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Abstract—A new microfabrication technology for high-aspect-
ratio parylene structure has been developed for soft spring appli-
cations. Free-standing parylene beams with widths of 10–40 m
and aspect ratios of 10–20 have been successfully fabricated. Since
parylene has a small Young’s modulus, a high-aspect-ratio beam
with a spring constant of the order of 1 10 3 N m has been
realized. The large yield strain of parylene enables a test struc-
ture to have a large-amplitude oscillation of 600 mp-p, without
any failure of the high-aspect-ratio springs. An early prototype of
in-plane capacitive accelerometer was also developed. It was found
that its resonant frequency is as low as 37 Hz, and the noise spec-
tral density is 64 g (Hz)0 5. [1606]

Index Terms—Capacitive accelerometer, high-aspect-ratio
beam, low spring constant, parylene.

I. INTRODUCTION

F
OR mechanical transducers with a high sensitivity, a soft

beam with a low spring constant is required. However,

since conventional MEMS materials such as single crystal

Si have a large Young’s modulus, it is not a straightforward

process to develop soft structures. Weigold et al. [1] developed

a Si accelerometer with a low spring constant of 0.127 N/m.

However, very thin beams of 1 in width and 450 in

length were required. An alternative approach for producing a

soft spring is to use photosensitive polymer materials [2]–[4].

Lee et al. [4] employed SU-8 to make a cantilever beam

for atomic force microscopy with a spring constant of 0.248

N/m. However, SU-8 is not suitable for mechanical structures

requiring high accuracy due to its large internal stress and

a relatively large thermal coefficient of expansion (TCE) of

5 .

Parylene (poly-para-xylylene) is known as a MEMS- com-

patible polymer that can be deposited with a CVD process,

and is now attracting increasing attention for possible use in

mechanical and fluidic micro devices [5]–[12]. Its physical

properties and detailed internal stress characteristics have

previously been reported [13], [14]. The advantage of using

parylene for mechanical parts is threefold. Firsty, parylene has
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a small Young’s modulus ( ), which makes it easy

to design soft springs with. Second, parylene is a nonbrittle

material with a large linear-elastic range (yield ),

which allows a large deflection without failure. Third, parylene

has a 30% lower TCE than SU-8 or polyimide.

The final goal of the present study is to develop micro-fabrica-

tion technology to be used to produce soft springs for in-plane

transducers such as accelerometers [15]–[20] and energy har-

vesting devices [21], [22]. For these devices, sensitivity to me-

chanical force should vary by orders of magnitude depending

on the direction. The structure should be soft in the direction

of interest, but at the same time, it should be rigid in the other

two perpendicular directions to minimize mechanical cross-talk.

Therefore, high-aspect-ratio structures (HARS) are required.

The most straightforward approach to achieve HARS is to

use deep-reactive ion etching (DRIE) of a Si substrate, such

as the Bosch process [23]. HEXSIL [24], [25] and HARPSS

[26] have also been proposed for high-aspect structures, where

deep trenches are refilled with poly-Si. However, both single

crystal Si and poly-Si are brittle, so mechanical failure is of

considerable concern. Alternatively, high-aspect-ratio metal

structures can be fabricated by the LIGA [27] process, but

it requires X-ray, which is generally a much more expensive

process. Moreover, all the existing technologies use materials

with a large Young’s modulus, which is larger than 100 GPa.

The objectives of the present study are to develop a new mi-

crofabrication technology for high-aspect-ratio parylene beams

with a small spring constant, and to characterize their mechan-

ical performance. We also present the first in-plane accelerom-

eter using the parylene high-aspect-ratio beams.

II. FABRICATION OF PARYLENE HIGH-ASPECT-RATIO

STRUCTURES

The main process flow for the high-aspect-ratio parylene

beam fabrication is shown in Fig. 1. The process starts with

4” Si wafers with 2- -thick thermal oxide. The upper

is patterned with buffered HF [see Fig. 1(a)] for the etch

mask of DRIE, and 300–400- -deep trenches are etched

into the substrate [see Fig. 1(b)]. The trenches are used as

parylene molds and their depth defines the desired height of

the beams. After stripping away the remaining , a second

2- -thick thermal oxide is grown on all exposed Si surfaces

as the etch-stop layer for the later DRIE [see Fig. 1(c)]. This

is followed by a parylene-C deposition with a thickness of

10–20 to refill the trenches [see Fig. 1(d)]. The deposition

pressure is chosen as 22 mT. The parylene film is then etched
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Fig. 1. Process flow for the high-aspect-ratio parylene structure. (a) Wet oxi-
dation and patterning SiO . (b) Etch trench by DRIE. (c) Stripping SiO and
making the second wet oxidation. (d) Deposit of 20 �m-thick parylene-C. (e)
Etch-back parylene with O plasma. (f) Pattern SiO on the backside of the
wafer. (g) Gluing onto a support wafer and etching through using DRIE. (h)
Stripping SiO and the release of parylene structures with buffered HF.

back using plasma [Fig. 1(e)]. Next, the wafer is flipped

over and etch windows are patterned into the backside

with buffered HF [see Fig. 1(f)]. After dicing the wafer into

individual die, each die is glued onto a support wafer, and the

silicon is etched away from the backside with DRIE to expose

the parylene beams, which are covered by the etch-stop

[see Fig. 1(g)]. Finally, the beams are completely freed by

stripping the away with buffered HF [see Fig. 1(h)].

Fig. 2(a) shows an SEM image of a 20- -wide trench as

deposited. Clearly, the parylene-C deposition is conformal, and

the film thickness is almost uniform even inside the deep trench.

This is because the mean free path of parylene molecules is as

small as a few cm, and also because the sticking coefficient,

which is defined by the ratio between the number of molecules

reacting with a radical chain end and the number of incident

monomer molecules onto the surface, is as low as at

room temperature [28].

Also visible is a small void inside, which is often observed

in parylene deposition onto trenches [29]. The void is caused

because the top part of the trench is sealed at an early stage of

the deposition. The timing when the top part of the trench is

sealed with parylene depends on the trench width, and the time

duration before the trench is sealed multiplied by the deposition

rate determines the film thickness inside the trench. For 40-

-wide trenches, the film thickness inside is about 17 . The

film thickness inside the trench decreases with the trench width,

and becomes 10, 7, and 2.5 , respectively, for 30-, 20-, and

10- -wide trenches.

Fig. 2. Cross-sectional SEM images of a 20-�m-wide trench. (a) As deposited.
(b) After the etchback. (c) After the second deposition of 20-�m-thick pary-
lene-C.

After etch-back of the parylene film with plasma, the top

part of the trench is opened [see Fig. 2(b)]. If desirable, this

void can be completely eliminated with a second parylene-C

deposition [see Fig. 2(c)]. The maximum aspect ratio fabricated

here was 20, but trenches with higher aspect ratios can also be

filled with parylene, once the trench itself is etched with DRIE.

Fig. 3(a) shows an SEM image of a free-standing cantilever

beam 30 in width, 400 in height, and 2.5 mm in length

(aspect ratio of 13.3). A triangle-shaped trench etched into the

substrate works well as an anchor. Fig. 3(b) shows a leaf spring

structure with an aspect ratio of 17.5. Si islands surrounded by

parylene beam are successfully etched out with DRIE, and only

free-standing complex parylene structures remain.

Fig. 4 shows parylene high-aspect-ratio beams of 10–40

in width. The 30- and 40- -wide beams are 400– high, and

the 10- and 20- -wide beam structures are, respectively, about

200 and 350 in height due to the RIE lag. Parylene film

is known to be in compressive stress as it is deposited, but that

becomes tensile stress after thermal annealing [13], [14]. In the

present study, the parylene film undergoes baking at 100–110
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Fig. 3. SEM images of high-aspect-ratio free-standing parylene structures. (a)
Cantilever beam 30 �m in width, 400 �m in height and 2.5 mm in length. (b)
Leaf spring structure using a parylene beam 20 �m in width and 350 �m in
height.

for the lithography step of the etch windows on the backside

[see Fig. 1(f)], and the beams are actually in tensile stress when

released.

It is now clear that complex high-aspect-ratio parylene struc-

tures with aspect ratios up to 20 can be successfully fabricated

through the present MEMS process. Static and dynamic charac-

teristics of the structures are discussed in the next chapter.

III. EVALUATION OF PARYLENE HIGH-ASPECT-RATIO BEAM

Fig. 5 shows a magnified view of a pendulum structure with a

10- -wide beam, of which the aspect ratio is 20. The Si mass

dimensions are 700 700 530 . The device was

fixed onto a gonio stage, and the force in the in-plane direction

is changed by altering the tilt angle. Fig. 6 shows the deflection

of the cantilever beam versus the force in the in-plane direction.

It was discovered that the spring constant is as low as 0.0045

N/m. The spring constant obtained is three times smaller than

the value estimated with conventional beam theory. This is prob-

ably because the trench is not fully filled with parylene as shown

in Fig. 2(b), and the cross section of the beams is U-shaped. On

the other hand, this soft spring is robust and will not fracture

even by shaking vigorously.

The spring constant for thicker beams was estimated from

measurements of their resonant frequency. The measured values

are, respectively, 0.0261, 0.169, and 0.484 N/m for 20-, 30-, and

Fig. 4. Beam structures under tensile stress. Left to right, 40-, 30-, 20-, and
10-�m-wide beam structures.

Fig. 5. A pendulum structure with a 10-�m-wide beam suspending
700�m� 700�m Si substrate under a gravity force.

Fig. 6. Spring constant measurement of a 10-�m-wide beam.

40- -wide beams. Again, the measurement results are 3–7

times smaller than the designed values using the beam theory.

In order to study the dynamic response of parylene beams,

test structures with a 1.75 mm 1.75 mm Si proof mass, sup-

ported by two parylene leaf springs [see Fig. 7(a)], were fab-
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Fig. 7. Test structures with two high-aspect-ratio leaf springs and a 1.75
mm� 1.75 mm mass in between, as seen from the unpolished side. (a) Left to
right: 40-, 30-, and 20-�m-wide leaf springs. (b) Magnified view of the proof
mass in oscillation.

Fig. 8. Schematic of the experimental setup for the dynamic response measure-
ment.

ricated. Fig. 8 shows the experimental setup. The device was

glued onto a loud speaker and shaken in the in-plane direction

at prescribed frequencies and amplitudes. Relative displacement

of the proof mass to the substrate was measured visually using

a CCD camera equipped with a high-magnification lens. Since

the framing speed of the CCD camera is much slower than the

oscillation frequency, the amplitude of the proof mass is mea-

sured from the streak length of the surface pattern as shown in

Fig. 7(b). The resolution of the present amplitude measurement

is one pixel of the image, which corresponds to about 3 .

Fig. 9 shows the dynamic response of a proof mass with

20- -wide springs. The measurement data fit well with a

simple spring-mass-damper model. The resonant frequency

and the quality factor are determined by a curve fit, and

they are 112.9 and 15.1 Hz, respectively. The peak-to-peak

amplitude at the resonance is as large as 600 . The spring

constant of each leaf spring structure is 0.9 N/m. The resonant

Fig. 9. Frequency response of the test structure with 20-�m-wide high-aspect-
ratio leaf springs.

Fig. 10. A snap shot of the test structure with 30-�m-wide high-aspect-ratio
leaf springs at the resonant frequency (� 257 Hz). Left to right: 40-, 30-, and
20-�m-wide leaf springs.

frequencies for 30-, and 40- -wide beams are, respectively,

257 and 410 Hz.

Fig. 10 shows a snap-shot of the test structures at the oscilla-

tion frequency of 257 Hz. Only the structure with 30 -wide

springs is resonating. Because of the large oscillation amplitude,

beams on the shrunk side are almost attached to each other.

However, the springs undergo neither any damage nor plastic

deformation. It is noted that the resonant frequency of these leaf

springs remains unchanged even after being driven at their reso-

nant frequency oscillation for several hours, which corresponds

to about . These findings confirm the robustness

of parylene beams because of its large yield strain.

The effect of temperature on the spring constant of the high-

aspect-ratio parylene springs was also examined. The device

temperature was measured with a thermocouple, and ramped at

about 1 . with a hot plate as shown in Fig. 8. Fig. 11

shows the resonant frequency and the spring constant of the test

structure with 40- -wide leaf-sprngs versus the temperature.

The vertical axis is normalized at a value of 25 . It was found

that the resonant frequency decreases monotonically with tem-

perature at a rate of about 0.3%/ , and is reduced by 21% at

80 . This corresponds to the reduction of the spring constant

at 0.6%/ . Therefore, temperature correction will probably be

necessary for sensor applications. It is noted that this change in
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Fig. 11. The effect of temperature on the resonant frequency of the test struc-
ture using 40-�m-wide leaf springs. Vertical axis on the right represents the
normalized spring constant.

the spring constant is reversible; a spring constant at the same

temperature remains unchanged even after several thermal cy-

cles between room temperature and 80 , which is slightly

lower than the glass transition temperature of parylene-C of

80–100 .

IV. PROTOTYPE IN-PLANE ACCELEROMETER

In order to demonstrate the advantages of the parylene high-

aspect ratio beam, a prototype in-plane capacitive accelerom-

eter was designed and fabricated. As shown in Fig. 12(a) and

(b), a proof mass (9.4 mm 6 mm) was supported by four leaf

springs. The beam width and height were 20 and 400 , re-

spectively. In order to measure the displacement of the proof

mass with the capacitance change, grid electrodes were formed

on the proof mass. Electrical contact between the proof mass

and the external circuit was made through the parylene high-as-

pect- ratio beam. For this purpose, a second parylene deposition

and etch-back were carried out in order to completely fill the

void in the deep trench as shown in Fig. 2(c). After the second

etch-back, a Cr/Au/Cr layer (100A/1000A/100A) is thermally

deposited and patterned on the top of the 20- -wide beams.

Another a parylene film of 2 in thickness was deposited on

the top of the electrode as a protection layer. Width and spacing

of the grid electrodes were 200 . The resistance between the

substrate and the grid electrodes was 60 . The resonant fre-

quency measured was 37 Hz, which is in good agreement with

the designed value of 35 Hz, as the trenches are fully filled with

parylene.

The device chip with the proof mass was assembled with a

glass chip with interdigitized counter electrodes as shown in

Fig. 12(c). Fig. 12(d) shows the early prototype accelerometer,

in which a differential-type readout IC (MicroSensors Inc.,

MS3110) with a low noise floor of 4 was used.

Fig. 13 shows the circuit diagram of the present system.

Since it was difficult to precisely control the gap between the

electrodes on the proof mass and the counter electrodes, the

gap is as large as 100 . In this configuration, the mechan-

ical sensitivity, which is the theoretical capacitance change to

the in-plane acceleration, is 4.5 pF/g. Thus, the present proto-

type has almost the same sensitivity as the low-noise in-plane

Si accelerometer developed by Chae et al. [20]

Fig. 14 shows the static response of the accelerometer to

gravity by changing the tilt angle with respect to the gravita-

tional direction. The overall sensitivity of this prototype was

Fig. 12. Prototype of an in-plane capacitive accelerometer using high-aspect-
ratio parylene springs. (a) Proof mass with grid electrodes and leaf springs. (b)
Magnified view of the leaf spring (20-�m wide, 400-�m high). (c) Magnified
view through the counter electrode. (d) Prototype device with a readout IC.

Fig. 13. Circuit diagram.

found to be , which is seven times smaller than the

designed value. This is because the electrical sensitivity is poor;

in the present design, the electrode width is only twice as large

as the gap, so that a large fringe field should exist. Moreover,
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Fig. 14. Static response of the prototype accelerometer.

there is no guard electrode on the proof mass, which results in

large parasitic capacitance.

It was also found that the noise floor of the present device was

about 85 , which results in the noise spectral density

of 64 , i.e., . Therefore,

whereas the present accelerometer is still an early prototype, it

already has a low-noise floor, aided by the low spring constant

of the parylene beam. Note that the noise floor is about ten times

larger than that of the readout IC at 8.4 .

The Brownian equivalent acceleration noise is given by

(1)

where , , and are, respectively, the Boltzman constant,

temperature, and the weight of the proof mass [30]. In the

present accelerometer, , which is the lowest

resonant frequency among MEMS accelerometers ever built.

Futhermore, the mass is much larger than that of

previous MEMS accelerometers. As a result, as given by

(1) is as low as 25 or ,

which is three orders of magnitude smaller than the noise floor

measured.

Since the noise level of the present accelerometer is not lim-

ited by Brownian noise, there exists considerable room to im-

prove its sensitivity, especially the electrical sensitivity. For in-

stance, when the gap between electrodes is reduced to 20 to

suppress the fringe field, and the guard electrodes are formed on

the proof mass to minimize the parasitic capacitance, the elec-

trical sensitivity will jump to 48 V/g, which reduces the noise

floor down to 1.8 .

The dynamic response of the prototype was examined in

a preliminary experiment. The prototype was fixed onto the

moving stage of a shaker (Labworks Inc., LW-140-110), and

shaken in the in-plane direction. The oscillation of the stage

was measured with a laser displacement meter (Keyence Corp.,

LC-2440), and the output voltage of the readout IC is digitized

with a 14-bit AD converter. Fig. 15 shows power spectra of the

output voltage for a sinusoidal oscillation at 3 Hz. A sharp peak

at the oscillation frequency can be observed. Since the present

accelerometer is an underdamped system, a large peak is also

observed at the resonant frequency.

Fig. 15. Power spectra of output voltage for sinusoidal oscillation at 3 Hz.

Fig. 16. Time trace of measured acceleration with sinusoidal oscillation at 3
Hz. The thick line represents filtered acceleration with a numerical low-pass
filter at 20 Hz.

Fig. 16 shows a time trace of the acceleration measured. Sinu-

soidal oscillations at 3 Hz, having peak-to-peak amplitude of ap-

proximately 2 mm, are imposed, and the voltage output is con-

verted into the acceleration using the static response shown in

Fig. 14. An acceleration of around 50 at 3 Hz was suc-

cessfully measured with the present prototype. Since the raw

voltage signal includes fluctuations at the resonant frequency, a

low-pass filter in Fourier space with a cut-off frequency of 20

Hz is used to remove the resonant frequency oscillation. The

filtered data are also shown in Fig. 16, which are in good agree-

ment with the imposed acceleration.

V. CONCLUSION

A new microfabrication technology for high-aspect-ratio

parylene structure has been developed for soft spring applica-

tions, and its mechanical response has been fully characterized

in a series of experiments. An early prototype in-plane

accelerometer has been developed using parylene high-as-

pect-ratio springs. The following conclusions can be derived.

1) Free-standing parylene beams 10–40 in width with an

aspect ratio of 10–20 can be fabricated.

2) A high-aspect-ratio beam with a spring constant of 0.0045

N/m has been developed.

3) In-plane oscillations with an amplitude as large as 600

has been achieved without any failure of the high-

aspect ratio springs.

4) An early prototype of an in-plane capacitive accelerometer

with a record-low resonant frequency of 37 Hz has been

developed. It has also been demonstrated that the prototype

accelerometer can measure acceleration of 50 mg peak-to-
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peak amplitude at 3 Hz with a noise spectral density of

64 .
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