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MICROLOCAL REGULARITY THEOREMS
FOR NONSMOOTH PSEUDODIFFERENTIAL OPERATORS

AND APPLICATIONS TO NONLINEAR PROBLEMS
BY

MICHAEL BEALS1 AND MICHAEL REED2

ABSTRACT. The authors develop a calculus of pseudodifferential operators
with nonsmooth coefficients in order to study the regularity of solutions to
linear equations P(x, D)u = /. The regularity theorems are similar to those of
Bony, but the calculus and the methods of proof are quite different. We apply
the linear results to study the regularity properties of solutions to quasilinear
partial differential equations.

Introduction. In this paper we continue our study of the regularity of solutions
of P(x, D)u = f where P(x, D) is a nonsmooth pseudodifferential operator. In [1],
a simple commutator lemma and Rauch's Lemma allowed us to prove a microlocal
propagation of regularity theorem, analogous to Hörmander's theorem, in the case
where the highest order term of P(x, D) is a smooth classical pseudodifferential
operator. We then showed how this result could be applied to semilinear partial
differential equations. In this paper we develop a calculus to handle the situa-
tion when the highest order term of P(x, D) is nonsmooth and apply the results
to quasilinear partial differential equations. Our results for quasilinear equations
are similar to those of Bony [4], but our methods are quite different. Bony uses
the Littlewood-Paley theory and the machinery of paradifferential operators. We
develop a simple calculus for certain classes of nonsmooth symbols which is analo-
gous to the classical calculus of pseudodifferential operators except that, because of
limited regularity, expansions have only finitely many terms. We believe that the
calculus and linear theorems which we develop will be useful in a variety of other
contexts.

In §1 we introduce a class of nonsmooth symbols and develop a partial calculus.
Very general symbol classes typically yield weak theorems which do not give very
much information in applications. Very restricted symbol classes may handle spe-
cific applications but are unlikely to be of general use. We have attempted to avoid
both of these pitfalls by defining symbol classes which are simple, which yield the
information we want in our nonlinear applications, but which are sufficiently gen-
eral that they may be useful in other contexts. They are the microlocal analogue
of classes of symbols with "rough coefficients" which have been used previously in
the context of elliptic equations; see for example Beals, Fefferman and Grossman
[2]-
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160 MICHAEL BEALS AND MICHAEL REED

In §2, we apply the calculus to give an easy proof of a regularity theorem for
elliptic operators with nonsmooth coefficients. The disadvantage of the result is
that we can only deal with coefficients in appropriate Ha spaces for s > n/2 and
the hypotheses and conclusions are all in terms of the L2 category. The advantage,
besides the ease of proof, is that our theorem applies in all space dimensions and
to elliptic operators of any order. For comparisons with the standard theory, see
Gilbarg and Trudinger [6].

In [1], our proof of the analogue of Hörmander's theorem on the propagation of
singularities followed the outline in Hörmander [7] and Nirenberg [9]. That method
was possible because the highest order symbol was smooth, so that a microlocal
cutoff bo (x, £) G Sxo could be found such that the principal symbol of the commu-
tator [bo,pm[x, D)] vanished. If pm is nonsmooth then a smooth 6o will not satisfy
this restriction. However, as noted by Bony, the strong Gârding inequality allows
the choice of a 6n satisfying weaker conditions. We thus begin §3 by proving the
strong Gârding inequality for symbols in the classes introduced in §1. We then fol-
low the general approach of Hörmander [8] in proving the microlocal propagation
of regularity results. The key technical tool is the partial calculus developed in §1.

In §4 we show how the linear results of §1, 2 and 3 can be used in nonlinear
problems. First, we apply them to general quasilinear partial differential equations
(Theorem 4.1). Then we consider the example

utt - ^2bij(Vu)didjU = 0

in detail. Finally, we treat the coupled elliptic-hyperbolic quasilinear system

^2ai3(u)did3v = g(u,v),

utt - ^2bij(v)didjU = f(u,v).
The analysis of these examples makes clear the necessity of the microlocal hypothe-
ses and conclusions in the linear theorems developed in this paper.

It is appropriate to conclude this Introduction with some general remarks about
the usefulness of the methods of this paper in nonlinear problems. First of all,
it is known that in a variety of special situations singularities do not interact and
spread to the extent permitted by the general theorems of this paper. These special
situations include: one space dimension, Rauch and Reed [12]; special initial data,
Bony [3], Rauch and Reed [13]; special structural conditions on nonlinear terms,
Rauch and Reed [11].

Secondly, the great drawback of the Fourier analytic methods of this paper in
nonlinear problems is that to use the methods solutions must be in Hs for appro-
priate s > n/2. Fourier analysis takes place most naturally in the L2 category and
it is difficult to build a general machine for controlling (u2)^— û*û if û is not in L1
(hence s > n/2). But many questions about nonlinear partial differential equations
are naturally posed in non-L2 categories and many interesting phenomena (like
shocks) guarantee that some important solutions will be in Hs for s < n/2. These
questions and solutions cannot be analyzed by the methods of this paper. We can
only treat relatively weak singularities.

Nevertheless, there are many interesting phenomena in the creation, interaction,
and spreading of these weak singularities. We have tried to show, in this paper and
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MICROLOCAL REGULARITY THEOREMS 161

its predecessor [1], that the ideas of Fourier analysis and classical pseudodifferential
operators can be extended naturally to nonsmooth categories of symbols and then
applied to certain aspects of these nonlinear problems.

1. A calculus for nonsmooth operators.
DEFINITION 1.1. We will say that a distribution u is in Hsf\Hml(xo, £o) if there

exist 4>(x) G Co°(Rn) with (p(xo) ^ 0 and a conic neighborhood K of £o in Rn \ {0}
such that

<0a(#H0eL2(R")

and
(ÖrXJc(0(^H0€La(RB).

If 7 is a closed set in T*(R") \ 0, we shall say that u G Hs n Hml(^) if u G
Hs n Hml(x, 0 for all (x, £) G 7. We always set (£)2 = 1 + ¿ £?.

Nonsmooth operators of the form a(x)p(x,D), where a(x) E Hs d Hml(^) and
p(x, £) G S™0 is a smooth symbol, are typical of those arising in nonlinear appli-
cations. If a(x) G Hs+k n Hm\k(^) and p(x, D) is a partial differential operator of
order k, then the composed operator p(x, D) o a(x) has a symbol with the finite
expansion ^|Q|<fc(l/a!)D£a(x)c>£p(a;, £), which is a sum of symbols with coeffi-
cients in jfs+fe-lal n H^ (7). But if p(x, £) is pseudodifferential, the usual
complete asymptotic expansion p o a(x, £) ~ ^2a(I/a\)Dxa(x)dfp(x, £) cannot be
taken, since for |a| > k the coefficients no longer have the desired smoothness of at
least Hs n Hml(~i). Therefore we break off the expansion at step k, and set

r(x,i)=poa(x,ï)- Y, ¿ß?a(x)d£p(x,0-
|a|<fc

Such remainders will not in general be of the form a(x)p(x, £). Thus we define a
symbol class (with very weak hypotheses on the behavior in £) which will include
such remainders.

DEFINITION 1.2. 5m;s'r(7) is the collection of symbols a(x, £), smooth in £, such
that

(1.1) a(x,i)l(i)mzH*(MIml(T)

as a function of x, uniformly in £. In other words, for each (xo,z?o) G 7 there exist
(¡>(x) G Co°(Rn) with (p(xo) t¿ 0 and a conic neighborhood K of »70 such that

(v)s(<t>ar(ri,0/(0m£L2(dr))    and
(v)rXK(v)(<l>ar(r,,c:)/(0meL2(dV)

with norms independent of £•
Classes of nonsmooth symbols with local rather than microlocal assumptions in

x and conditions on £ derivatives are used, for example, in Taylor [14, Chapter IV,
§5]. But the minimal hypotheses of Definition 1.2 are sufficient for many purposes,
in particular for proving that operators of order zero are bounded on H3 n Erml (7)
for appropriate s and r.
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162 MICHAEL BEALS AND MICHAEL REED

THEOREM 1.3.   Let n/2 < s < r < 2s - n/2 and suppose a(x, 0 G Sm's'r(^),
0 < m < s.   Then a(x,D) is a bounded operator from Hs n Hml(i) to Hs~m n
HrmT(i)-

LEMMA 1.4.   Suppose that

C2g=SupJ\g(r,,0\2dri< x

and

For he L2, define

C2G = sup f\G(n,0\2dc: <oo.
ri    J

(Th)(rj) = J G(r,, Osfo - £, OHO dÇ.

Then \\Th\\2 < CgCG\\h\\

PROOF. Simply write ||T7i||2 = supy¡y<x \ J f(Th)(r¡) dn\, interchange integrals
and use the Schwarz inequality.    D

PROOF OF THEOREM 1.3. For u e H8 n Hml(^), we can assume that u and
a(x, 0 nave compact support in x near xq, where (xq, Co) G 7. Then,

11.3)
a(x,D)u(x) = jéxMx,0*>{í)dí,

(auT(n) = ja(n-i, 0û(0 dt:,

where the hat on a denotes the partial Fourier transform with respect to the first
variable. Throughout the paper, d£ is normalized to absorb the factor (27r)_™.
Since a G 5m;r's,

â(ç,0 = g(i,0(Om/(t)a
where sup^ / g2((, 0 dç < 00. Define h = (0sû. Then h G L2 and we have

(1.4) (ny-m(aur(r)) = JG(r,,Og(v ~ f.OMO^

where
G(v,0 = (v)s-m/(ri-Os(Os-m-

Simple estimates and Holder's inequality show that sup^ / G(r¡, O2 dt] < 00. Thus,

by Lemma 1.4, we conclude that (r))s~m(au)~('n) G L2 which proves that a(x, D)u
G Hs~m.

Now let if be a conic neighborhood of £0, where (xo,£o) G 7, which is small
enough so that the estimates in Definitions 1.1 and 1.2 hold for u and a on K. Let
K be a strictly smaller conic neighborhood (denoted K CC K from now on). We
must show

(1.5) XR(v)(ri)r-m(aur(r,)eL2.
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MICROLOCAL REGULARITY THEOREMS 163

To do this, we set x = Xk> Xi = Xk, Xi = Xk° and write
â(ij 0 = xi(?)gi(g,0<Om + X2(ç)s2(?, 0(0'

(?>r (f)s

,,m_xi(0M0 , X2Í0MÍ1U)~     (Ö7 (0s
where g¿ G ¿2(d£) uniformly in £ and /i¿ 6 L2. Thus,

(1.6)    xfa)<»?rm(<™rfo) = £ /"G«fo,flftfo-É,0Mo<fÉ
»¿=1,2

where
r   ,„ >x      x(r?)Xi(^-0xi(0W-mGnfo.O-        <î?-^(0—
r r_ ̂  _ xWxi(*?-0x2(0W

x(»?)Xa(»?-0xi(Î)(»ï>Gai(f?,0 =

GMfo,€) =

S —771

r —771

fa - 0s(0r_m
xWX2(r?-0X2(0(^)T

fa - 08<0'-m
Gn is handled just as G was above. On supp Gx2, £ G Kc and r/ G Ä" so (n - £) >
cfa). Therefore

r   < c
12-(r/-0m(0s-m'

Similarly, (t\) > c(r\) on suppG2i, so
G21 < c/(rj - 0s-

Finally, fa — £) > c(rj) and (£) > 0(77) on suppG22 and since r = 2s - n/2 - e for
some e > 0, we can estimate

G22 < c/(0n/2+e.

Thus, for each i, j, sup,, /G^-fa, £)d£ < 00, so by Lemma 1.4, we conclude that
(1.5) holds.    D

Theorem 1.3 contains as a special case (simply take a(x, 0 = aix)) the following
result [10].

RAUCH'S LEMMA.   H" n Hml(i) is an algebra for n/2 < s < r < 2s - n/2.
Also, by writing a(x, 0 = (o(x, 0(Om)(O-m> we see that Theorem 1.3 implies

that the operators in 50;s'r(7) are bounded on H3'm n H^d) for 0 < m < s.
We now develop a partial calculus for the operators with symbols as in Definition

1.2. It is useful to keep in mind for motivation two cases which arise in applications.
We often wish to compose with an operator of low order, say a microlocal cutoff of
order zero or the operator corresponding to the reciprocal of a microlocally elliptic
symbol. In this instance, it is useful to allow both of the symbols to be composed
to be nonsmooth. On the other hand, in hyperbolic problems the symmetrization
procedure makes it necessary to commute nonsmooth operators with operators like
Ar, where A has symbol (£). For these higher order operators it is only necessary
to consider compositions in which the factor on the left has a smooth symbol.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



164 MICHAEL BEALS AND MICHAEL REED

LEMMA 1.5. Let n/2 < s < r <2s — n/2, let k > 0 be an integer, and assume
that a(x,0 G smi'+k'r+k{i) and d%b(x,Ç) G Sfc-M;s'r(7) for \a\ < k. Then
b(x, D)a(x, D) is an operator with symbol b o o(x, 0 S Sm+k'a,r(^) satisfying

boa(x,0- J2 ¿^6£>>(x,o|G5m^(7).
\a\<ka- )

Proof.

b o a(x, D)u(x) = f eix*b(x, flfatiHfl dÇ

= [feixtb(x,t)â(t-ç,t)û(ç)dcdt

Thus

(b o au)~ =       b(n-t:, t)à{£ - o, c)û(c) d£ de

JJkv-$-Z,S + t)à(t,Ç)û(i)dtdc.
On the other hand,

d%bD«a(x,D)u(x) = Í elx<d«bD«a(x,e)û(ç)dç

and

(3£6Z£auH»7) = j(d°bDyr(n - c, c)u(c) dc

= H d?b(n - ç - f, ?)fâ(€, í)Hí) dt] de.
So, defining

r(x,D) = boa(x,D)- £ ¿«9^ö«a(x,D),
|a|<Zc

we have

(runV)= ff ht,- t-t,s+o- x; ¿r(^rfa-s-0i)|
•/-/      ( |a|<fe     • J

xâ(£,c)û(c)d£dc.

By Taylor's theorem, the right-hand side is

£ c«//{/ (i-^^K&rfa-c-^c+íOdíJxrau.cHc)^^

(if k = 0 the term in braces is replaced by b(r) - Ç — £, Ç + £))• Therefore,

(1.7) (™H") = I r(n- c, ç)û(c) de,
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MICROLOCAL REGULARITY THEOREMS 165

where

f // E c« y\l-t)k-x{dfbr(r, - Ci + tOdt} (Dïant,ç)dt
f{r¡,í)= I

I
\a\=k

ifk^O,

Hri-Z,S + t)à(t,s)dt   if fc = 0.

Let K CC K be small conic neighborhoods of £o, where (xo, Co) G 7, with K
small enough that the estimates in Definition 1.2 hold for dfb and a on K. Set
X = X/p Xi = Xk, X2 = Xk°- We must show that

M> Mfë&elHM,     "y^'W    uniformly in,
By (1.1) and the assumption on d?b for |a| = k, the integral kernels in the definition
of f (n, e) can be written

xi fa-Qsi fa-£,£,?)    xafa-flga fa -£,£,?)
fa-Or "    " fa-0s

where (Jifa,^) G L2(drj) uniformly in £, f. And, by (1.1) and the assumption on
D%a for |a| = k,

(Daann,ç) = Xi(OM^)fc)"1 + X2(Ç)h2(Z>S)(Ùm{0r {0s
where /i¿(£,c) G L2(d0 uniformly in e.  Now (1.7) and the same argument as in
the proof of Theorem 1.3, this time with ç as a parameter, yield (1.8).    D

COROLLARY 1.6. Let n/2 < s < r < 2s - n/2, let k > 0 be an integer, and
assume that a(x,0 G sm+k'''+k'r+k(i) and <9£6(x, 0 € S'~|a|;s,r(7) for \a\ < k.
Then b(x, D)a(x, D) is an operator with symbol boa(x, 0 G Sm+k's'r(i) satisfying

boa(x,0~  £ ^6D>(x,o|GSm-s-'-(7).
|a|<fc     " J

PROOF. Let {x¿(0} De a smooth partition of unity on Rn with xo supported
near zero, \i supported on |£| > ^ and homogeneous of degree 0 on |£| > 1 for
i t¿ 0. Then a(x,D) — ̂  a(x,D)xi(D). The term a(x,D)xo(D) is handled easily,
so it can be assumed without loss of generality that |£i| > \ on suppa. Let
Di = (I/i)d/dxi. By Leibnitz's rule,

fc
Dk o a(x, D) = a(x, D)Dk + £ c3,kDk~3 o (D3xa)(x, D)

7 = 1

and we have
b(x, D)a(x, D) = b(x, D)Dkx o a(x, D)Dxk

k
- J2 Cj,kb(x, D)Dkx-j o (D\a)(x, D)Dxk.

7=1

Since d<*(b(x,0tî~j) G S*-¿-Mw(7) for |Q|  < k-j and (D3xa)(x,0^ïk G
gm;s+k-j,r+k-jí^^ foe result follows immediately from Lemma 1.5.    D
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LEMMA 1.7. Let n/2 < s < r < 2s - n/2, p > 0, and let k > 0 be an
integer. Assume thata(x,0 G sm'>a+k>r+k(i) andb{x,0 G Sffi. Ifboa(x,0 is
the symbol of the composed operator b(x, D)a(x, D), then there are symbols r(x, 0>
f(x, 0 G 5m;a'r(7) and p(x, 0,p(x, 0 £ 5iV such that

boa(x,D)- J2 —^bD^a(x,D)\=r(x,D)p{x,D)+p(x,D)f(x,D).
\<*\<k a' )

PROOF. Let rm+M be the symbol of bo a(x,D) - £H< Jl/a!)d£6D£a(x,D).
Then from (1.7),

fm+u(n, O = f £ c4 / Í1 - t)k-Hdfbr(ri - {, c + t$ dt\ (DyfU, c) d£
J    \a\<k ^J° '

with the usual modification if k = 0. Since (d°&)^fa —£, Ç+tO is rapidly decreasing
in r) - £, it is easily seen that it suffices to consider the case b(x, 0 = HO- Then

(1-9) (rm+Mufa)r = / rm+iifa - É, Oû(0 d£-
where

£ca/ d£6(£ + íi,)(D°arfa, O di   if k ¿ 0,
<   ,   ,   fc    Jo
.d1b(t: + v)â(v,0   if fc = 0.

By the assumption on b,

(1.10) |d?&(£ + fa)l<c((cy + fan
for |a| = k, 0 < í < 1. Define

WMfa-OOx(IO>M)
<0"

_rm+M(r?-e,Qx(IO<fal)
fa>"

Then (1.9) implies that

fm+p(ri,0

rfa-00

r(»?-€,0

(rm+M«r(»?)=/ % - o o<om¿(o du+fa)" | f fa - e, oû(o ̂
= (r<z?>"urfa)+((z?)"f«rfa).

From (1.9) and (1.10) it follows that

Irfa.OI < C £ K^affa, 01    and    |?(i,, 01 <^E IP>rfa,OI
|q|=Zc \a\ = k

so by the assumption on a, r(x, 0 and f(x, £) are symbols in Sm's'r(i). Finally,

rm+u(x, D) = r(x, D)(D)» + (D)*r{x, D)

as desired.    □
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COROLLARY 1.8. Let n/2 < s < r < 2s - n/2, p > 0, and let k > 0 be
an integer. Assume that a(x, 0 G Sm+k'a+k'r+k(i) and b(x,0 G Sfo- T/ien i/ie
conclusions of Lemma 1.7 feo/d.

PROOF. As in the proof of Corollary 1.6 it suffices to assume that |£i| > 1/2 on
suppa and write

fc
a{x,D) = Dxka(x,D)Dxk + J2c3,kDxc-j(D3xa)(x,D)Dxk.

7 = 1

Since b(x,0£i~3 G Sffî'3', and Z^o(i,0Crfc e 5m;s+fc-^r+fc-J(7), the result
follows immediately.    D

The class of standard symbols, which includes all of those arising in the nonlinear
problems to be considered below as well as appropriate expansions and remainders
as given in the calculus lemmas above, may now be defined.

DEFINITION 1.9. For fc > 0 an integer, s™+k''"+k'r+k(i) consists of those sym-
bols o(x, 0 °f the form

0-m+k(x, 0 + 0,m+k-l(x, 0 ^-1" <hn{x, 0>
where am(x, £) G 5m;s-r(7) and, for 0 < j < fc, am+j(x, 0 = E ijAx)Pm+j,i{x, 0
with aj,t{x) G Ha+3 n ff£''(7) and Pm+j,i(x, 0 £ S#*.

One can easily see that
gm-rk;s+k,r-rk/   \ ^ gm+k;s+k,r+kí   \   ,   gm+k-l;s+k-l,r+k-l/   \

+ ■■■ + Sm;s-r(7) c 5m+fc;a'r(7).

And, since
{Ha+k n H^m ■ {Ha+3 n fl#(Tf)} c ffa+> n 7^(7)

for 0 < j< fc, n/2 < s < r < 2s — n/2, it follows that for such s, r, the prod-
uct of an element of s%+k'a+k>r+k(1) with an element of S^t+k'a+k'r+k(1) is in
gm+p+2k;s+k,r+k^y  The ugefm features of the cajcuius 0f operators with these
symbols are summarized below, extending the commutator lemma (corresponding
to the case fc = 1) of [1].

THEOREM 1.10. Let n/2 < s < r < 2s - n/2 and let k > 0 be an integer.
Assume that a(x, 0 G s^+k's+k'r+k(1).

(i) Ifdçb(x, 0 G S~t " r il) for \a\ ^ k> then b(x,D)a(x,D) is an operator
with symbol b o a(x, 0 G S™+ 'a+ 'r+ (7) satisfying

6oo(i,0-    £   ±dïbDïam+j(x,t)\€Sm»'r{1).
0<j<k     '
|a|<7

(ii) Ifb(x, 0 G Sffi, p > 0, 0 < j < fc, then

boa-   ]P   — d%bD%am+i
0<i<k
lt»l<»

} (x, D) = r(x, L>)p(x, I>) + p(x, D)f(x, D)

where r,f G Sm+*a-r(7) and p, p G S^0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



168 MICHAEL BEALS AND MICHAEL REED

(iii) If m = 0 and fc > 1, then the adjoint of ak is an operator with symbol
a*k(x,Z)eS%a+k<r+k(i).,and

K(X,0 -Sfc(x,0} G STt+K-Ms + k-l,r+k-l{ly

PROOF, (i) and (ii) follow immediately from Corollaries 1.6 and 1.8, Lemma
1.7 and the algebraic properties of the symbols noted in the paragraph above. For
(iii), since fc > 1, ak = £ akii(x)pk,i(x, 0 so a*k(x,D) = £ p*kl(x,D)âk<i(x), with
Pk iixi 0 e Sko- The result now follows from the calculus of smooth pseudodiffer-
ential operators and Lemma 1.5.    D

In applications, the case fc = 1 is used when only the principal symbol of the
composition of two operators is of concern, for instance as in [1] or when inverting in
microlocally elliptic directions. But in general hyperbolic problems, the principal
symbol of the commutator of certain operators must be kept under control (see
Hörmander [8], Nirenberg [9]). Thus the terms of next lower order in the expansion
of the compostions must be retained, corresponding to the case fc = 2 above.

The assumptions in Lemmas 1.5 and 1.7 are optimal in the sense that, if fc terms
in the expansion for the composition axe kept and the remainder is to be bounded
on the appropriate H3 n Hml (7) space, then the coefficients must be smoother of
order fc. For example, take m = 0, fc = 1, p — 0 in Lemma 1.5 or 1.7. Let
a(x, 0 = a(x) G H3+3 n ¿C^fa) and take b(D) = D, a first order differential
operator. Then D o a(x) — a(x)D = (Da)(x), and this operator is, in general,
bounded on H3 n Hml{~f) only if j > I (and n/2 < s < r < 2s - n/2). On the
other hand, if s is not too much larger than n/2 and only the local spaces H3 are
involved, rather than the microlocal spaces, then the smoothness hypotheses for the
analogue of Corollary 1.8 (and of Corollary 1.6, though this property will not be
needed) may be relaxed. The conclusions will be weaker, implying for example that
if &o(0 £ S?,o. a(x) G H3 andpi(0 G 5^, then bo(D)a(x)Pl(D)-a(x)bo(D)pi(D)
has order less than one, rather than order zero as for classical pseudodifferential
operators.

DEFINITION 1.11. Let Sm'a(U) for U C Rn denote the space of symbols as in
Definition 1.2 without the microlocal hypotheses, that is,

Sm;s(f7) = Sm;s'a(r/xRn\0).

LEMMA 1.12. Let n/2 < s < n/2 + 1, p > 0, and let fc > 1 be an integer.
Assume that a(x,0 G S">+*¡«+*-i([/) and b(x,0 G 5f0. Ifboa(x,0 is the
symbol of the composed operator b(x, D)a(x, D), then for 0 < 6 < s — n/2 there are
symbols r,f G Sm+1~s'3~s(U) and p,pE Sx0 satisfying

boa- £ —^bDy\(x,D) = r(x,D)p(x,D)+p(x,D)r(x,D).
\o.\<ka- )

Moreover, if p, — 0 and 6 > 1/2, there are symbols ro G Sm+6;s~s(U) and po G
S¡q26 such that the remainder above equals po(x,D)ro(x,D). In particular, for
m — p — 0the remainder operator maps H3oc(U) to HXoc1+ (U).

PROOF. In order to prove the last statement, notice that if s < (n + l)/2, it
follows that s - 6 > s - I + S, and since r,f G S1_í;s_í (Í7), by Theorem 1.3, r and
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f map Hx3oc(U) to H3-1+6(U). On the other hand, r0: Hfoc(U) -* H3~S(U) and
p0(x, D): Hxa-cs(U) -► Ha-C1+6(U), so the case (n +1)/2 < s < n/2 +1 also follows.

To prove the main result, it suffices, as in the proof of Lemma 1.7, to assume
that b(x, 0 = 6(0- As in (1.9),

6oa- E ¿(3?W3£a)|ul  il) = f*m+Al-t'tMOdi

where
(1.11)

fm+Án - e> o = E c° / i1 - o*-1^ we+¿fa - o)fa - oaâfa - e, o *■
|a|-ft    Jo

And we may also write

(1.12) fm+Mfa - c, o = «»(n)âfa - & o - E ¿(WOfa - oaâfa - e, o-
|a|<fc

Now define r and f by

_fm+Mfa-$,0x(|^|>M)rfa-CO

Hv-te)
<0"

_fm+<1fa-€,Qx(iei<M)
fa)"

Then (rm+iJu)^(r/) = (r(D)/iu)^(n) + ((D)'ifu)Ä(r/) so we need just check that r
and f are in Sm+l-Bi"-s(U). Setting r = r¡ - £, it follows from (1.11) and (1.12),
respectively, and the hypotheses on a and b that

/e\m+Zc

í1-13) k"(r,0l<   8UP   ^.Ír\fcM-l^r'Q'o<t<i (ç + i^) fa)s l

fc     / (T)fc_1\

^i^ + l^rJ^O
/£\m+Zc

where a¿ G L2(dr) uniformly in £. Consequently,

\f(r,0/(Om+1-6\<M(T,09(r,0,
where g G L2(dr) uniformly in £, and

/c\k-i+s        / x x !       \
M(T' ° - T)^-min Utlx ÔTr^' w + WÖ^J

If |t| > §|(|, then

(l/<T>fc + l/<r)<0fc-1)<G/(r>(0fc-1
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so M < (OVfa)3 < G/fa)8"6. And if \r\ < £|¿|, £ + tr » £ for 0 < i < 1, so

M < G/(01-é(r)s-1 < C/(t)3-6,    since f5 < 1.

Thus r G 5m+1-,5;s-6(C/). A similar proof shows that f G S™-1-6"-'(tf).
Finally, suppose that u = 0 and S > \. If we define

rofa-£,0=^fa-^0/fa>1-2¿,
then

(rro+/1«rfa) = ((D)1-25^«)»,
so we need just check that ro G Sm+s'a~s(U). This is proven, as above, by using
(1.11) and (1.12) and the properties of b and o to show that (r)s-6|r0(r, 0l(0_(m+Ä)

*      < Cg(r, 0 where g G L2(dr) uniformly in £.    D

2.   Linear and nonlinear elliptic theorems. The calculus developed in §1
allows an easy proof of the following microlocal elliptic regularity theorem.

THEOREM 2.1.   Let n/2 < s < r < 2s - n/2. Assume that

Suppose
(^veH^nH^riPo),
(n)feH3nHUvo),
(iii) a(x,D)v = /.

Then, v G H3+m n /i^m+1(p0).

PROOF. Since a G s^+1'3+1'r+1 at po we may write a — am+i + am where
am+¡ G Sm~rl'a+l,r+l. Let 60 G 5°0 have support near enough to po so that am+x
is elliptic on suppio- Set

co = bo(x,0(Om+1/am+i(x,0-

Since H3+1 (7 Hm\l(po) is an algebra, it follows easily that

afc0(i,0 G 5-|o|!S+1'r+1(po)    for all a.

By Theorem 1.10(i), there is a symbol r(x, £) G S87ia'r(p0) such that

c0(x, D)o(x, D) = 6o(x, D)(D)m+1 + r(x, D).

Thus (iii) implies

(2.1) b0(x, D)(Dr+lv = c0(x, 25)/ - r(x, D)v.

Theorem 1.3 implies that c0(x, D)f G H3 D Hrml and r(x, D)v e Hs Í) Hrml. There-
fore (2.1) and the standard microlocal elliptic result imply that v G H3+m n
^r+l(po). o

We now present several local elliptic theorems, both linear and nonlinear, which
follow easily from Theorem 2.1. The full (microlocal) strength of Theorem 2.1 will
be used in the proof of the propagation theorem in §3 and the examples in §4.
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THEOREM 2.2. Let L = X^0<|a|<2¡ ba(x)Da for some integer I > 0 and
suppose that L is elliptic at xn, i.e. X)|a|=2¡ ba(xo)t:a > c|£|2i. Suppose that
s > n/2 + 21 and

(i)ueH3(x0),
(ii) / G H3(x0), ba G H3(x0) for all a,
(iii) Lu = f.

ThenueHs+2l{x0).

PROOF. Let £o be given and let d be a directional derivative for which £o is
noncharacteristic. Applying d to both sides of (iii), we have

Y^ bQ(x)Dadu = df-   J2 K(x)Dadu
|a|=2¡ |a|<2¡

-     E    (dba){x)DaueH3~2l(xo).
0<\a\<2l

Setting v = (1 - A)'t¿ and A(x,D) = T,\a\=2iba(x)Dad(I - A)~l we find that
A(x,D)v G H3~2l(xo) and A(x,0 G S0+1;s+1(xo) since ba G H3 D H3~2l+1.
Furthermore, A(x, 0 is elliptic at (xo, £o); so by Theorem 2.1,

vGH3-2lnH3m-2l+1(x0,t:o)

which implies that
nG/i'niC+Wo).

Since £o was arbitrary, we have it G H3+1(xo). Repeating this procedure yields
u G H3+2l(x0).    O

A quasilinear analogue of Weyl's lemma follows immediately from Theorem 2.2.

THEOREM 2.3. Assume \ß\ < 21 - 1 and suppose that u G H3(x0), s > n/2 +
21 + \ß\, is a solution of

(2.2) J2 ba(x,u,...,Dßu)Dau = f(x,u,...,D0u)
|a|=2l

in a neighborhood of xo- Ifb^fGC00 and if L = Yl\a\=2i ba(x,u,... ,Dßu)Da is
elliptic at xo in the sense that

£ ba(x0, u(x0),..., D^u(x0)Ka > c(l + |£|)2i.
|a|=2<

for £ large, then u G C°° near x$.

PROOF. Simply apply Theorem 2.2 repeatedly.    D

3. Propagation of singularities. We shall prove first the analogue of the
strong Gârding inequality for symbols in 5m;s(i7). The proof is particularly sim-
ple because very few conditions need to be checked to verify that remainders are
in S0'3.
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LEMMA 3.1. Let n/2 < s, O < e < 1, onzi suppose thatp(x,0 G S£;s+2£(C/)
and satisfies p(x, O > 0. Then, for ail u G H°(U) with compact support in U,

(3.1) Re(p(x,D)u,u) > -C\\u\\2H0{u).

PROOF. As in Taylor [14, Chapter VII], let b(D,x,D) be the Friedrichs sym-
metrization of p. Set r(x,D) = b(D,x,D) —p(x,D). Suppose that we can prove
that r G S°<3(U). Then by Theorem 1.3, r(x, D) is bounded on fl£,c so (3.1) would
follow since {b(D, x, D)u, u) > 0.

Let q be a smooth nonnegative even function, supported in |£| < 1, satisfying
/ <?2(0 d£ = 1, and define

Then,

Thus,

where

{0n/4-y{0l/2j^

b(r,,x,0 = I F(V,ç)p(x,ç)F(t:,ç)dc.

(b(D, x, Truffa) = 16(t/, v - 0 0û(0 dt.

(r(x,D)uy(r,) = If(V - COHOdt:

rfa, 0 = ¿fa + 0 "> 0 - Pfa, 0
(3.2) = | Ffa + £, ?)pfa, f)F(e, f) dc - pfa, 0

(3.3) = /Vfa+e, ?){pfa, ?) - pfa, e)}F(í, c) dc

+ |{^fa + 00- ne. ?)}#>?, o^(o ?) ¿e
since / .F2(£, f) dc = 1. We need to show that

(3-4) fa)s|r(n,OI<Ggfa,0
where g G L2(dr\) uniformly in £. On suppF(£,f), [ç - f| < (O1^2) so for large £
we have c »¡ £. It follows from (3.2) and the assumptions on p that

(3-5) I^OI<7j*270fa>O

so (3.4) certainly holds for |n| > ¿|f|. From now on assume that \r¡\ < §|£|. Then,
for fj on the segment between 0 and r¡ and for (£, w) G suppF, we have

(3.6)      f«e«v+e, k-ei<<o1/2, k-ei<^+o1/2-
Now, for f « $,

pfa, f) - pfa, 0 = (¡r - 0 • ViPfa, 0 + o(\c - t:\2\d2p(n, 01)
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and, since F is even,

I F(r, + t:,ç){p(T1,c)-p(T1,0}F(ti,ç)dc

= V^pfa, 0 ■ /(? - 0(F(ri + t,S) - F(t, ?)) dç

+ 0(\d2p(«, 01) I |f - £|2|Ffa + €,*)- F(€. f)l#-
It follows from (3.3) and the assumptions on p that

|rfa,OI<Mfa,e)gfa,0
where g(rj, 0 G L2(dr¡) uniformly in £, and

^fa'0=7^/(^ + ^)l^ + 0c)-F(£,c)|F(£,c)dc

+ je>
fa>s+2e

Let Mi, M2, M3 be the parts of M corresponding to |ç - £|(£)   *, |f - £|2(0-2 and
the second integral, respectively. F satisfies

(í)"/4   V(î>"V   «>"/4 ,V<Ö"V'
9H«M^)}°(<i)

where 9i G G0°°, o(£) = O((0_1), KO = O((0~1/2)- Now, from (3.6), we have

M2<     C^)£
2-fa)8+2£(0'

Writing Ffa + £, c) - F(£, ç) = r? • V^Ffa + £, c), and using (3.6), we have

M  ^   G(0£fa)
i-(„)s+2£(0-

And, because

Ffa + e, i) - *U ?) = »?■ V€F(€, f) + 0(M2a|F(£ + »7, c))
and

/v*(^Wfe4W=o(oW H(oi/2rl(oi/2
since q is even, it follows from (3.6) that

M3<G((07(0s+2£)(fa) + fa)2/(0).
Putting together these estimates on the M¿ with (3.5) shows that, for any a with
0<a< 1,

1^,01 <tJ^ (|f) %-fa.O
for \n\ < ||£|, for some ga G L2(dr¡) uniformly in £. The choice a = e yields (3.4)
as desired.    D
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We now prove the main result on propagation of singularities for equations with
nonsmooth coefficients. As in the smooth case, the key ingredient is the microlocal
cutoff which reduces the microlocal problem to a local one. We note that if a(x, 0 G
S™+ 's+ (U) has real principal symbol am+2(x,t) homogeneous in £ of degree
m + 2 and s > n/2, then by Sobolev's lemma, Vxom+2 eC'([/xR"\ {0}) and
V^om+2 G G2(/7xR™\{0}). Thus, if U is a small neighborhood of the characteristic
point (xo, to) of am+2, there is in U x R" \ {0} a unique C2 null bicharacteristic 7
of am+2 through (xo, to) defined by the equations x = V^am+2, t — -Vxam+2.

THEOREM 3.2.   Let n/2 < s < r < 2s - n/2. Assume that

a(x,£)GSsr2;a+2'r+2(7)

has real principal symbol am+2 which is homogeneous of degree m+ 2 in t, and that
7 is the null bicharacteristic through the characteristic point (xo,to)- If'-

(i)«€fr'+"»nfl£"'(7),
(ii) v G H3+m n i/;+m+£(xo, eo) for some 0 < e < 1,
(iii) / G #s 0^,(7),
(iv) a(x,D)v = /.

Then v G H3+m n ^m+£(7).

PROOF. We may assume that the assumptions hold with 7 and (xo,£o) re-
placed with conic neighborhoods Y and To, respectively. By replacing a(x, t)
by o(x, 0(0-m-1 anc* v by (D)m+1v, we may assume that m = -1. Then
o(x, t) = o,i(x, t) + ao(x,t) + a-i(x, t) where a3 has order /, and smoothness

Let e$(t) = (1+<5|C|2)_1/2 for 0 < ¿ < 1. For each 6, e^ G Sx~o and the collection
{ef^} is a bounded subset of 5°0. Also, D^ = i6t(I + "5|£|2)-1eo - r-ieo, where
{r*Lx} is a bounded subset of SfJ. By Theorem 1.10,

4(D)a(x,D) = ax(x,D)e6o(D) + (Vxax(x,D) ■ r6_x(D))e6Q(D)

+ a0(x,D)eSo(D) + ä-hs(x,D)

= ai(x, D)eSo(D) + Ôo,î(i, D)e6o(D) + ä_1>6(x, D)

where {a0,¿} C S^s+1'r+1(T) and {ä_M} C 5-1;s-r(r) are bounded subsets. Set
vs = eSo(D)v and fs = -a-hS(x,D)v + e{\(D)f. Then v6 G H3nHml{T) (with norm
depending on Ô) and by Theorem 1.3, fs G H3 f] Hml(T) with norm independent
of¿. The equation (oi(x, D) + äo,s(x,D))vs = fs holds and from the hypotheses it
follows that vs G H3-1 n i/^ÎT") and vs G H!^¡1+£(To) with norms independent
of 6. Thus, it suffices to assume that o(x, t) G Sl¡8+ 'r+ (T) and

(il^i/^níJ-'n
(ii) v G i/^71+£(r0) for some 0 < e < 1,
(iii)/GFsni/^(r),
(iv) a(x,D)v = f,

and that |Mlir-'+E(-<) is finite, and to prove that ||iz||Hr-i+e, , depends only on
the norms of a,v, f in (i), (ii) and (iii). Finally, by induction it suffices to replace
(i) and (ii) by

(i)tze/írs-1nFf-a/2(r),
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(ii) V G ff^íTo),
and to estimate \\v\\ht r^. Here a > 0, r - 1 + a/2 <f<r — 1 + £, and we can
assume that a < 1.

If the Hamiltonian vector field Hai is zero at (xo,£o), 7 is the point (xo,£o),
while if Hai has the radial cotangent direction, 7 is the ray (xo,rto), z* > 0. In
either case nothing needs to be proven, so we assume that Hai is neither zero nor
radial.

Following Bony [4, §6], we can find (since Oi G G2) a bf(x, t) G Sxo which is
real, homogeneous of degree r, with support in T, such that Haib2 > 0 on T \ To
and Haib2f > 0 on 7\r0, and a 60 G 5?>0 with iïai60 > 1 on T. Let b{fM) = bfeMb°.
Then

\Hai(b^)2 = M(Haibo){bh2Mb°) + ±(Haib2f)e2Mb°

>M(biM))2 + c(t)2f   on 7 \ To

>M(biM))2 onr\r0.

It follows that there are symbols b2f,e2f G 52q with £z2f supported on r0, e2f
supported on T and elliptic on 7, such that

(3.7) '2HaMM))2 - M(4M))2 + b2f > e2f.

Note that the principal symbol of (l/i)a~   '(x,D)*[bf   \x,D),ai(x,D)] is

iHaMM))2(x,o^s2r+i'r+i(T).
Thus,

Re-i(biM)'[biM\a1]v,v) =Im((b¡M)axv,biMK) - (axbiMK4M)v))

= Im(biM)aiv,biM)v) - i((a, - al)b¡M)v4M)v)

= Im(-biM)a0v, biM)v) + Im(biM)f, b¡M)v)

-¡¡((ai-aDb^v^v).

Since ax(x, t) is real, Theorem l.lO(iii) with m = 0 and fc — 1 implies (ax — a|) G
S0;s>r(r). (Note that here we have only used the fact that ax G S¡¿s+1'r+1(T)
rather than SJf+2,r+2(T).) Therefore

1 // *\l(M)      AM)   v    s n  ||i(M)    i|2^({ai - ax)b'f   >v,b\   >v)  <Co\\b\   'v\\¿m

with Go independent of M, by Theorem 1.3 and the hypothesis on a. Further,

\Im(b^f,bf\)\< CM + \\bf\\\2H0
by (iii). Finally,

1 AM) AM)   v       ,     AM)     AM)   \   .   11 AM)       1     AM)   x(b\   'aov,b\   'v) = (aob):   'v,b\   'v) + ([bxf   ',a0]v,b}   >v).

For the first term on the right,

\(a0biMK4MK)\ < cM^vWlo
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by Theorem 1.3 since a0 G S°'3+1'r+1. By Theorem l.lO(ii) with p = f - 1,
j = 1, fc = 1, m = -1, we have [6- ,oo] = aop^M^ + p(M'âo, where oo,ôo G
5°'a'r, p(M),p(M) g SjS1. Since supp6^-M) C I\ for appropriate 60M) G S?|0 with

supp60M) C T, b*o(x,D)bfi\x,D) = bf*\x,D) so

(\bf\ao]v,bf\) = (b^iaopM+pMao^b^v).

Since a0p{M) G Sf-1:"-r(r), Theorem 1.3 and (i) imply \\b0M)aoPiM)v\\H1-a/2 <
CM, and since ä0: Hm~l1'r~a'2(r) -> Hm~l1'r~a/2(T), we have

Thus,
|<[ft?°,aoh65l'Ml<^ + l|iííí)*.

Together the above estimates yield

(3.8) Re\(bf)'[bíM\a1]v,v)<CM + (Co + C1 + 2)\\b¡M)v\\2H0.

Now fix M > (Co + Gi + 2) and drop the M-indices. The a priori assumption
on v implies that the right-hand side in (3.8) is finite, so

Re/(Í6í[6f,oi] - Mb*fbf\ v,v\ < C.

For e2f and b2f as in (3.7), it follows from the hypotheses on v (since (b2?v, v) < C)
that

(3.9) (e2f(x,D)v,v) + Re / Í-6f [6f,oi] - Mb*fbf + b2f - e2f\ (x,D)v,v\ < C.

By the calculus of smooth pseudodifferential operators,

(3.10) i Mft"0iJA

= bf+a/2(x, D)ax_f+a/2(x, D) - ba/2(x, D)a1+a/2

where bt G Slx¡0, at G SlJts+2'r+2(T). From Theorem l.lO(ii), with fc = 2, and with
j = 1, p = f + a/2 - 1, m = -1 - f + a/2 for ax_f+a/2 and j = 0, p = a/2,
m — — 1 + a/2 for a1+a/2, it follows that

&f+a/2(z, D)ax_f+a/2(x, D) - ba/2(x, D)a1+a/2

— (terms of order 1 + a) + (terms of order a) + r(x, D),

where
r(x,D) = aa-i(x,D)+Pr+a/2-i(x,D)a_f+a/2(x,D)

+ Pa/2{x,D)a_x+a/2(x,D).

Here a¡ G Sl,s'r(T), p¡ G S[ 0- From (3.10), the terms of order (1 + a) sum to zero
and the terms of order a give

±Haib2(x,t)(tr2f+a g sar+1,r+1(r).
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Let bo G Sxo have support in T, 60 > 0, 60 = 1 on supp bf U supp b2f U supp e2f.
To estimate

\(bo(x,D)r(x,D)tf-al2vMx,D)kf-al2v)\,

we write

r(x,D)kr~a/2 = af-i+aß(x,D)+Pf+a/2-i(x,D)ao(x,D)

+ Pa/2{x,D)a-1+f(x,D).

Since r > f — 1 + a/2, and f — a/2 > f — 1 + a/2, Theorem 1.3 and the hypothesis
on v are easily seen to imply that \(borA.r~a/2v, boA.r~a/2v)\ < C. And from (3.10),
(3.9), the calculus of smooth pseudodifferential operators, and the properties of bo,
we conclude that

(3.11)    (e2f(x,D)v,v) + Re({ÍHaib2f(x,D)A-2f+a
- k-f+a'2(Mb*fbf + b2f - e2f)k~f+a/2 }

x boA.f~a/2v,boA.f-a/2v ) < C

since Haib2(x, t) — Haib2(x, t)bo(x, 0- The operator in braces has symbol

{\Haib2f - Mb2+b2f - e2f) (x, o<er2f+a e ^s+i''-+i(r) c s:r/2+s+2a(u)

for small 6 > 0, since r > s and we can assume that 2a < s + I - n/2. Moreover,
the principal symbol is nonnegative by (3.9). Since bo(x, D)h.T~a/2v G H° by the
hypotheses on v, and we can assume that ízo(x, 0 has compact x-support, Lemma
3.1 and (3.11) imply that

(e2f(x,D)v,v) < C.

Thus the norm of v in Hml(^) depends only on the norms of a, v and / in the
hypotheses.    G

The final linear propagation result to be considered, with local instead of mi-
crolocal hypotheses, treats the case where 5 is near n/2, and is the analogue of
Theorem 2 in [1]. For a(x, t) G S™+2'S+Í(U) with real homogeneous principal
symbol and n/2 < 3, Vxam+2 G Cs for small 6 > 0, so if U is a small neighborhood
of the characteristic point (x0, to) of om+2 there is a C1+s null bicharacteristic 7
(possibly not unique) of am+2 through (xo, to)-

THEOREM 3.3. Let n/2 < s < n/2 + 1. Assume that a(x,t) G S£+2'S+1(U)
has real principal symbol am+2 homogeneous of degree m + 2 and that the null
bicharacteristic 7 through (xo, to) is unique. If

(i) v G #8+m(<7),
(ii) v G Jï^rn+£(xo, to) for some e<s- n/2,
(iii) f€H3(U),
(iv) a(x,D)v = f,

thenveH^r^h)-
PROOF. We follow the proof of Theorem 3.2, indicating the necessary modifi-

cations. Again replace 7 and (xo, to) with T and To, and take m — -1, a(x, t) =
o>i(x, t) + o,o(x, t)', this time with a3 G S^a+3(17). If we define eg(0 as before, then
by Lemma 1.12 with fc = 2, m = -1, p = 0, we have

eSo(D)a(x, D) = ai(x, D)e60(D) + a0,s(x, D)e60(D) + r6(x, D)
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where rs: H&iU) -» H^C1+£{U) and {a0,¿} C S°'3(U) uniformly in 0 < 6 < 1.
We have used the fact that if s < \, then rs(x,D) G S-e'3-e(U): ff""1^) -»
^io"¡1+e(£/). while if e > i M*^) = po(a;,D)ro(i,I>), where r0 G 5-1+£;3-£(C/):
^i«1^) - H^U) and po G Si,ö2£: H^(U) -► fff0-c1+£(í/). As before it then
follows that we may assume a priori that v G H3^.1+e(U), and that a(x,D)v = f
where a(x, t) G S¡¡S+1(U) and

(i) t»efr*-1nJBrf-°/a(r)l
(H)veHml(ro),
(iii) / G ff'(U)

for some a > 0 and s - 1 + a/2 <f<s — I + s. We must show that \[v\\Hf /„\ is
bounded by a constant depending only on the norms of a, v and / in (i), (ii) and
(iii).

We fix a < \ min(s - n/2,1 — e). Exactly as before, since a\ G C1+a, there are
symbols b~ G S[0, b2f,e2f G 52q supported on T, with e2f elliptic on 7, such
that

^HaMM))2-M(b¡M))2 + b2f>e2f,

(3.12) Re±(4M)*[4M),aiht>) = M-fc^o«,»,biM)v) + Tm^f,b(?M)v)

-^iai-al)b^v,b^v).

The second and third terms on the right satisfy the same estimates as before, since
ai is real and Theorem l.lO(iii) with m = 0 and fc — 1 implies (ai —ax) G S°',3(U).
We have

(4M)a0v,b^v) = (aob^v^v) + ([bf\ao]v,b^v),
with the first term on the right estimated as above. And, from Lemma 1.12 with
p = r, k = 1, m = — 1 and 6 = a/2, we have [6^ ,ao] = c(x,D) where c(x,D) =
c_a/2+f(x,D) +Pf(x,D)c-a/2(x,D) with a G Sl>s-a/2(U) and pf G S{>0. From
Theorem 1.3 and the hypotheses on v and /, if bo G Sxo has support in r, &o = 1
on suppt^    , then

\(b0(x,D)c(x,D)v4M)v)\ <CM + \\b¡M)v\\Ho.
Thus we again have

Rei^'^.axKtz) < GM + {C0 + C1 + 2)\\b{fM)v\\2H0,

and so by the a priori assumption,

(3.13) (e2f(x, D)v, v) + Re((i~ lb~[bf, ai] - M&ï&f + 62f - e2f)(x, D)v, v) < C.
Again

lA-r+a/26,[6.;ai]A-fW2 = iifai/3r?(x, D)A-2f+a + r(x,D).

By Lemma 1.12 with k — 2, 6 — a, and the two cases {p = f + a/2, m = — 1 — f +
a/2} and {¿u = a/2, m = -1 + a/2},

r(x, L>)Af-a/2 = cf_a/2(x, D) + p?+Q/2(a:, £>)c_a(x, Z?)

+ Pa/2(^1£))Cr--a(x,i))
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where c; G S1'3 a(U) andpz G S[ 0. Since f < s-I+s, it follows that s-a > f+a/2,
and so Theorem 1.3 implies r(x,D): H3'1 n ff^"a/2(r) -> H^ÇT). Thus for 60
with support on T, by the hypotheses on v and /,

\{borAf-a'2v,b0Af-a/2v)\<C.

As before, it follows from (3.13) that

(e2f(x, D)v, v) + Re ({iffai6?(x, D)A~2f+a

- A-f+a/2(Mb*fbf + b2f - e2f)A-f+a/2 }

x boAf-a/2v,b0A.f-a/2v ) < G

The operator in braces has symbol in Sa>a(U) C Sa'n^+6+2a(U) for small 6 > 0
by the choice of a. By (3.12) and Lemma 3.1 the a priori estimate holds.    D

4. Application to quasilinear hyperbolic problems. In this section we
show how Theorems 2.1, 3.2 and 3.3 can be combined with a simple iteration argu-
ment to yield information about the propagation of weak singularities in quasilinear
hyperbolic equations. We refer to the singularities as weak since we must assume
that our solutions are H" for some a > n/2. Therefore shocks are not permitted.
Thus these results describe the propagation of weak singularities in regions away
from shocks, or, if the data are relatively smooth, in all of Rn before the onset of
shocks.

We will study quasilinear equations of order p = m + 2, m > —I:

(4.1) Y^ ba(x,u,Du,... ,D"-1u)Dau(x) = f(x,u,Du,... ,0"-^).
\a\=p

We suppose that 6Q() and / are G°° functions and that we are given a function
u G ffiotM+1(^) with s > n/2 which satisfies (4.1) in an open set 0. The symbols
Du,..., Dß~1u, indicate that ba(x, u, Du,..., D'i~1ii) and f(x, u, Du,..., í)^-1^)
may depend on all derivatives of u up to order p — I. For x G 0, t G Rn \ {0}, let

P(X,0=    E   ba(x)Za.
\a\=p

Since u G Ha+'i+1, we have p G G2. Thus for each x0 G 0 and to G Rn \ {0} such
that p(x0, to) — 0, the solution of x(i) = V^p(x, t), x(0) = xo, t{t) — -Vxp(x, t),
t(0) = to is a well-defined bicharacteristic strip, at least for small t. let 7 denote
a compact connected piece of this bicharacteristic strip containing (xo,to) so that
the projection of 7 onto its first coordinates lies entirely within 0. We know by
hypothesis that u G H3+ti+1(0). The question we wish to answer is this: suppose
that, in addition, we are given that u G H^^ (po) at po = (xo, £0) G 7 for some
r > s. When will it be true that u G ff^M+2 at pi for all pi G 7?

We cannot apply Theorem 3.2 directly to (4.1) because the coefficients ba and /
are not smooth enough compared to u. We get around this difficulty by differen-
tiating the equation. Let d be a first order constant coefficient partial differential
operator such that po ^ Char d. Then p £ Char d for all p G M n 7 where M is a
neighborhood of po- If we can propagate improved regularity along M n 7, then, by
piecing together finitely many such arcs we can propagate along all of 7. Thus we
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may assume without loss that p G' Chare* for all p G 7. We now apply d to (4.1)
three times, obtaining successively equations of the form
(4.2) Y^bciD,l~lu)Dadu = gx(D^u),

(4.3) Y ba(D^-lu)Dad2u = 02(D"u)I>'1+1u)

(4.4) Yh^D,l~1u)Dadiu = g3(D'Àu)D'i+2u + g4(D"+1u).

The expressions on the right sides of (4.2)-(4.4) stand for sums of G°° functions
of {D@d6u} which have the orders of derivatives indicated. The point is that
the highest order terms on the right side of (4.4) are linear in 7JM+2u and have
coefficients of the form g^D^u). Thus (4.4) may be written

(4.5) Yl ba(Dfí-1u)Dad3u+ Y ih«(Dß~1u)Dad2u + ka{D>À-1u)D'À-1d3u}
\a\=H |û|=M

= i(Z>"+1u)
where ha, ka, I are G°° functions and l(Dß+1u) is a shorthand way of writing
l(x, u,..., i)M+1u). In differentiating the equations the many uses of the chain rule
and Leibnitz rule are legitimate since the hypothesis that u G ff3****1 guarantees
that in each term at most one factor is in Ha for a < n/2. As usual, let A =
(I — A)1/2, and set ttz = A3u and Po = ¿*3A-3. Then it; satisfies a(x, D)w = I where

a(x,D) = J  Y ba(D^lu)Da \ P0 + YhßiD>1u)Qß.
[\a\=u ) ß

Here Qß are classical pseudodifferential operators of order p—1, and Po is a classical
pseudodifferential operator of order zero which is elliptic in a neighborhood of 7.
We can now use Theorem 3.2. Set r = s. Then,

(4.6) »eff^nfl^d),

M^n)Gffs+1nff^(7),
so a(x,D) G S™+2;s+2'r+2. Since

a(x,D)w = l(D»+1u)eH3r\Hml(l)
all the hypotheses on a(x, D) in Theorem 3.2 are fulfilled. Thus, since we know
that u G ffmîM+2(Po) for some po G 7 and some r > s, then w G Hm+lm+1(po) and
we conclude from Theorem 3.2 that
(4.8) wGffs+mnff¿+m+1(p)    VpG7

and
(4.9) ueF+"+1nff;;"+2(p)    VpG7-
Thus we have propagated some improved microlocal regularity of u along 7.  By
(4.9) and Rauch's Lemma (as in Theorem 1.3), if r < min(s + I,2s- n/2 - e),

^(zT-'BlG^n^h),
(4.10) M0M«)eff8+1nff^+1(7),

i(D^u)eH3nHrml(i)-
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Finally,

(4.11) uzGff^m+1(po).

Thus, the hypotheses of Theorem 3.2 are fulfilled so we conclude that

(4.12) «;Gff;r+1W,    uGff^+2(7).

Now we can use Rauch's Lemma again to improve the microlocal regularity of the
coefficients and then use Theorem 3.2 again, as long as r < 2s - n/2. We have thus
proven the following theorem in the case o = s + I > n/2 + 1.

THEOREM 4.1. Let 0 be an open region ofRn, and let n/2 < a < p <
2a — n/2. For xo G 0, suppose that po — (xo, to) is on a null bicharacteristic 7 of
E|a|=M ba(x,u,.. ^Dv-^D". Ifu G ff»+"(0) satisfies (4.1) andue ff£,M(po),
then u G Hm+l>i(p) for a// p G 7.

REMARK. If o > n/2 + 1, the null bicharacteristic strip is unique. If n/2 < o <
n/2 + 1, we assume that it is unique.

PROOF. It remains to handle the case where n/2 < o < n/2 + l. In this case we
may not differentiate the equation three times since that would result in products
of the form <f>i(p2 where (pi G ffs for s < n/2. We can, however, differentiate with
d twice to obtain

Y ba(D»-1u)Dad2u + ha(D'iu)Dadu + ka(D>iu)D>À-1d2u = l(D»u).
\a\=p

If we now set w = A2u and Po = ¿*2A~2, then w satisfies

Y ba(D>i-lu)DaPow + Y hß(D»u)Qßw = l(D"u)
\a\=p

where the Qß are classical pseudodifferential operators of order u - 1. Since it G
H^+k, we have D»u G ff°', so b^D^u) G H'+1 and ha(Dfiu),l(D^u) G H".
Set m = p - 2 and e = p-o <a - n/2. then

Y b^D^DoPo + Yhß(D'xu)Qß G 5s7+2;tr+1
\a\=n

so the hypotheses of Theorem 3.3 are satisfied with a replacing s. Therefore ttz G
Hm+m+£(p) for all p G 7, which yields u G ff£j"(p) for all p G 7.    D

EXAMPLE 1  (THE QUASILINEAR WAVE EQUATION). Consider the equation

(4.13) utt - Ybi3(Vu)did3u = 0.

Suppose that (4.13) has a solution u G H°+2, o > n/2, in a region R whose
domain of dependence contains a ball B at t = 0 (see Figure 4.1). We suppose
that 53 bij(Vu)ti£j > c\t\2 and that the initial data are in Ha+2 overall, but C°°
outside of B. What further regularity properties of u can we derive? Since Vu is
G1, there is a well-defined forward characteristic hypersurface emanating from each
point of B. On the union of these hypersurfaces, denoted by II in Figure 4.1, we do
not expect the solution to be better than Ha+2. In region I the solution is G°° by
finite propagation speed. Consider a point xi in region III. By applying Theorem
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4.1 on the backward bicharacteristic curves from xi (for example, from xi to xo),
we see that
(4.14) u€H°+2nH%-n/2+2-e(xuti)

for any characteristic direction ti at xi and any e > 0.

C°° x° h°*! C00

Figure 4.1
Now suppose that £2 is a noncharacteristic direction at X\.
Differentiate once in (4.13), as in the proof of Theorem 4.1, to obtain

a(Vu)D2du = b(D2u).

Set w = Au G H°+1; then a(x,D)w = f, where a G 5s1t+1;<T+1 and / G ff*. So
Theorem 2.2 implies that w G ffff+1 D ff^}2(xi, f2), and hence
(4.15) tt€ffff+2nff^+3(x1,6).
Since this is true for any elliptic direction £2, (4.15) and (4.14) imply that u G
2jmm{<T+3,2<r-n/2+2-e} at Xl If CT + 3 < 2<t - n/2 + 2 - e we can simply apply the
above procedure again to conclude that u G ffa+3 n ff£j~4(xi, £2) for elliptic direc-
tions t2- We can continue to apply Theorem 2.1 to improve the regularity in elliptic
directions until it is better than the regularity in the characteristic directions, so
we find that u G #2CT-n/2+2-e at Xi g region ni for all s > 0.

In the linear case, u would be G°° in region III. In the quasilinear case, the inter-
action of the singularities on the characteristic hypersurfaces in region II produces,
in general, new weak singularities which propagate into region III. We have shown
that these new singularities have strength at most ff2er-n/2+2-e

EXAMPLE 2 (A COUPLED ELLIPTIC-HYPERBOLIC SYSTEM). We will show
how to use Theorems 2.1, 4.1, and Rauch's Lemma to derive regularity results for
the system
(4.16) Y aij(u)did3v = g(u, v),

(4.17) uu - Ybi](v)did3u = /(it,v).
We suppose that ai3, bi3, g, f are G°° functions and that it and v are ffCT+1 solutions
of (4.16), (4.17), a > n/2, in a region R as in Example 1 and Figure 4.1. We suppose
that

EM")e<e;>c(i+iei2),
E6*7fa)&o>c(i + iei2)
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in R so that (4.16) and (4.17) are elliptic and hyperbolic, respectively. As in
Example 1, we assume that the data at t — 0 for (4.17) is ffCT+1 overall and C°°
outside the ball B, and ask what improved regularity for it and v holds.

In region II, the union of forward light "cones" from B, we do not expect u to
be better than ffCT+1; by Theorem 2.2, v is in ffCT+3 there. In region I, both u and
v must be C°° by the following simple iteration argument: First improve v locally
using (4.16) and Theorem 2.2; then improve it locally by using (4.17) and a domain
of dependence argument (or as in Example 1); now improve v again and so forth.

Let xi be a point in region III and let ti be a characteristic direction for (4.17) at
Xi. Let 7 be the backward bicharacteristic strip through (xi, £i); the corresponding
bicharacteristic curve from xo to xi is depicted in Figure 4.1. We improve the
microlocal regularity of u and v on 7 by a three-step process: suppose by induction
that u G H"+1 n ff^l1 (7) and v G ff<T+3 n Hm]2(1), where p < 2a - n/2.

(i) We improve the microlocal regularity of v on 7 by using (4.16) and The-
orem 2.1 (the microlocal elliptic theorem) twice. Differentiation of (4.16) yields
a(x, D)w = h, where w = A2v G H" n ff^fr), a G SJf+1,p+1, h G ff" n ff^fr).
Hence w G ff^fr), and v G /F+3 n ff^i/y).

(ii) Because of (i) and Rauch's Lemma, bi3(v) has been improved along 7. We can
therefore improve the microlocal regularity of it on 7 by using Theorem 3.2 (the
microlocal hyperbolic propagation theorem) and (4.17). We have b(x,D)u = f,
where b G s2;(°+1)+2'{p+1)+2, u,f G ffCT+1 n ff^i/y), and therefore u G H"+1 n

Kfh)-
(iii) Since u and v have both been improved along 7, we can use Rauch's Lemma

to improve f(u,v),g(u,v) and üí3(u).
Since aij(u) and g(u, v) are improved on 7 we can return to (i) and improve

v further. We can continue this process until it is no longer possible to improve
o-i3(u), f, g because the hypotheses of Rauch's Lemma are no longer satisfied. We
conclude that

(4.18) it G H°+1 n ff£Tn/2+2~£(7),    v G ff"+3 n ff2nrn/2+3_£(7)

for all e > 0.
Suppose now that £2 is a noncharacteristic direction for (4.17) at x\. We then

improve u and v microlocally at (x\, t2) by using the equations (4.16), (4.17) and
Theorem 2.1 as we did in Example 1:

ueH°+inH2°-n/2+2-£(Xl,t2),

[ '    J t;elir+snffa*-B/a+s-«(a:i16).

From (4.18) and (4.19) we have
uGH2o-n/2+2-e     ^ ^

v e H2o-n/2+3-e     &% ̂

for all £ > 0.
Notice that it is important in this example that the hypotheses of the elliptic

regularity theorem permit microlocal hypotheses on the coefficients. The coefficient
aij(u) will never be better than H" locally in region II. But it can be improved
microlocally which allows us to improve v microlocally and so forth.  We remark
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that we have treated the case a¿y = o¿3(n) and bi3 = bi3(v) for the sake of simplicity.
The more general case ai3 = a^ (it, Du, v, Dv), b{3 = b(u, Du, v, Dv) can be handled
by differentiating the equations as in Example 1.
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