3x2
1 +A4x1x2 +A5x2

2. Let
PS(

i
2π D) be the differential operator obtained from the polynomial PS(x) by replac-

ing x1 with i
2π

∂
∂ξ1

and x2 with i
2π

∂
∂ξ2

.
A direct computation gives that

∂
∂ξ1

(
ψ̂1(aξ1)ψ̂2(a−

1
2 (

ξ2

ξ1
− s))

)
= aψ̂1

′(aξ1)ψ̂2(a−
1
2 (

ξ2

ξ1
− s))− ξ2

ξ 2
1

a−
1
2 ψ̂1(aξ1)ψ̂2

′(a−
1
2 (

ξ2

ξ1
− s)),

and

∂ 2

∂ξ 2
1

(
ψ̂1(aξ1)ψ̂2(a−

1
2 (

ξ2

ξ1
− s))

)
= a2ψ̂1

′′(aξ1)ψ̂2(a−
1
2 (

ξ2

ξ1
− s))−a

1
2

ξ2

ξ 2
1

ψ̂1
′(aξ1)ψ̂2

′(a−
1
2 (

ξ2

ξ1
− s))

+a−
1
2

2ξ2

ξ 3
1

ψ̂1(aξ1)ψ̂2
′(a−

1
2 (

ξ2

ξ1
− s))−a

1
2

ξ2

ξ 2
1

ψ̂1
′(aξ1)ψ̂2

′(a−
1
2 (

ξ2

ξ1
− s))

+(a−
1
2

ξ2

ξ 2
1
)2ψ̂1(aξ1)ψ̂2

′′(a−
1
2 (

ξ2

ξ1
− s)).

Using these expressions, we obtain that

⟨PS χS,ψ
(h)
a,s,p⟩ = ⟨χS,PS ψ(h)

a,s,p⟩

= ⟨χ̂S, P̂S ψ(h)
a,s,p⟩

= ⟨χ̂S,PS(
i

2π
D)(ψ̂(h)

a,s,p)⟩

=
5

∑
m=1

Jm(a,s, p),

where, using p = (0,0),

J1(a,s,0) =
A1i
2π

⟨χ̂S,
∂

∂ξ1
(ψ̂1(aξ1)ψ̂2(a−

1
2 (

ξ2

ξ1
− s)))⟩

J2(a,s,0) =
A2i
2π

⟨χ̂S,
∂

∂ξ2
(ψ̂1(aξ1)ψ̂2(a−

1
2 (

ξ2

ξ1
− s)))⟩

J3(a,s,0) = − A3

(2π)2 ⟨χ̂S,
∂ 2

∂ξ 2
1
(ψ̂1(aξ1)ψ̂2(a−

1
2 (

ξ2

ξ1
− s)))⟩

J4(a,s,0) = − A4

(2π)2 ⟨χ̂S,
∂ 2

∂ξ1∂ξ2
(ψ̂1(aξ1)ψ̂2(a−

1
2 (

ξ2

ξ1
− s)))⟩
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J5(a,s,0) = − A5

(2π)2 ⟨χ̂S,
∂ 2

∂ξ 2
2
(ψ̂1(aξ1)ψ̂2(a−

1
2 (

ξ2

ξ1
− s)))⟩

Since s ̸= ±n(p0), by integration by parts, it is easy to see that for each N > 0,
we have χ̂S(a−1ρ,θ) = O(aN), as a → 0, uniformly for all ρ and θ . For each Jm,
let ξ = ρ Θ(θ) and aρ = ρ ′, by the Localization Lemma (Lemma 2) we see that
Jm = O(aN) for m = 1,2,3,4,5 and this proves part (i).

For s =±n(p0), let us first examine the term J1. By the Localization Lemma, we
can assume that J1 has the following expression.

J1(a,s,0)

=
A1i
2π

∫
R2

χ̂S(ξ )
∂

∂ξ1

(
ψ̂1(aξ1) ψ̂2(a−

1
2 ( ξ2

ξ1
))
)

dξ

= − a
3
4 A1

(2π)2

∫ ∞

0

∫ 2π

0

∫ ε

−ε
e−2πiρ Θ(θ)·(g(u),u)Θ(θ) ·n(u)du

×

(
aψ̂1

′(aρ cosθ)ψ̂2(a−
1
2 tanθ)− a−

1
2 tanθ

ρ cosθ
ψ̂1(aρ cosθ)ψ̂2

′(a−
1
2 tanθ)

)
dθ dρ

= −a−
1
4 A1

(2π)2

∫ ∞

0

∫ 2π

0

∫ ε

−ε
e−2πia−1ρ Θ(θ)·(g(u),u)Θ(θ) ·n(u)du

×

(
aψ̂1

′(ρ cosθ)ψ̂2(a−
1
2 tanθ)− a

1
2 tanθ

ρ cosθ
ψ̂1(ρ cosθ)ψ̂2

′(a−
1
2 tanθ)

)
dθ dρ

= J11(a,s,0)+ J12(a,s,0),

where

J11(a,s,0) = −a−
1
4 A1

(2π)2

∫ ∞

0

∫ 2π

0

∫ ε

−ε
e−2πia−1ρ Θ(θ)·(g(u),u)Θ(θ) ·n(u)du

× a ψ̂1
′(ρ cosθ) ψ̂2(a−

1
2 tanθ)dθ dρ,

J12(a,s,0) =
a−

1
4 A1

(2π)2

∫ ∞

0

∫ 2π

0

∫ ε

−ε
e−2πia−1ρ Θ(θ)·(g(u),u)Θ(θ) ·n(u)du

× a
1
2 tanθ

ρ cosθ
ψ̂1(ρ cosθ) ψ̂2

′(a−
1
2 tanθ)dθ dρ.

Then, similar to the part (iii) of the proof of Theorem 1, we examine the oscillatory
integrals J11 and J12 depending on the behaviour of the phase Θ(θ) · (g(u),u). As
in the proof of Theorem 1, part (iii), there are two cases to consider depending on
A = 0 or A ̸= 0 (recall that g(u) = Au2+Bu). In either case, we break up the interval
[0,2π] into [−π

2 ,
π
2 ]
∪
(π

2 ,
3π
2 ] and let t = a−

1
2 tanθ), u′ = a−

1
2 u. Thus, we have the

following estimates.
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Case 1: A ̸= 0. We will only consider the case A > 0 since the case A < 0 is
similar. Using the formulas of Fresnel integrals, we have

lim
a→0+

(2π)22
√

Aa−
7
4 J11(a,s,0)

=−A1
√

A
∫ ∞

0
ψ̂1

′(ρ)
∫ 1

−1
e

πiρ
2A t2

ψ̂2(t)dt
∫ ∞

−∞
e−2πiρAu2

dudρ

+A1
√

A
∫ ∞

0
ψ̂1

′(ρ)
∫ 1

−1
e−

πiρ
2A t2

ψ̂2(t)dt
∫ ∞

−∞
e2πiρAu2

dudρ

= A1

∫ ∞

0

ψ̂1
′(ρ)
√ρ

∫ 1

−1

(
cos(

πρ
2A

t2)− sin(
πρ
2A

t2)
)

ψ̂2(t)dt dρ

=C11,

where C11 is a finite real number.
A similar calculation gives that

lim
a→0+

(2π)22
√

Aa−
7
4 J12(a,s,0)

= A1
√

A
∫ ∞

0

ψ̂1(ρ)
ρ

∫ 1

−1
e

πiρ
2A t2

tψ̂2
′(t)dt

∫ ∞

−∞
e−2πiρAu2

dudρ

+A1
√

A
∫ ∞

0

ψ̂1(ρ)
ρ

∫ 1

−1
e−

πiρ
2A t2

tψ̂2
′(t)dt

∫ ∞

−∞
e2πiρAu2

dudρ

= A1

∫ ∞

0

ψ̂1(ρ)
ρ 3

2

∫ 1

−1

(
cos(

πρ
2A

t2)+ sin(
πρ
2A

t2)
)

tψ̂2
′(t)dt dρ

=C12,

where C12 is a finite real number.
The same argument applied to the term J2 gives that

lim
a→0+

(2π)22
√

Aa−
5
4 J2(a,s,0)

= A2
√

A
∫ ∞

0

ψ̂1(ρ)
ρ

∫ 1

−1
e

πiρ
2A t2

ψ̂2
′(t)dt

∫ ∞

−∞
e−2πiρAu2

dudρ

+A2
√

A
∫ ∞

0

ψ̂1(ρ)
ρ

∫ 1

−1
e−

πiρ
2A t2

ψ̂2
′(t)dt

∫ ∞

−∞
e2πiρAu2

dudρ

= A2

∫ ∞

0

ψ̂1(ρ)
ρ 3

2

∫ 1

−1

(
cos(

πρ
2A

t2)− sin(
πρ
2A

t2)
)

ψ̂2
′(t)dt dρ =C2 = 0,

where C2 is a finite real number and, similarly,

lim
a→0+

a−
11
4 J3(a,s,0) =C3, lim

a→0+
a−

9
4 J4(a,s,0) =C4, lim

a→0+
a−

7
4 J5(a,s,0) =C5,

where C3,C4,C5 are finite real numbers.
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In general, for m = (m1,m2) ∈ N×N, we have

lim
a→0+

a−( 3
4+m1+

m2
2 )⟨χ̂S,

∂ m

∂ξ m

(
ψ̂1(aξ1) ψ̂2(a−

1
2 (

ξ2

ξ1
− s))

)
⟩=Cm,

where Cm is a finite real number for each fixed m. This shows that part (ii) holds for
the case A ̸= 0.

Case 2: A = 0. Using an argument similar to the one used in the proof of part
(iii) of Theorem 1, we have that

lim
a→0+

(2π)22a−
7
4 ⟨χ̂S,

∂
∂ξ1

(ψ̂1(aξ1) ψ̂2(a−
1
2 (

ξ2

ξ1
− s)))⟩

=
∫ ∞

0
ψ̂1

′(ρ)
∫ 1

−1
ψ̂2(t)e−2πiρtu dt dudρ −

∫ ∞

0
ψ̂1

′(ρ)
∫ 1

−1
ψ̂2(t)e2πiρtu dt dudρ

+
∫ ∞

0

ψ̂1(ρ)
ρ

∫ 1

−1
tψ̂2

′(t)e−2πiρtu dt dudρ −
∫ ∞

0

ψ̂1(ρ)
ρ

∫ 1

−1
tψ̂2

′(t)e2πiρtu dt dudρ

= 0,

where we have used the assumption that ψ̂1 is odd and ψ̂2 is even.
Similarly

lim
a→0+

(2π)22a−
5
4 ⟨χ̂S,

∂
∂ξ2

(ψ̂1(aξ1) ψ̂2(a−
1
2 (

ξ2

ξ1
− s)))⟩

=
∫ ∞

0

ψ̂1(ρ)
ρ

∫ 1

−1
ψ̂2

′(t)e−2πiρtu dt dudρ −
∫ ∞

0

ψ̂1(ρ)
ρ

∫ 1

−1
ψ̂2

′(t)e2πiρtu dt dudρ

= 0.

Also in this case, in general, for m = (m1,m2) ∈ N×N, we have

lim
a→0+

a−( 3
4+m1+

m2
2 )⟨χ̂S,

∂ m

∂ξ m

(
ψ̂1(aξ1) ψ̂2(a−

1
2 (

ξ2

ξ1
− s))

)
⟩=Cm,

where Cm is a finite real number for each fixed m. ⊓⊔

We can now complete the proof of the theorem
Proof of Theorem 2. It will be sufficient to consider the horizontal shearlet system

{ψ(h)
a,s,p} since the analysis of the vertical system is similar.
(i) For any p /∈ ∂S using the argument from the proof of Lemma 3, one can find

the Taylor polynomial PS of f at p of degree N′ such that, for any N ∈ N,

lim
a→0+

a−N |⟨PS χS,ψ
(h)
a,s,p⟩−⟨ f χS,ψ

(h)
a,s,p⟩|= 0.

As in the proof of Lemma 4, we convert PS(x) into the differential operator
PS(

i
2π D). Then, by the Localization Lemma 2 it follows that
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lim
a→0+

a−N |⟨PS χS,ψ
(h)
a,s,p⟩|= 0.

This completes the proof of part (i).
(ii) As in the proof of part (i), we can replace B = f χS by the expression Ps χS.

Then part (ii) follows from the argument used in the proof of part (i) of Lemma 4.
(iii) Again we can replace B = f χS by Ps χS. Then, using Lemma 3, we see

that near p the boundary curve can be replaced by (g(u),u) where, as in Lemma 4,
g is a polynomial of degree 2. Since Ps(p) = f (p) ̸= 0, Lemma 4 and part (iii) of
Theorem 1 imply that

lim
a→0+

a−
3
4 SHψ B(a,s0, p0) = f (0) lim

a→0+
a−

3
4 SHψ χS(a,s0, p0) ̸= 0. ⊓⊔

As yet another class of two-dimensional singularities, let us consider the case of
discontinuities in the derivative. As a prototype of such singularities, let as examine
the two-dimensional ramp function x1H(x1,x2), where H is the two-dimensional
Heaviside function defined in Section 3. Using a calculation very similar to Sec-
tion 3, we obtain:

SHψ(x1H)(a,s, t) = ⟨x1H,ψa,s,t⟩

=− 1
2πi

∫
R2

∂1Ĥ(ξ1,ξ2) ψ̂a,s,t(ξ1,ξ2)dξ1 dξ2

=
1

2πi

∫
R2

Ĥ(ξ1,ξ2)∂1ψ̂a,s,t(ξ1,ξ2)dξ1 dξ2

=
∫
R2

δ2(ξ1,ξ2)

2πiξ1
∂1ψ̂a,s,t(ξ1,ξ2)dξ1 dξ2

=
∫
R

1
2πiξ1

∂1ψ̂a,s,t(ξ1,ξ2)|ξ2=0 dξ1

= a
1+β

2 ψ̂2(aβ−1s)
∫
R

1
2πiξ1

∂1

(
ψ̂1(aξ1)e2πiξ1t1

)
dξ1

= a
1+β

2 ψ̂2(aβ−1s)
∫
R

1
2πiξ1

(
a∂1
(
ψ̂1
)
(aξ1)+2πit1ψ̂1(aξ1)

)
e2πiξ1t1 dξ1.

As in the case of shearlet transform of H, under the assumption that ψ̂1 ∈ C∞
c (R)

it follows that SHψ(x1H)(a,s, t) decays rapidly, asymptotically for a → 0, for all
(t1, t2) when t1 ̸= 0, and for t1 = 0, s ̸= 0. On the other hand, if t1 = 0 and s = 0 we
have:

SHψ(x1H)(a,s, t) = a
3+β

2 ψ̂2(0)
∫
R

1
2πiξ1

∂1
(
ψ̂1
)
(aξ1)dξ1.

Provided that ψ̂2(0) ̸= 0 and that the integral on the right hand side of the equation

above is non-zero, it follows that SHψ(x1H)(a,s, t) = O(a
3+β

2 ).
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This result suggests that, under appropriate assumptions on ψ1 and ψ2, the anal-
ysis of Section 3 extends to singularities that behave locally as the ramp function.
The complete discussion of this problem is beyond the scope of this paper.

Finally, we remark that the analysis of singularities using the continuous shearlet
transform extends ‘naturally’ to the 3D setting. In particular, one can derive a char-
acterization result of jump discontinuities which follows rather closely the analysis
we presented in the 2D setting even though not all arguments from the 2D case
carry over to this case (cf. [11, 12]). However, the analysis of the irregular boundary
points and other types of singularities is more involved and only partial results are
currently available in the references cited above.
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