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Abstract—A magneto-mechanical static modeling of ferromag-
netic particle based on minimization of an energy function is
presented. This modeling is made of a conjugate gradient method
coupled with finite element method for the mechanical problem
resolution. 2D computational results highlighting the influence
of magneto-mechanical coupling on the magnetic microstructure
and behavior are reported.

I. INTRODUCTION

The micromagnetic theory [1] is usually used to describe the

non-linear behavior of ferromagnetic media. If micromagnetic

modeling of magnetization process and domains structure are

now well mastered, the description of magnetostriction and

associated magneto-mechanic interactions remains unachieved

or badly implemented in the literature [2]. Indeed modeling

the intrinsic stress due to a free strain like magnetostriction

is rather complex. A mechanical approach of this problem is

relevant. An uncoupled micromagnetic modeling is presented

in a first part. The modeling of magneto elastic coupling is

achieved thanks to the introduction of elastic and magneto-

elastic interactions depending on stress and magnetization in

the free energy expression.

II. MAGNETIC BEHAVIOR AND ENERGETIC BALANCE

The mechanism of magnetization originates from the ex-

istence of intragranular microstructure organized in domains

associated to magnetization ~m = Msαi.~ei (with αi the direction

cosines of the magnetization and Ms the saturation magne-

tization) and separated by walls. At the microscopic scale,

the division into domains results from energy balance be-

tween different elementary contributions. Three contributions

in particular are at the origin of this subdivision: the exchange

energy, the magnetocrystalline energy and dipole interaction

[5]. The exchange energy in a medium Ω usually involves a

potential of the following form with exchange constant A:

Eex =
∫

Ω
A.‖∇~m‖2dΩ (1)

The magneto-crystalline energy is due to an interaction of

the magnetic moments with crystal axes ~d. This interaction

takes the form of a function Ψ(~d,~m). For a cubic symmetry,

magnetocrystalline energy is given by:

Ea =
∫

Ω
K0 +K1(α

2
1 α2

2 +α2
2 α2

3 +α2
1 α2

3 )+K2(α
2
1 α2

2 α2
3 )dΩ

(2)

with Ki the magneto crystalline anisotropy constants.

The dipolar interaction plays a fundamental role in the for-

mation of domains. It is related to the mutual interaction of

the magnetic moments at position ~r with each others and

to the geometry of Ω. This field called demagnetizing field
~Hd(~m) satisfies the Maxwell equations (~∇∧ ~Hd(~m) =~0) and

then derives from a scalar potential ζ satisfying the following

equations:

~Hd(~m) =−~∇ζ (3)

∆ζ (~r) = 1
µ0

∇~m(~r) ∀ ~r ∈ Ω

∆ζ (~r) = 0 ∀ ~r ∈ R
3 −Ω

[ζ ] = 0 ∀ ~r ∈ ∂Ω

(4)

µ0 is the vacuum permeability and ζ is the solution of a

Poisson problem (4) and reflects the non local form of the

demagnetizing field. The calculation of this quantity is usually

very time-consuming. The demagnetizing energy Ed is usually

associated to a potential of the form:

Ed =
∫

Ω
−

µ0

2
~Hd(~m).~mdΩ (5)

The last interaction is the Zeeman energy that reflects the

influence of the applied field ~Hext on the magnetic moments:

Eh =−
∫

Ω
µ0

~Hext .~mdΩ (6)



III. MICROMAGNETIC MODELING

Micromagnetism is a theoretical approach to describe the

process of magnetization at a scale large enough to replace the

atomic magnetic moments by continuous functions, and small

enough to account for the transition zones between magnetic

domains [1][6]. Approximation is obtained thanks to the

minimization of an energy functional. This minimization with

respect to the magnetization gives rise to a state of metastable

equilibrium associated with a particular configuration of the

magnetic structure. The contribution of Brown[1] was to define

an expression of the free energy Etot as the sum over a volume

Ω of internal and external contributions mentioned above.

Etot(~m) = Eh +Eex +Ea +Ed (7)

At equilibrium, the relation of energy stationarity must be

satisfied:

~m(~r) = Min(~m∈Rn) (Etot(~m)) ∀~r ∈ Ω (8)

under the constraint:

‖~m‖= Ms ∀~r ∈ Ω (9)

For a small variation of the local magnetization δ~m, the

variation of the total free energy is given by:

δEtot(~m) = Etot(~m+δ~m)−Etot(~m) = 0 (10)

so that:

δEtot(~m)≈
∫

Ω

(−µ0
~Hext −µ0

~Hd +
∂Ψ(~d.~m)

∂~m

+µ0A∆~m).δ~m dΩ+
∮

µ0A
∂~m

∂~n
.δ~m ∂Ω

(11)

where ~n is the unit vector normal to the surface ∂Ω of

the volume Ω. The effective field ~He f f defined by equation

(12) is the local magnetic field experienced by each magnetic

moment.

~He f f = ~Hext + ~Hd −A∆~m−
1

2

∂Ψ(~d.~m)

∂~m
(12)

The condition of stationarity of the total energy can thus be

written in the following form:

δEtot(~m) =−
∫

Ω

µ0
~He f f .δ~m dΩ+

∮

µ0A
∂~m

∂~n
.δ~m ∂Ω = 0

(13)

From (13), a system called ”Brown System” [1] is obtained

that defines the two following conditions to be met at equilib-

rium:

~m∧ ~He f f =~0 ∀ ~x ∈ Ω

~m∧ ∂~m
∂~n

=~0 ∀ ~x ∈ ∂Ω
(14)

The estimation of the total free energy is made thanks to

a finite volume discretization of equation (7). An iterative

conjugate gradient method is used to solve the optimization

problem (8). More details are available in [3] and [4].

IV. INTRODUCTION OF MAGNETO-ELASTIC COUPLING

The change of magnetization of a magnetic medium induces

a deformation εµ called magnetostriction. It is a spontaneous

deformation that only depends on the magnetic state of the

material. Magnetization direction ~m and magnetostriction are

linked by a non-linear relationship. The magnetostriction strain

tensor for cubic symmetry is isochorus and given by:

εµ =
3

2
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(15)

where λ100 and λ111 are two magnetostrictive constants

(deformation along < 100 > and < 111 > crystallographic

axes). This deformation is usually incompatible (i.e. not deriv-

ing from a displacement field). The elastic deformation εe of

the magnetic medium must then correct this incompatibility.

It results to a stress field even in absence of any external

mechanical loading. When the magnetostriction εµ is known

for a medium, the total deformation ε is obtained by simple

addition (ε = εµ + εe) since small pertubation assumption

can be applied. The total deformation ε derives from a

displacement field~u (16) and stress field σ associated to elastic

deformation obeys to the equilibrium equation (17) with C the

stiffness tensor of the medium.

ε =
1

2

(

∇~u+ t∇~u
)

in Ω (16)

~∇.σ =~0 in Ω

σ = C : εe in Ω
(17)

The boundary conditions of the problem are given by:

σ .~n = ~Td on ∂Ωt

~u =~ud on ∂Ωu
(18)

~Td and ~ud are the surface forces and displacements applied at

the boundaries ∂Ωt and ∂Ωu respectively. The additivity of

deformations allows to reformulate the mechanical balance to

introduce an internal stress of magnetostrictive origin:

~∇.σ⋆−~f µ =~0 (19)

σ⋆ is the total stress and ~f µ =~∇(C : εµ) the force density

of magnetostrictive origin. The mechanical problem can also

be reduced to an optimization problem where the displacement

field minimizes the elastic energy Eσ given by the application

of a variational formulation of the problem (19)

~u = Min(~v∈H 1
Ω
) Eσ (~v) with ~v =~ud on ∂Ωd (20)

with:

Eσ (~v) =
1

2
ε(~v) : C : ε(~v) − ε(~v) : C : εµ (21)

In the case of Finite Element Modeling (FEM) with imposed

displacement, the minimization problem (20) can be simplified



in the form of a linear system (22) where K , Û and F̂ are

the stiffness matrix of the system, the generalized displacement

vector and the generalized force vector corresponding to forces

of magnetostrictive origin respectively.

K.Û = F̂ (22)

Equation 23 gives a discretized formulation the terms of

equation 22 for linear form functions φ and isoparametric finite

elements on domain Ωh.

Kh =
Nh

∑
i=1

Nh

∑
j=1

∫

Ωh

~∇φ j : C : ~∇φi dΩh

F̂h =
Nh

∑
j=1

∫

Ωh

εµ : C : ~∇φ j dΩh

Ûh =
Nh

∑
j=1

u j

(23)

Considering a magneto-mechanical coupled approach, con-

tributions related to magnetic equilibrium, but also contri-

butions related to the mechanical equilibrium and various

interactions between these two phenomena are involved in the

energy equilibrium. The free energy that suitably describes a

deformable magnetic medium takes the following form:

Etot(~m,~u) = Eh +Eex +Ea +Ed +Eσ (24)

The stability condition of the energy is obtained if and only

if the magnetization and displacement fields minimize the total

free energy simultaneously.

A condition of minimization is the cancellation of all the

partial derivatives independently. We solve the system:

∂Etot

∂~m
=~0

∂Etot

∂~u
=~0 ∀ ~x ∈ Ω (25)

The first minimization always provides the torque condition

given by equation (14). The second provides the linear system

corresponding to equation (22). In addition the effective field

is complemented by a term called elastic induced field, and

linked to the derivation of the magneto-elastic energy com-

pared to magnetization:

~He f f = ~Hext + ~Hd −A∆~m−
1

2

∂Ψ(~d.~m)

∂~m
− ~Hσ =−

1

µ0

∂Etot(~m)

∂~m
(26)

with:

~Hσ =−
1

µ0

∂Eσ

∂~m
=−

1

µ0

∂ (−σ : εµ)

∂~m
(27)

Using the magnetostriction definition (15), the elastic in-

duced field becomes:

~Hσ i
=

3

µ0
(λ100σ iiαi +λ111 ∑

j 6=i

σ i jα j) (28)

The calculation of contribution to the effective field at each

iteration step requires to know the stress field solving the

equilibrium equations (17) and (18). The solution is obtained

by an inversion of the linear system (22). We use algorithm 1

that is the so-called ”constrained” approach.

Assuming: ~m0 , δEtot(~m0) =~g0, ~w0 =~g0, Kh.Uh0
= Fh0

;

while n ≥ 1, do

Find ρn ∈ R so that ∀ ρ ∈ R;

Etot

(

~mn−ρn~wn

‖~mn−ρn~wn‖
,σn

)

< Etot

(

~mn−ρ~wn

‖~mn−ρ~wn‖
,σn

)

;

~mn+1 =
~mn−ρn~wn

‖~mn−ρn~wn‖
;

Kh.Uhn+1
= Fhn+1

;

~gn+1 = ~He f f (~mn+1,σn+1);
~wn+1 =~gn+1 + rn~wn;

Where rn =
~gn+1.(~gn+1−~gn)

‖~gn‖2
Rn

;

end
Algorithm 1: Modified conjugate gradient for ”constraint”

magneto-mechanical problem.

V. APPLICATIONS

Micromagnetic code ”sivimm2d” [3] is used as the basis for

the implementation of the magneto-mechanical formulation.

We study the evolution of domains structure of a ferromag-

netic crystal with cubic symmetry and associated magneto-

mechanical behavior (axes: [100] = ~x and [010] = ~y). The

region of interest is a square of 30× 30µm2 in the vacuum.

This region is meshed by 3996 triangular elements. Magnetic

and mechanical constants are reported on table I1.

Ms = 1.71×106 A.m−1 A = 1.8×10−11 J.m−1 K1 = 48×103 J.m−3

K2 = 0 J.m−3 λ100 = 21×10−6 λ111 =−21×10−6

C11 = 228 GPa C12 = 132 GPa C44 = 116.5 GPa

TABLE I
PHYSICAL CONSTANTS USED FOR SIMULATIONS

(a) Uncoupled (b) With ME coupling

Fig. 1. Influence of magneto-elastic coupling on initial domain definition
(Hext = 0): color code corresponding to mx = (~m.~x)

The first simulations presented allows to highlight the con-

tribution of the magneto-mechanical coupling to the domain

definition (Fig. 1): Indeed, in the absence of magneto-elastic

effect, the magnetic microstructure is dominated by demagne-

tizing effects and magnetocrystalline anisotropy. Stress acts as

an additional source of anisotropy that stabilizes the magnetic

microstructure2. Figure 2 illustrates the change of domain

1Due to 2D restriction, the plane stress assumption (σzz = 0) is used, that
requires the redefinition of the stiffness tensor C

2The elastic energy density is reaching 200 J.m−3 in the walls. The
thickness decrease of 180◦ walls leads to a minimizing of this energy term.



(a) Hext = 0.0 (b) Hext = 0.15 Ms (c) Hext = 0.3 Ms

(d) Hext = 0.48 Ms (e) Hext = 0.9 Ms

Fig. 2. Change of domain structure with increasing magnetic field (~m.~x)

structure with increasing magnetic field along~x axis and figure

3 shows the associated magnetic and magnetostrictive behavior

(long. magnetostriction E
µ
xx and trans. magnetostriction E

µ
yy).

This figure exhibits the large demagnetizing effect on the 2D

square structure and effect of initial domains configuration on

magnetostriction amplitude.
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(b) Longitudinal E
µ
xx and transver-

sal E
µ
yy magnetostriction

Fig. 3. Average magnetic and magnetostrictive behavior of iron single crystal
over the volume V .

The magneto mechanical coupling introduced above allows

the opportunity to explore the influence of external mechanical

loading on the domain configuration and behavior. The figure

4 illustrates the effect of applied displacement in the direction

~x on the magnetic microstructure at zero magnetic field.

Σxx defines the average applied stress corresponding to the

imposed displacement. It exhibits the so-called refinement

of domain structure with stress [5]. Note that the stress

required for changing the domain patterns is very high due

to demagnetizing effects3 and that re-meshing has not been

performed4. As a final illustration, figure 5 shows a simulation

of the so-called ∆E effect, i.e. change of magnetostriction with

stress at zero external magnetic field.

3The demagnetizing factor is estimated to 0.46. It leads to large magnetic
field and so large stress magnitudes to move the domain microstructure. 10GPa
is obviously unrealistic comparing to standard yield stress of iron.

4given the stress levels, the displacements are large enough to require the
re-meshing. This must clearly be improved.

(a) mx = ~m.~x (b) my = ~m.~y

(c) mx = ~m.~x (d) my = ~m.~y

Fig. 4. Effect of applied stress along direction ~x on domain patterns:
(a,b) average tensile stress: Σxx = 9.62 GPa Σyy = Σxy = 0; (c,d) average
compressive stress Σxx =−9.62 GPa Σyy = Σxy = 0 at zero applied field.

−8 −6 −4 −2 0 2 4 6 8

−5

0

5

10

15

x 10
−6

Fig. 5. Illustration of ∆E effect: average longitudinal E
µ
xx and transversal E

µ
yy

magnetostriction as function of average axial stress Σxx for zero applied field.

VI. CONCLUSION

The implementation of the full magneto-elastic coupling in

a micromagnetic calculation is effectiveness. This introduction

has the property to stabilize the magnetic microstructure

and allows the prediction of magnetostriction, ∆E effect and

change of magnetic susceptibility with stress. Simulation of

2D polycrystals and 3D single crystals is effectiveness too but

calculation requires very high computation time so that only

small problems can be solved at present.
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