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I ntroduction

The mechanical modeling of composite structures emafl
reinforcements embedded in a matrix has been tlaisfoof
investigation for some time. Noteworthy among thaeier models
is the composite cylinders model proposed by Hasinid Rosen
(1964). Budiansky (1965) developed a model whickdmted the
elastic moduli of multiphase composites with isptcoconstituents.
Other work can be found in Mori and Tanaka (1973ndeckyj
(1974), Vinson and Sierokowski (1986), Christensgi©90),
Drugan and Willis (1996), Kalamkarov and Liu (1998ndrianov
et al. (2006) and others.

Micromechanical models for the smart composites tntake
into consideration both local and global propertfsscordingly, the
developed models should be rigorous enough to enabé
consideration of the spatial distribution, mechahjwroperties, and
behavior of the different constituents (reinforcielgments, matrix
and actuators) at the local level, but not too dempo be described
and used via straightforward analytical and nuna¢approaches.

Effective technique that can be used for the aimlgk smart
composites with regular structures is the multiescasymptotic
homogenization method. The mathematical framewofk this
method can be found in Bensoussan et al. (1978)Hga-Palencia
(1980), Bakhvalov and Panasenko (1984), Kalamk§te92). This
method is mathematically rigorous and it enablesptediction of
both the local and global effective properties bk tperiodic
composite structure. Many problems in the framewafrlelasticity
and thermoelasticity have been solved using thisragzh. For
example, Kalamkarov and Georgiades
micromechanical models pertaining to smart composttuctures
with  homogeneous (2002a) and
structural boundary conditions, the later resultinga boundary-
layer type solution. Kalamkarov (1992) developednprehensive
micromechanical model for a thin composite layethwiavy upper
and lower surfaces. This model was subsequentlg tsenalyze
the wafer and rib-reinforced smart composite plaewell as the
sandwich composites with honeycomb fillers, seg.,, &€alamkarov
and Kolpakov (1997, 2001), Kalamkarov et al. (2009dore
recently, Kalamkarov et al. (2006), Georgiades let(2006) and
Challagulla et al. (2007, 2008) have determinedeatfie
coefficients for the network-reinforced compositates and shells.
Saha et al. (2007a,b) investigated the smart coitepsandwich
shells made of generally orthotropic materials. Tigective of
these studies was to transform a general anisotropmposite
material with a periodic array of reinforcementsl @ctuators into a
simpler one that is characterized by some effectoefficients. It is
implicit of course that the physical problem basedhese effective
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the asymptotic homogenization method. The analyges@ressions for the effective
elastic and piezoelectric coefficients are derived particular, the smart orthotropic
composite structures with cubic, conical and diagoactuator and reinforcement
orientations are investigated.
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coefficients should give predictions differing atlé as possible
from those of the original problem.

The micromechanical models for the composite #ires
reinforced with a periodic grid of generally orttagic cylindrical
reinforcements have been developed in Kalamkarcsd.e2009b,
2010). Hassan et al. (2011), Hassan et al. (200@Hzassan (2011)
investigated smart grid-reinforced composite strreg.

The review of micromechanical modeling of smartdgri
reinforced structures based on the applicationhef asymptotic
homogenization method is presented in the preseperp The
formulated model is subsequently used to evalulate effective
elastic and piezoelectric coefficients of suchctties.

Following this introduction the rest of the papgrorganized as
follows. The basic problem formulation is presentadthe next
section. That is then followed by the general paétastic model
pertaining to smart 3D grid-reinforced compositeucures with
generally orthotropic reinforcements and actuator$he
micromechanical model is further illustrated by meaf several
practically-important examples.

Nomenclature

Gjj = stress tensor

& = strain tensor

u, = displacement field

Cij = tensor of elastic coefficients

P =tensor of piezoelectric coefficients
R = control signal

i = body forces

= small parameter characterizing dimension ofratu
cell Y, dimensionless

ij| = effective elastic coefficients

Pijk = effective piezoelectric coefficients

Asymptotic Homogenization Model for 3D Composite Structures

Consider a smart composite structure in a form aof
inhomogeneous solid occupying dom&nwith boundarydQ that
contains a large number of periodically arrangédfoecements and
actuators, see Fig. 1(a). It can be observed thiat periodic
structure is obtained by repeating a small unit ¥eh the domain
Q, see Fig. 1(b).

Special Issue 2012, Vol. XXXIV / 343



Alexander L. Kalamkarov and Marcelo A. Savi

DomainQ
As a consequence of introduciggcoordinates, the derivatives
are also transformed according to
) \\\ Reinforcement P 3 19 P 3 19
’ 0% £0y % 0% 0y’
N N Actuator % 1 2 2 4)
e o 0,10
. TeliTelelsls P 0% coy,
°clalals ! S_d_ The boundary value problem and corresponding sstfiedd
X3 N defined in Egs. (1) and (2) are thus transforméd ihe following
expressions:
(@) g (X g; (X
_— 90 (x.y) , 109 ( ,y):fi inQ. ©)
y2 aX] & ayl
/ Reinforcement (X.y)=0
Unit cell Y 2 U (X,y) = 0Q
4 | Actuator (%Y on
vdl ;
u
> V1 g (%, ¥) =Gjq (Y)a—xik(X. Y) =B (V)R (X) (6)
(b) Y3

The next step is to consider the following asyniptexpansions

Figure 1. (a) 3D smart composite solid of a regular structure and (b) unit in terms of powers of the small parameter
cell Y.

u (%) =y (xy) +ef? (x, y) + 24X y) +... (@)

The elastic deformation of this structure can becdbed by the

following boundary-value problem: . (%, Y) =0i*°)(x,y)+£a,“’(x,y)+£2J,(2)(x,y)+... ®)

00; . - .

—=f nQ, u (X)= Oon 0Q, 1) By substituting Egs. (7) and (8) into Egs. (5) af® and
an considering at the same time the periodicityulf in y one can
readily eliminate the microscopic variabidrom the first termu©
o =C. _ ( ) _ :l ﬂ +% 2 in the asymptotic displacement field expansion thluswing that it

j Cllkl & ﬁ< R o F 2\ 0x; 0% @) depends only on the macroscopic variakle Subsequently, by

! separating terms with like powers @&f one obtains a series of

differential equations, the first two of which are:
In Egs. (1) and (2) and in the sequel all indicesuane values

1,2,3 and the summation convention is adop@d,is the tensor of
elastic coefficientsg is the strain tensor which is a function of the

(0)

displacement fieldy;, Py, is a tensor of piezoelectric coefficients aUii —

L ) . ) —=0 (9a)
describing the effect of a control sigrdlon the stress fields. ayj
Finally, f; represent body forces. Note that the present sisaly
limited by considering only converse piezoelectaffect. This @ ()
limitation does not affect the derived formulae the effective 00 +an1 =f (9b)
elastic and piezoelectric coefficients of the smgritl-reinforced ay]. axj !

composite structure.

It is assumed in Eq. (1) that all the elastic gmelzoelectric
coefficients are periodic functions of spatial atinates with a unit Where
cell Y of characteristic dimensian Small parametesis made non-
dimensional by dividing the size of the unit cey la certain
characteristic dimension of the overall structure. (0) _ auﬁo) 0u|((1)

The development of asymptotic homogenization mémtethe 3D 0i" =G P + N |- b R (10a)
smart composite structures can be found in Kalaowkd1992), X b
Kalamkarov et al. (2009a,b), Hassan et al. (2088je a brief review

of the steps involved in the development of the ehaxigiven. u®  Hu®
The first step is to define the so-called “fast” roicroscopic a(-l) — Uy Uy (10b)
variables according to: ! Ik 0X 0y
n= Xl/ £ Y= ng v YB= X3/ € ®) Combination of Egs. (9a) and (10a) leads to theviiohg expression:
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material counterpar@ijk| , Fﬁk and therefore problem (15) is much

0 (1)(X y) simpler than the original problem given by Eqgs. &b (6). It is
W Cij —6 1) worth mentioning that although the present worktges to
J ¥ piezoelectric actuators, the mo_del derive_d agmmﬁily well if thei
. (0) smart composite structure is associated with soneaerg
aI:',JK(Y) Y R (%) - G (¥) 9y, (x) transduction properties that can be used to indaesiglual strains
oy ay; 6)5 and stresses. In that case, the coefficiel =3 represent the
i i R

appropriate effective actuation coefficients (raththan the
The separation of variables in the right-hand-safeEq. (11) piezoelectric ones).

prompts to represent the solution &8 as:

1) (X)

uD(x,y) = 9uc () NK (y) + R(x) M¥(y) (12) In the subsequent Sections we will consider thélero of a
0X| smart 3D composite structure reinforced with families of
reinforcements/actuators, see for example Fig. Brevlan explicit
case of multiple families of reinforcements is show
We assume that the members of each family are nodde

3D Smart Grid-Reinforced Composite Structures

where the auxiliary functionN,';I and M,'; are periodic iny and

they satisfy the following problems: different generally orthotropic materials that magxhibit
piezoelectric characteristics and that the reirdorents of each
K ; . .
0 Co )aNm W |- _9Ciy (13) family make anglesp; , @5 .43 (N=1,2, ..,N) with they, y,, ys
ay; I oYy, ay, axes respectively. It is further assumed that ththotropic

reinforcements/actuators have significantly largdastic moduli

than the matrix material, so we are justified ingleeting the

0 oM m(y) aF?jk contribution of the matrix phase in the ensuinglgital treatment.
6 umn( Y)— oV (4 The error resulting from this simplifying assumptics discussed
i yn Y] below. Clearly, for the case of the lattice gricustures there is no

surrounding matrix and assumption of zero matgidity is exact.

One observes that Eqgs. (13) and (14) depend amlthe fast
variabley and thus are formulated in the domainf the unit cell,

remembering at the same time that aII(Cm(I » B and NkI and

Mr'; are Y-periodic iny. Consequently, Egs. (13) and (14) are
appropriately called the unit-cell problems.

The next important step in the model developmentthie
homogenization procedure. This is carried out Ist fsubstituting
Eqg. (12) into Eq. (10a), and combining the resithviq. (9b). The
resulting expressions are then integrated ovettiecell Y (with
the vqumeM) remembering to treat as a parameter as far as

(b)

Figure 2. (a) 3D grid-reinforced smart composite structure and (b) its unit cell.

integration with respect tpis concerned. After cancelling the terms (a)
that vanish due to periodicity, this yields theduling equation:

2.(0
~ 4 ul(< )(X) -P R () = f (15) The nature of the grid-reinforced composite strieectf Fig. 2 is
ikl 0x; 0% ik 0% such that it would be more efficient if we firstrsidered a simpler
type of unit cell made of only a single reinforceriactuator as
shown in Fig. 3. Having dealt with this situatiothe effective
elastic and piezoelectric coefficients of more gahstructures with
multiple families of reinforcements/actuators candetermined by

where the following definitions are introduced:

~ aN kI superposition of the solution for each of them fbwweparately. In
¢ y positior

ikl — |Y|'[ qlkl (y)+ q]mn (Y)—"—= following this procedure, one must naturally accépé error
Y incurred at the regions of intersection betweenr#ieforcements.
(16) However, our approximation will be quite accuraiace these
regions of intersection are highly localized and raa contribute
M significantly to the integral over the entire volerof the unit cell.
P, = (y)- (y)—22 m(y) (17) Essentially, the error incurred will be negligiféhe dimensions of

ijk — IJk Yy Cﬁmn Yy ; .
| |Y the actuators/reinforcements are much smaller ti@n spacing

between them. The mathematical justification fas twrgument in
the form of the so-called principle of the splinmagenized operator
Coefficients C.Jk| , F.,’k defined by Egs. (16) and (17) are thecan be found in Bakhvalov and Panasenko (1989).

effective elastic and piezoelectric coefficientsprectively. It is In order to evaluate the accuracy of the above ey
noticed that they are constant unlike their origiidly varying 2SSUmptions pertaining to the asymptotic modelfitiiee element
analysis was carried out in Hassan et al. (20%1)s shown that
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errors in the values of the effective properties aegligibly small
for a large mismatch between the stiffness of éieforcements and
the matrix. The finite element results have alsdicdated that the
error from ignoring the regions of overlap of r@rdements will
only be significant for the cases of grid-reinfatcstructures with
more than three different reinforcement familigsthe unit cell
consists of up to three different reinforcements dissociated error
is negligibly small.

Y2

Y3

N1

N3

Figure 3. Unit cell in case of a single reinforcement family in the original
and rotated microscopic coordinates.

In order to calculate the effective coefficients the simpler
smart structure of Fig. 3, unit cell problems giv®nEgs. (13) and
(14) should be solved and, subsequently, Eqs. 4aé)(17) should
be applied.

The problem formulation for the structure shown Hig. 3
begins with the introduction of the following lodahctions:

aNk'(y)

n

ij| (y) + an (y) (18)

Re (%)~ G (y)a“"m(y) 19)

The unit cell problems in Egs. (13) and (14) carthen written
as follows:

Kkl _
-0 (20)
ay, i
9 gk=g (21)
oy i
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Perfect bonding conditions are assumed at therfaces
between the actuators/reinforcements and the matfikis
assumption yields the following interface conditon

N&(O]s=NE Mo B (On|=8 (Myls @2
Ma]s=Mam)|s PO = pimn|, (23
In Egs. (22) and (23) r*, “m’, and “S" denote the

actuator/reinforcement, matrix, and reinforcemeatfir interface,
respectively; whilen; denote the components of the unit normal
vector at the interface. As was mentioned earlier, will further

assume thatCjy (m) =0, which implies from Egs. (18) and (19)

that qu(l(m) = [*( m = 0. Therefore, the interface conditions in
Egs. (22) and (23) become

K (0 | =0 (24)

p,'j‘(r)nj |s =0 (25)

In summary, the unit cell problems that must bleexbfor the
3D grid-reinforced smart composite structure witkiregle family of
orthotropic reinforcements/actuators are given fg.E20) and (21)
in conjunction with Egs. (22)-(25).

In order to solve the pertinent unit cell problems perform a
coordinate transformation of the global coordirststem{y; y, ys}
into the new coordinate systefw; /7, 74 shown in Fig. 3. With
the new coordinate system we note that since timéoreement is
oriented along the; coordinate axis, the problem at hand becomes
independent of7; and depend only or,and 77; As a result, the
ensuing analysis becomes much easier.

Effective Elastic and Piezoelectric Coefficients

A scheme for the determination of the effectivestitaand
piezoelectric coefficients for 3D grid-reinforced orgposite
structures with generally orthotropic reinforcensens given in
detail in Kalamkarov et al. (2009b) and Hassanl.e(2809). It is
noteworthy to mention that in the limiting partiaukcase of 2D grid-
reinforced structure with isotropic reinforcemerite developed
expressions for the effective elastic coefficiectgverge to those
obtained earlier by Kalamkarov (1992).

With reference to Fig. 3, we begin by rewritingsE{18), (22)
and (24) in thé 175, 72, 14 coordinates to get:

Ny, N, ()
on,
an (0 gn () =0

bkl Q]H (y) q‘}mn gn
(26)

(5

Here, g; are the direction cosines characterizing the axtesion (see

Fig. 3); n, and n; are the components of the unit normal vector in
the new coordinate system. Expanding Eq. (26) a&egpikg in mind
the independency of the unit cell problempgryields:

ABCM
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oNK Ny, Ny,
biTI = ijl le Q1 C{mz gz Q'm.’s g3
aNkl aNkl aNkI (27)
|Jm1q31 o+ ijz q32 |]m3 083
3 3

Apparently, Egs. (26) and (27) can be solved bymagyg a
linear variation of the local functiod‘drl:]I with respect t@, andys:

Ny =am,+45ns N
Ngl = Ngnz +7“kelsnsv

)Lkl + }\/kl
MNoTA N3 (28)

where iikl

conditions. Once these coefficients are determittesl coefficients
bkl

(
the effective elastic coefficients of the structwé Fig. 3 by
integrating over the volume of the unit cell

~ 1
Ciu :ML Jk

Noting thath:-<I are constants, the effective elastic coefiicibetome

are found from the Eq. (27). In turn, these araeusecalculate

(29)

_ ki
Cijkl = Hi bj

(30)

where 4, is the volume fraction of the reinforcement withire
unit cell. It can be proved in general case thatdffective elastic
coefficients éijkl

properites as their actual material

Kalamkarov (1992).

The above derived effective moduli pertain to gedhforced
structures with a single family of reinforcemeriter structures with
more than one family of reinforcements the effextimoduli can be
obtained by superposition. The effective elastiefficients of a
grid-reinforced structure wittN families of generally orthotropic
reinforcements will be given by:

ki
Ci EZVﬂm)n)

counterpar@;

o See

(1)

where the superscrigh) represents the-th reinforcement family
with the reinforcement volume fractiop(fn) :

Let us now proceed to calculation of the effectpiezoelectric
coefficients from the unit cell problem given by<£¢19), (23) and
(25) which in coordinategn,, 175, 74 becomes
MK
01,

(F%'j‘Oe;ri(rH g, e<o)|s= 0

c1:]mn %n

|' - Ijk
(32

J. of the Braz. Soc. of Mech. Sci. & Eng.
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Keeping in mind independency an, Eq. (32) yields:

Kep _ aMr‘:1 . oMK M, oMK
Pi ((ﬁmlqzl (1}m2022 G 302376,72 (33)
MK k MK k oMk
+C|jm1081 Cijm 2q32 c;jm 3q3§a,7 )
3

It can be shown that Eq. (33) in conjunction v (32) can be
solved by assuming a linearity of functioN#](y) in 7,andns

K _<k k k _
My =2117,+23713 M 2—Z§72+Zl273

k _ <k k (34)
M3 =257, +2473

are constants to be determined from the boundary

where Zik are constants that can be determined from the oynd

conditions. The functions given by Egs. (33) and) (8re used to
calculate the effective piezoelectric coefficienté the smart
composite structure of Fig. 3 by integrating oves volume of the
unit cell, which on account of Egs. (17) and (1@)ds

(3%)

uk | I RJ dv

Since the local functions piﬁ-(are constant, the effective

piezoelectric coefficients become
R =ur 1 (36)

where ; is the volume fraction of the actuators/reinforeemn

maintain the same symmetry and convexitYyithin the unit cell.

The effective piezoelectric coefficients derivdzbee pertain to
grid-reinforced smart composite structures withirggle family of
actuators/reinforcements. For structures with rpldtifamilies of
inlusions the effective actuation coefficients da@ obtained by
superimposition. For instance, pertaining to a-geitiforced smart
composite structure withl families of actuators/reinforcements the
effective coefficients will be given by

@37

N
=2 _ k
Rik —g_:l/f(fn) H(jn) ’

where the superscriph) represents the'™ reinforcement/actuator

family, as in the above Egq. (31).

Examples of Smart Grid-Reinforced Composite Structures

The developed micromechanical model will now beduso
analyze three different practically important exdespof smart 3D
grid-reinforced  composite  structures  with  orthotoop
actuators/reinforcements, see Hassan et al. (ZI9L). The first
example, structure;3s shown in Fig. 2. It has three families of
orthotropic actuators/reinforcements, each famitierded along
one of the coordinate axes. The second examplectate S is
shown in Fig. 4. It is formed by a conical array athotropic
reinforcements/actuators.
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The third example structure & shown in Fig. 5. It has a unit
cell formed by three actuators/reinforcements, two efrtlextended
diagonally across the unit cell between two diaioelly opposite
vertices while the third reinforcement is spun tesw the middle of
the bottom edge and the middle of the top edgéempposite face.
The effective elastic and piezoelectric coefficgeior the above

>
=
=
o
(o8
c
o
(]
o
—
>
=
(0]
(1]
(%]
=
=
c
Q
=3
c
=
1]
n
Q
=
]
2]
2
(]
c
[
—
(]
o
o
=]
g
m
o
[
—~
w
-
~

and (37). Although the obtained analytical resatts too lengthy to
be reproduced here, the plots of some of thesetaféecoefficients
vs. reinforcement volume fraction or vs. the ination of the
reinforcements with thg; axis are shown below, see Kalamkarov e
al. (2009b) and Hassan et al. (2009, 2011) fod#tails.

Spatial arrangement of reinforcements/
actuators as viewed from the top

N,

L

Figure 4. Unit cell of smart composite structure S; with conical
arrangement of orthotropic reinforcements/actuators.

Y3

\ y2

d

Y1

I

|<—>|

ly
Figure 5. Unit cell of smart composite structure S; with diagonally
arranged orthotropic actuators/reinforcements.

We assume that the actuators/reinforcements aree nudd
piezoelastic material PZT-5A with the following ragtl properties
(see Cote et al., 2002):

cP = clP =121.06Pac) = 111.0GPa,

cP =7546Pacll) = = 75.2GPa,

c{P =226GPacll = clP = 211 GPe

AP = HP = 545¢10° ¢/mif

AP =156¢16° c/mfi ) = P = 248 18 C/nn

348 / Vol. XXXIV, Special Issue 2012

Alexander L. Kalamkarov and Marcelo A. Savi

8.00E-06
7.00E-06
6.00E-06 - B33

5.00E-06

oefficiel

C

4.00E-06 -
3.00E-06
2.00E-06

i)
1.00E-06 113

T T 1

0.04 0.045 0.05

0.00E+00

0.
-1.00E-06 -
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Total actuator volume fractic
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Figure 6. Plot of |5113 and I5333 effective piezoelectric coefficients vs.
actuator volume fraction for structure S;.
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Figure 7. Plot of —I5113 effective piezoelectric coefficient vs. actuator
volume fraction for structure S, (actuators oriented at 33.7° to the y3 axis).

We start by providing numerical results for the eefive
coefficients of structure ;Sshown in Fig. 2. Typical piezoelectric
coefficients are plotted vs. volume fraction in .Fég As expected,
these coefficients increase in magnitude as themel fraction

increases. One also observes from Fig. 6 thatdhees of |5333 are
larger thanF~>113 for a given volume fraction, which is to be exmect

because the former refers to the stress resportse tfirectiony; in
which electric field is applied.

We now turn our attention to structurg & Fig. 4. Typical
effective piezoelectric coefficients are plotted trse total volume
fraction of the actuators/reinforcements within tiret cell in Figs.
7 and 8. As expected, the plots show an increagbereffective
piezoelectric coefficients as the overall volumaction increases.
And it is seen from Figs. 6 and 7 that the magmituaf the
coefficient 5, (which refers to the stress response of the strect

in the y;-direction when an external field is applied in the
direction) is larger for Structure; Shan for Structure S This is
expected and is attributed to the geometry of thiecells. Figure 6
refers to structure ;Swith some actuators/reinforcements oriented
entirely in theys; direction. Figure 7 refers to structurg Bhere
none of the reinforcements are oriented in yhelirection (all 3
actuators/reinforcements are oriented at abofitt@4hey; axis).
Consequently, the stress response of structpie tBey; direction

ABCM
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when a voltage is applied in tlyg direction is smaller and so is the very interesting consequences on the effective ficeaits. In
particular, decrease of the angle of inclinatiorthef actuators with
they; axis will reduce the stiffness iy andy, directions because
the actuators are oriented further away from yhg, plane. The
simultaneous decrease in the overall actuator velfraction makes
this effect even more pronounced. These trendsleagly visible in

corresponding effective coefficieRt; 3.

It is also of interest to analyze the variationtbé effective
coefficients of structure ;Svs. the angle of inclination of the
actuators/reinforcements to tlggaxis. As this angle increases, the
actuators/reinforcements are oriented progressicelser toy,- and ) o - -
y,-axes, and, consequently, further away fromythexis. Thus, one Fig. 9 for the coefficientsh ,and Py,,. However, as far as the
expects a corresponding increase in the values ffi#fctwe  stiffness in theys-direction is concerned the two factors that
coefficients, as it is seen in the Fig. 8 pIottiI%Lg_s and |5223. accompany thg incrt_ease in the relative h(_eight ethhit cell are in

. L direct competition with one another. That is, dasieg the angle of

We now turn our attention to structurg shown in Fig. 5 and jcjination of the actuators witiy-axis increases such coefficients

we will present graphically some of the effectiveezmelectric

coefficients vs. the relative height of the uniticeee Fig. 9. The aS P33z and Pi33, but decreasing the overall actuator volume
relative height is defined as the ratio of the heig the length of fraction naturally reduces the magnitude of thesefficients. As
the unit cell. The width of the unit cell and th®ss-sectional area Fig. 9 shows, the former effect dominates the faitee, especially
of the reinforcements/actuators stay the same. ioted that when for low to moderate values of the relative heighttee unit cell.
the relative height of the unit cell is increasée total volume However, after a certain point, the two factorsdtém compensate
fraction of the reinforcements/actuatqrs as welltrees orientfation each other, so that the value @32 increases at a modest rate.
angle between these actuators gg@xis will decrease. This has

Angle of inclination (degrees) of actuators/reiefaments with yaxis

0.00E+00 T T T T

35

0.0

C
-3.50E-07 0.0
-4.00E-07 1 Total volume fraction of reinforceme!

Effective Piezoelectric Coefficie
(C/mn?)

-5.00E-07 - 131 13 (15223) Effective coefficients

Figure 8. Plot of f’113 (= I5223) effective piezoelectric coefficient vs. inclination of actuators/reinforcements with the y; axis for different volume
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Finally, we compare the typical effective coeffitie of

diagonal actuators/reinforcements arrangemenits siown in these

structures $and § by varying the total volume fraction of the examples that the micromechanical model providesomplete

actuators/reinforcements but keeping the same diimes of the
respective unit cells, see Fig. 10. Under theseunistances

structure $ has higher effective piezoelectric coeffici€ggsthan

structure $ This is attributed to the different angles oflimation
of the actuators/reinforcements to thexis.

The above discussed examples demonstrate that dfieed
micromechanical model allows developing a smart pusite
structure with the desirable combination of effeetproperties via
selection of relevant material and geometric patarsesuch as
number, type and cross-sectional dimensions
actuators/reinforcements, relative dimensions ef tinit cell, and
the spatial orientation of the actuators/reinforests.

We also note that the advantage of our model i$ tha
effective coefficients can be computed easily withthe need of
time consuming numerical (such as finite elemeal§wdations, see
Hassan et al. (2011) where the analytical andefieiement models
are compared.

Conclusions

Smart composite structures reinforced with a péciatid of
generally orthotropic cylindrical reinforcementsathalso exhibit
piezoelectric  behavior are considered. The
micromechanical modeling of these smart structlr@sed on the
application of the asymptotic homogenization metimgresented.
The micromechanical model decouples the originainolary-value
problem into a simpler set of problems called th& cell problems
which describe the elastic and piezoelectric effecproperties of
the smart 3D grid-reinforced composite structuBssmeans of the
solution of the unit cell problems the explicit eggsions for the
effective elastic and piezoelectric coefficiente abtained. The
general orthotropy of the reinforcement materiaimi@ortant from
the practical viewpoint, and makes the mathematoalysis much
more complicated. It is worth mentioning that evough the
analysis presented is applied to the piezoelentdterial, the model
derived accommodates equally well any smart conpadiucture
exhibiting some general transduction charactertbti¢ can be used
to induce strains or stresses in some controllechnera The
developed micromechanical model is applied to difie examples
of orthotropic smart composite structures with culdonical and

350 / Vol. XXXIV, Special Issue 2012
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flexibility in designing a 3D smart grid-reinforcedomposite
structure with desirable piezoelastic charactessto conform to a
particular engineering application by tailoring teém material
and/or geometric parameters. Examples of such meaminclude
the type, number, material and cross-sectional aceristics and
relative orientations of the actuators and reirdarents.
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