
Micromachined PIN-PMN-PT Crystal Composite Transducer for 
High-Frequency Intravascular Ultrasound (IVUS) Imaging

Xiang Li [Member, IEEE],
NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical 
Engineering, University of Southern California, Los Angeles, CA

Teng Ma,
NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical 
Engineering, University of Southern California, Los Angeles, CA

Jian Tian [Senior Member, IEEE],
H.C. Materials Corp., Bolingbrook, IL

Pengdi Han [Member, IEEE],
H.C. Materials Corp., Bolingbrook, IL

Qifa Zhou [Senior Member, IEEE], and
NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical 
Engineering, University of Southern California, Los Angeles, CA

K. Kirk Shung [Fellow, IEEE]
NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical 
Engineering, University of Southern California, Los Angeles, CA

Abstract

In this paper, we report the use of micromachined PbIn1/2Nb1/2O3–PbMg1/3Nb2/3O3–PbTiO3 

(PIN-PMN-PT) single crystal 1–3 composite material for intravascular ultrasound (IVUS) imaging 

application. The effective electromechanical coupling coefficient kt(eff) of the composite was 

measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the 

composite, needle-type and flexible-type IVUS transducers were fabricated. The composite 

transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 

μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of 

axial resolution. The composite transducer was capable of identifying the three layers of a cadaver 

coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior 

piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher 

than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency 

composite, instead of using PMN-PT.
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I. Introduction

HIGH-FREQUENCY ultrasonic transducers utilize very thin layers of piezoelectric material 

to generate and receive ultrasonic waves to image biological tissues with microscopic 

resolution. Its medical applications include dermatology, ophthalmology, cartilage imaging, 

blood flow measurement, and intravascular imaging [1]. Catheter-based intravascular 

ultrasound (IVUS) imaging is a widely used method for diagnosing coronary artery diseases, 

which are the number one killer in the United States [2]. An IVUS catheter normally 

incorporates a tiny high-frequency (20 to 80 MHz) single-element transducer with a 

rotational shaft to generate radial format cross-sectional images of coronary artery. IVUS 

provides detailed evaluation of lumen size, vessel remodeling, and plaque morphology [1], 

[3]. For IVUS, image resolution, penetration depth and dynamic range are crucial 

parameters that can strongly affect diagnosis accuracy.

Imaging resolution is inversely proportional to the frequency bandwidth of the transducers. 

Transducers with higher center frequency and broader bandwidth can provide better image 

resolution [1]. In our previous work, 80-MHz IVUS transducers were investigated and could 

provide axial resolution of 35 μm and penetration of 2 mm [4]. The fine resolution is critical 

for detecting certain vulnerable plaques such as thin-cap fibroatheroma (TCFA), which has a 

cap thickness less than 65 μm [5]. The drawback of working at 80 MHz is the shallow 

penetration depth resulting from the strong attenuation in blood and vessel wall. An 

alternative method to improve resolution without sacrificing penetration depth is to use 

transducers with broader bandwidth at relatively lower frequency (40 MHz). Moreover, a 

broadband transducer is advantageous for multi-frequency signal processing to differentiate 

blood and vessel [6].

To achieve optimal imaging performance, the piezoelectric material of an IVUS transducer 

must be carefully chosen. Conventionally, Pb(Zr,Ti)O3 (PZT)-based ceramics, such as 

PZT-5H, have been used for fabricating IVUS transducers. Recently, binary relaxor-based 

ferroelectric single-crystal Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-PT) has also been investigated 

for fabricating high-frequency ultrasonic transducers [7], [8]. Compared with PZT ceramics, 

PMN-PT crystal demonstrated improved sensitivity and bandwidth, resulting from its higher 

piezoelectric coefficient (d33 ~2000 pm/V), and electromechanical coupling coefficients (kt 

~ 0.58, k33 ~ 0.9) [9]–[12]. Ceramic or crystal 1–3 composite material exhibits even broader 

bandwidth than monolithic materials because of composite’s very high coupling coefficient 

and low acoustic impedance [13]. However, composites for transducers operating above 20 

MHz cannot be made using traditional dice-and-fill technique because of the thickness 

limitation of the dicing saw blade, which is no less than 10 μm [14]–[16]. Mechanical dicing 

can also produce highly stressed and damaged surface layers, thereby degrading the 

properties of 1–3 composites [17].

For 1–3 composites, the frequency of the first lateral mode is empirically expressed as

(1)
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where fl is the frequency of first lateral mode resonance, VT is the shear wave velocity of 

filler, and dP is the kerf width [18], [19]. Generally, the kerf width is chosen to ensure that 

the lateral resonance is at least twice the center frequency. For composites working at 40 

MHz or higher, the kerf must be less than 6 μm to achieve a bandwidth larger than 70%. 

More recently, micromachining techniques such as deep reactive ion etching (DRIE) have 

been adopted to fabricate fine-kerf composites and build high-frequency ultrasonic 

transducers. Liu et al. and Sun et al. reported micromachined PMN-PT 1–3 composite for 

fabricating single-element and annular array transducers for ultrasonic imaging [20], [21]. 

Yuan et al. and Jiang et al. reported PMN-PT 1–3 composites with 4 μm kerf and effective 

kt values of 0.67 to 0.83 for IVUS application [7], [18], [19], [21]–[23]. The acoustic 

impedance of the composite was as low as 20 MRayl. Based on the composite material, 

piezocomposite microfabricated ultrasound transducers (PC-MUT) were built at 15 to 75 

MHz with broad bandwidth (77% to 90%) and high sensitivity. Compared with monolithic 

ceramic or crystal transducers, bandwidth was greatly improved.

However, previously reported micromachined 1–3 composites were fabricated from PMN-

PT crystal. The binary PMN-PT crystal has relatively low coercive field (Ec ~ 2.5 kV/cm), 

depoling temperature (TR/T ~ 60°C to 95°C), and Curie temperature (Tc ~ 130°C to 178°C) 

[24]–[27]. Higher Ec would allow transducers to be driven in a higher electrical field and 

higher TR/T for a broader temperature usage range [26], [27]. During the fabrication process, 

transducers are frequently incubated at elevated temperatures (40°C to 90°C) for epoxy 

curing, wax bonding, electrode sputtering, etc., which can cause PMN-PT depoling. 

Depoling can make testing transducer during fabrication inconvenient. In addition, an IVUS 

catheter must go through a sterilization process before entering the market. Some 

sterilization processes, such as steam sterilization, work at relatively high temperature 

(90°C). After sterilization, it is difficult to repole the IVUS transducer without taking the 

catheter out of the sterilized pouch. Therefore, thermal instability of PMN-PT may degrade 

transducers’ performance during fabrication and sterilization processes. By adding lead 

indium niobate (PIN) into the PMN-PT system, the ternary crystal PIN-PMN-PT was found 

to have superior electrical and thermal stability (Ec ~ 5.5 to 6 kV/cm, TR/T ~120°C to 130°C, 

Tc ~160°C to 200°C) to overcome the aforementioned drawbacks, while maintaining the 

excellent piezoelectric properties (d33 ~ 900 to 1900 pm/V, k33 ~ 0.83 to 0.92) [26], [27]. 

PIN-PMN-PT has been investigated for high-frequency ultrasonic applications and 

demonstrated reduced temperature dependence of performance and minimal depolarization 

during fabrication [28], [29]. Composites based on PIN-PMN-PT crystal inherit the 

improvements of the thermal and electrical properties [19].

Considering the merits of higher usage temperature range and coercive field, PIN-PMN-PT 

could be more advantageous than PMN-PT to fabricate micromachined 1–3 composite for 

high frequency IVUS applications. In this paper, we report the use of micromachined PIN-

PMN-PT 1–3 composite material for IVUS application. Miniature side-looking needle 

transducers and flexible IVUS catheters were built from the composite to operate at 40 

MHz. Ex vivo experiments were conducted to demonstrate the superiority of the composite 

for IVUS application.
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II. Acoustic Stacks Characterization

PIN-PMN-PT crystal 1–3 composite was fabricated using inductively coupled plasma (ICP)-

enhanced DRIE technique by H. C. Materials Corp. [19]. Polished PIN-PMN-PT crystal 

plate was first coated with Cr/Au as the seed layer for subsequent nickel electroplating. 

Photolithography was used to lay out the etching pattern over the Cr/Au layer. A 4- to 5-μm-

thick nickel mask was then electroplated with the inverse pattern of the photoresist. Crystal 

parts with the patterned nickel mask were loaded in ICP-enhanced plasma (Oxford 

Instruments, PlasmaLab 100, Abingdon, Oxford, UK) for DRIE. Following etching, kerfs in 

the etched crystals were filled with epoxy (EPO-TEK 301, Epoxy Technology Inc. Billerica, 

MA). After epoxy cures, the composite was lapped from both sides to the final thickness. 

The composite plate was sputtered with Cr/Au electrodes on both sides and then deposited 

with a thick conductive backing material. A cross-sectional micrograph of the composite on 

top of a thick conductive backing material is shown in Fig. 1. The thickness of the 

composite is around 27 μm and the kerf width is less than 5 μm. DRIE produces a near 

vertical etched profile with a side wall angle greater than 85°.

The composite (with backing) was diced into 0.5 × 0.4 mm stacks to build IVUS 

transducers. The stacks were poled with a dc electric field of 20 kV/cm for 5 min at room 

temperature. Dielectric properties of the stacks were measured with an impedance analyzer 

(Agilent Technologies Inc., Santa Clara, CA). The frequency dependence of the electrical 

impedance and phase were measured from 10 MHz to 110 MHz, as shown in Fig. 2. The 

effective electromechanical coupling coefficient kt(eff) was calculated according to the IEEE 

Standard on Piezoelectricity:

(2)

where fs and fp are series and parallel resonant frequencies [30]. fs and fp were 44 MHz and 

63 MHz in Fig. 2. kt(eff) was 0.75 to 0.78 for ten measured composite stacks. The values 

were comparable to those achieved in PMN-PT composite (0.67 to 0.83) [7], [18], [19], 

[21]–[23]. The acoustic impedance (Z) can be calculated according to

(3)

where ρ is the density of composite, which can be estimated by the volume fraction (70% to 

80%) of crystal, c is the speed of sound in the composite, t is the thickness of the composite. 

The acoustic impedance of the composite material was estimated to be between 20 and 22 

MRayl, which was close to the value of PMN-PT composite reported by Sun et al. (18 

MRayl) and Yuan et al. (20 MRayl) [21], [22].

To evaluate the thermal stability of the piezoelectric property, composite stacks were 

incubated for 10 min at several temperatures in the range of 20°C to 150°C at increments of 

20°C. Electrical impedance and phase were measured at each temperature, as shown in Fig. 

3. The results showed that electrical impedance slightly changed below 100°C, then the 

impedance peaks started to decrease, but still maintained significant piezoelectricity until 
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130°C. The results were consistent with the TR/T (~120°C to 130°C) of PIN-PMN-PT. The 

impedance peaks vanished above 140°C, which is close to the Tc (160°C to 200°C) of PIN-

PMN-PT. The change of kt(eff) value was shown in Fig. 4 as the solid line. Note that 

although kt may not change dramatically when below TR/T, the electrical impedance peak 

actually started to decrease before temperature reached TR/T. For comparison, one PMN-PT 

single crystal stack (with matching/backing at the size of 0.5 × 0.4 mm) was also treated in 

the same manner; its kt is plotted as the dashed line in Fig. 4. For PIN-PMN-PT composite, 

the kt(eff) value did not show significant change until temperature increased to 140°C. For 

PMN-PT crystal, the kt value was lower, and dropped quickly when above 80°C. Both PIN-

PMN-PT and PMN-PT can be repoled in dc electrical fields at room temperature.

The epoxy filler has a glass point of 65°C, above which the epoxy becomes more 

deformable. However, if no external pressure applied, the composite can maintain its 

structure. After testing the composite material at 140°C, the composite can be re-poled to 

recover piezoelectricity at room temperature. During the transducer fabrication process, the 

composite is normally treated under 100°C. In such conditions, we did not observe 

composite deformation caused by thermal expansion.

III. IVUS Transducer Fabrication and Characterization

Side-viewing needle-type IVUS transducers and flexible catheter-type IVUS transducers 

were fabricated based on the PIN-PMN-PT 1–3 composite. For the needle transducer, a 

diced composite stack was housed within a polyimide tube, on the side of which a window 

was opened to allow the transducer to be mounted. A 0.25-mm outer diameter (OD) 50-Ω 

coaxial wire (Tyco Electronic, Berwyn, PA) was connected to the composite backing using 

conductive epoxy inside the polyimide tube, which provided electrical insulation from the 

outer stainless steel needle housing. A window was opened on the side of the needle housing 

(OD: 0.92 mm) for acoustic waves to go through. Fast-cure epoxy was filled into the gap 

between the composite stack and needle housing to insulate the inner electrode. Cr/Au 

electrode was sputtered over the composite surface and stainless steel housing to form the 

ground connection. A Parylene (Specialty Coating Systems, Indianapolis, IN) layer (10 ± 

0.5 μm) was vapor-deposited onto the transducer to serve as a matching and waterproofing 

layer. The transducer was finally connected to a brass holder and SMA connector for 

electrical connection. The needle IVUS transducer is shown in Fig. 5(a). Another flexible 

version was fabricated with a double-wound flexible torque coil (OD: 0.65 mm, Asahi 

Intecc USA Inc., Santa Ana, CA), as shown in Fig. 5(b). The torque coil allows for smooth 

torque translation to the distal end through the entire catheter.

The transducer’s performance was measured in a deionized water bath at room temperature. 

The pulse–echo test was conducted with an X-cut quartz as a signal reflecting target at a 

standoff distance of 2 mm, in the transducer’s far-field range to avoid near-field diffraction. 

A broadband negative pulse with approximately 100 Vpp emitted from a pulser/receiver unit 

(Panametrics PR5900, Olympus NDT, Inc., Waltham, MA) was used to excite the 

transducer. Echo signals were received by the same unit, and then digitized by a 1-GHz 

oscilloscope (LC534, LeCroy Corp., Chestnut Ridge, NY). The frequency response of the 
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transducer was analyzed from the echo waveform, shown in Fig. 6. Center frequency (fc) 

and −6-dB fractional bandwidth (BW) were determined by

(4)

(5)

where fl and fu are defined as lower and upper −6-dB frequencies, at which the magnitude of 

the spectrum is 50% (−6-dB) of the maximum. As shown in Fig. 6, the echo signal had short 

pulse duration and small ring down. The measured fc was 41 MHz and BW was 86%. BW is 

comparable to the reported PMN-PT composite transducer (77% to 90%) [7], [21]–[23], but 

almost doubled that of a PMN-PT crystal transducer (45%) [31].

Two-way insertion loss (IL) was calculated using the ratio of transmitting and receiving 

voltage amplitudes, then compensated for the attenuation in water (2.2 × 10−4 dB/mm × 

MHz2) and loss caused by the imperfect reflection from the quartz target (1.9 dB) [32]. 

Because the quartz target is in the far-field range, no compensation for diffraction loss was 

included. Insertion loss values were measured using 20-cycle sinusoid bursts and sweeping 

frequency from 15 MHz to 75 MHz, at 5 MHz increments. The insertion loss was calculated 

using

(6)

where fc is center frequency (in megahertz), VT and VR are transmitting and receiving 

amplitudes (in volts), and d is the distance (in millimeters) between target and transducer. 

The two-way IL is shown in Fig. 7. At 40 MHz, the value is measured to be 17 dB, which is 

comparable to the IL of both PMN-PT composite transducer (18 dB) and single-crystal 

transducer (15 dB) of similar size [21], [31].

Tungsten wire targets with 6 μm OD were imaged to determine axial and lateral resolutions 

of the transducer, as shown in Fig. 8(a). The image has 1000 scan lines with a step size of 10 

μm. For comparison, the wire targets were also imaged by a 40-MHz PMN-PT single-crystal 

transducer (two matching layers; one backing layer; 0.5 × 0.4 mm aperture; unfocused; 47% 

BW [31]), as shown in Fig. 8(b). The axial and lateral resolutions were determined from the 

−6-dB envelope width from the wire located at 1.3 mm, which is close to the transducer’s 

natural focus (1.1 mm). For the PIN-PMN-PT composite transducer, axial and lateral 

resolutions were 43 μm and 226 μm, respectively. For the PMN-PT single-crystal 

transducer, axial and lateral resolutions were 62 μm and 278 μm. As shown in Fig. 8, the 

wire phantom images of the composite transducer were much thinner than those of the 

single-crystal transducer because of the improved axial resolution. Images are displayed 

with 50 dB dynamic range.
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IV. IVUS System Setup and Imaging Experiments

To test the PIN-PMN-PT composite transducer for intravascular imaging, ex vivo imaging of 

postmortem human coronary artery specimens was performed. The imaging system is 

illustrated in Fig. 9. A pulser/receiver (Panametrics PR5900, Olympus NDT Inc., Waltham, 

MA) is used to excite the transducer and receive echo signals. RF data are digitized by a 12-

bit data acquisition board (Gage Applied Technologies, Lockport, IL) with a sampling rate 

of 400 MHz. An IVUS transducer is mounted to a custom-built rotational joint, which 

translates torque from the motor to the transducer and couples the electrical signal to the 

pulser/receiver. The rotational motor provides trigger signals at every step to trigger a 

function generator, which then synchronizes the pulser/receiver and data acquisition board. 

The scanning procedure is controlled by a LabVIEW (National Instruments, Austin, TX) 

program. RF data are saved and post-processed for image display by Matlab (The 

MathWorks Inc., Natick, MA). Images are displayed with 50 dB dynamic range.

During the imaging experiment, the tip of a transducer was positioned inside the artery 

specimen, which stood in a water tank. Scanning was achieved by rotating the transducer 

while the specimen was kept immobile. An ex vivo IVUS image from the composite 

transducer is shown in Fig. 10(a). For comparison, an image of the artery from the PMN-PT 

crystal transducer of the same cross section is shown in Fig. 10(b). Both images are capable 

of differentiating the thickened intima (I), media (M), and adventitia (A) layers, as well as 

visualizing the calcified plaques (Ca, high intensity areas followed by acoustic shadow). 

However, because of the improved axial resolution of composite transducer, Fig. 10(a) 

displays higher clarity (finer speckles) of all the three layers. The boundaries of IM and MA 

(denoted by green arrows) were identifiable by the composite transducer in Fig. 10(a), but 

are blurred in Fig. 10(b) and even unidentifiable at 9 to 11 o’clock. The improved resolution 

is also helpful to accurately determine the percentage of calcified plaque over the entire 

lumen circumference.

V. Conclusion

In this paper, we reported the use of micromachined PIN-PMN-PT single-crystal 1–3 

composite for IVUS imaging application. The composite material demonstrated improved 

effective electromechanical coupling coefficient kt(eff) compared with monolithic single 

crystal. The usage temperature of the composite is at least 30°C higher than PMN-PT. The 

acoustic impedance is as low as 20 MRayl. Using the composite, needle-type and flexible-

type IVUS transducers were fabricated and tested. 41-MHz transducers with 86% bandwidth 

were achieved, which resulted in 43 μm axial resolution. The characterization results of PIN-

PMN-PT crystal composite showed superior piezoelectric properties which were comparable 

to that of PMN-PT based crystal composite, as well as improved thermal property compared 

with that of PMN-PT based composite. PIN-PMN-PT crystal can be an alternative approach 

for fabricating high-frequency composite. Ex vivo IVUS imaging was conducted to 

demonstrate the superiority of improved axial resolution. The composite transducer was able 

to identify the three layers of a human coronary artery specimen with high definition, 

whereas the image from a single-crystal transducer showed lower clarity of the layered 

structures.
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In conclusion, we have demonstrated the feasibility of using PIN-PMN-PT composite for 

IVUS imaging. The composite holds great potential for improving current IVUS imaging 

technology.
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Fig. 1. 
PIN-PMN-PT 1–3 composite with conductive backing.
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Fig. 2. 
Electrical impedance and phase of a PIN-PMN-PT composite stack at room temperature.
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Fig. 3. 
Temperature dependence of electrical impedance and phase of a PIN-PMN-PT composite 

stack.
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Fig. 4. 
Temperature dependence of electromechanical coupling coefficient values of PIN-PMN-PT 

composite and PMN-PT single crystal.
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Fig. 5. 
PIN-PMN-PT composite IVUS transducers: (a) needle type; and (b) flexible type.
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Fig. 6. 
Pulse–echo measurement of a PIN-PMN-PT composite transducer.
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Fig. 7. 
Two-way insertion loss measurement of a PIN-PMN-PT composite transducer.
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Fig. 8. 
Wire phantom images from (a) PIN-PMN-PT composite transducer; and (b) PMN-PT 

single-crystal transducer.
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Fig. 9. 
IVUS imaging system.
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Fig. 10. 
IVUS image of human coronary artery at 40 MHz from (a) PIN-PMN-PT composite 

transducer; and (b) PMN-PT single-crystal transducer. I = intima; M = media; A = 

adventitia; Ca = calcified plaque. Green arrows denote the boundaries of IM and MA. Scale 

bar is 1 mm.
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