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Abstract The goal of this paper is to simulate the inter-

action of stress waves and rock fractures in a particle mi-

cromechanical model. Stress waves travelling in fractured

rock masses are slowed down and attenuated by natural

heterogeneities, voids, microcracks and, above all, by

faults and fractures. Considerable laboratory and theoreti-

cal investigation have uncovered the major aspects of this

phenomenon, but models that cover the core mechanisms

of the wave propagation in rock masses are necessary to

investigate aspects of wave–fracture interaction, which are

not completely clear, and in the future simulate full-scale

real problems. The micromechanical model is based on the

particle discrete element model that reproduces rock

through a densely packed non-structured assembly of 2D

disks with point contacts. The model of a hard rock core is

developed and an irregular rock joint is generated at mid-

height. A new contact constitutive model is applied to the

particles in the joint walls. Numerical static joint com-

pression tests are performed and a typical hyperbolic

stress–displacement curve is obtained. Conditions for good

quality wave transmission through non-jointed unorganized

particulate media are determined, hybrid static–dynamic

boundary conditions are established and plane waves are

emitted into the compressed joint. The transmitted and

reflected waves are extracted and analysed. Joint dynamic

stiffness calculated according to the hypotheses of the

Displacement Discontinuity Theory shows to increase with

the static joint compression until the joint is completely

closed. Still in its early stages of application, this rock

micromechanical model enables the joint behaviour under

static and dynamic loading to be analysed in detail. Its

advantages are the reproduction of the real mechanics of

contact creation, evolution and destruction and the possi-

bility of visualizing in detail the joint geometry changes,

which is hard to accomplish in the laboratory.

Keywords Rock joint � Rock dynamics � Stress wave �
Discrete element method � Micromechanical model

1 Introduction

Rock joints are the main obstacle to stress wave propaga-

tion in rock masses. Through several kinds of interaction,

waves’ peaks are diminished, propagation is delayed and

frequencies are selectively filtered. The interaction is two-

way because waves with sufficient amplitude can too

change the state of the joints. Voids, micro-fractures and

schistosity on the rock matrix are also responsible for

attenuation of stress waves but in hard rock, their role is

usually secondary.

Schoenberg (1980) managed to integrate the wave

equation of P and S waves with arbitrary angles of inci-

dence, expressing the joint dynamic response as a function

of joint compliance. Later, Pyrak-Nolte et al. (1990)

expanded Schoenberg’s solution to the case of disconti-

nuities filled with viscous fluids (Kelvin and Maxwell

models). In Pyrak-Nolte’s formulation, joint response is

expressed by means of the dynamic stiffness, the inverse of
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joint compliance. In the Displacement Discontinuity

Theory (DDT) stress (and therefore velocity) is continuous

across the joint, while displacement is proportional to stress

since normal and shear stiffness are finite and constant.

DDT provides solutions for 3D shear and normal wave

interaction with rock joints and has shown to be accurate

when compared with results for normally incident shear

and normal waves.

For each type of body wave interacting with a joint as

illustrated in Fig. 1, DDT provides the amplitude and phase

delay of each of the reflected and transmitted waves. For

the general case, a 4 9 4 system of equations must be

solved, but for normally incident waves (h1 = 0 or /1 = 0)

no wave conversion occurs and the amplitude of the

reflected R(x) and transmitted T(x) waves on the fre-

quency domain are obtained from the incident wave I(x),

by:
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where x is angular frequency and the subscript x represents

either compressive or shear wave impedance of the rock or

joint stiffness: Kx may be Kn
dyn or Ks

dyn and Zx may be Zp or

Zs. The parameter that controls the amount of transmission

and reflection of the compressive wave is the relation

between the wave angular frequency and the joint dynamic

or seismic specific stiffness Kn
specific expressed by:

Kspecific
n ¼ Kdyn

n

xZp
: ð2Þ

A change in the wave amplitude causes a phase shift that

corresponds to a time delay tg:

tg ¼
2K

dyn
x

Zx

2K
dyn
x

Zx

� �2

þx2

: ð3Þ

In laboratory tests of joint-wave interaction, the

frequency content of the incident and transmitted waves

and the impedance of the rock material can be measured

directly. Therefore, the only unknown variable in Eqs. 1,

the dynamic stiffness Kn
dyn, can be determined. Finally, and

given that the system is elastic, there is no loss of energy

associated to the wave reflection and transmission:

|R|2 ? |T|2 = |I|2.

Figure 2 displays the plots of Eqs. 1a and b. When

frequency is low in comparison to the specific stiffness the

wave is completely transmitted, as this corresponds to a

wave with null frequency. On the other hand, when the

frequency is high the wave is completely reflected.

Nolte et al. (2000) determined that for the DDT to be

valid fracture extension must be much larger and fracture

aperture much smaller than wavelength; asperity spacing

must be much smaller than wavelength, and the distribution

of contacts must be approximately uniform.

Dynamically speaking the first and second conditions

approximately define what a fracture is. If fracture length is

smaller or in the same order of the wavelength, the wave

will ‘‘sense’’ it as a small crack. In addition, if the crack

opening is not much smaller than the wavelength, the wave

will loose all its features when crossing it. The two last

conditions must be met to avoid resonance scattering at the

voids between the contacts of the walls.

Micromechanical models aim at predicting the

mechanical response of rock by simulating the microscopic

mechanisms of deformation and failure. The major

advantage is that the material is modelled without resorting

to constitutive models that are getting increasingly com-

plex. If the fundamental hypotheses that drive the micro-

scopic behaviour of the media are correctly and efficiently
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Fig. 1 Transmitted and reflected waves at discontinuities: compression wave (a), vertical shear wave (b) and horizontal shear wave (c)
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implemented, the interaction of a few simple mechanisms

covers the macroscopic response of the material under a

broad range of situations. One of the first microscopic level

models is the lattice method. Schlangen and van Mier

(1994), among other authors, tested different arrangements

of lattice structures to model the response of sandstone.

In the Bonded Particle Model (BPM), based on the

Discrete Element Method, DEM (Cundall and Strack

1979), response of rock under a number of situations can be

simulated by assemblies of a large number of circular or

spherical particles with finite radius bonded by ball–ball

contacts. The relation between the models properties

(assembly arrangement, particles’ radius and contact

characteristics) on a microscopic level and rock macro-

scopic properties such as compressive strength or Young’s

modulus is not direct, as there is no complete theory to

relate micro and macroscopic properties. The constant and

steady growth of computational capacities and a number of

very successful applications of BPM to model complex

rock behaviour has promoted the utilization of this method

(e.g. Potyondy et al. 1996; Potyondy and Cundall 2004).

Not much attention, however, has been dedicated to the

modelling of rock dynamic behaviour using particle mod-

els. In the field of geophysics, some authors have used

particle codes to model wave propagation in large scale,

from hundreds of meters to tens of kilometres (Toomey and

Bean 2000; Abe et al. 2004). However, the model in

question employed regular assemblies of particles, which

do not mimic with realism rock more complex behaviour.

Matsuoka et al. (2003) also used a regular arrangement of

disks to model a Hopkinson bar test of rock capturing some

of the main features of the experiment, namely the

detachment of a piece of the bar extremity ejected due to

the reflected tension wave. Hentz et al. (2004) employed a

3D particle model to investigate the effect of strain rate in

the compressive and tensile strength of rock and several

authors have used particle models to model blasting in

several aspects. Kim et al. (1997) and Donzé et al. (1997)

modelled the crack generation caused by a blast charge in a

cylindrical borehole, Donzé and Bernasconi (2004) mod-

elled a shaft sinking blast in three dimensions obtaining

patterns of rock damage around the shaft. Kim et al. (2006)

investigated the influence of joint direction and spacing at a

tunnel contour blasting. These works employ particle

methods on blasting and rock dynamic applications man-

aging to qualitatively capture the major phenomena at

stake, namely fracture creation and propagation, rock

fragmentation, movement of the blasted rock and damage

due to high dynamic stress. However, the propagation of

elastic stress waves outside the zone of rock fragmentation

is not a relevant issue in these cases and has not been

addressed.

Hazzard and Young (2004) used PFC3D to reproduce the

anisotropic damage inflicted to a sandstone sample by tri-

axial deviatoric loading. This is the only work, to the

knowledge of the authors, which investigates some of the

characteristics of the propagation of stress waves in unor-

ganized particle models of rock.

Interaction of the stress waves with rock fractures have

been explicitly modelled in block DEM codes. Works of

Lemos (1987) and later Cai (2001) apply the 2D DEM

program UDEC to plane waves normally incident on

fractures. The fractures have linear elastic stiffness and the

model is able to reproduce the frequency dependence of the

transmission and reflection ratio. The fractures are repre-

sented as contacts between blocks, and their mechanical

attributes are shear and normal stiffness. This character-

ization of fractures is, however, far from reality. Fractures

are irregular present normal and shear non-linear response

and show different stiffness values according to the

intensity and velocity of the loading. More sophisticated

block-to-block contact models have been developed,

including some of these effects (Zhao and Cai 2001), but

the response is represented by a constitutive model that

does not include explicitly the real cause of the fracture’s

behaviour namely asperity distribution, deformation and

degradation with normal and shear load.

There have been a few applications of particle models

static shear behaviour of rock joints that represent joint

roughness explicitly, but work on the characterization of

rock joints under normal loading has been found in the

literature.
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nondimensional frequency for P and S waves normally incident to an

elastic discontinuity
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This paper is dedicated to the application of BPM to the

modelling of wave propagation in rock masses. The pur-

pose is to investigate the capabilities of this numerical

method on modelling wave propagation in rock masses

and rock fractures at the microscopic level. The model

mimics the deformation of asperities and allows the

observation in close detail of the passage of the waves

across the fractures. The focus is on the simplest case, i.e.

propagation of low amplitude high frequency (kHz range)

plane compressive waves normally incident on fractures

previously loaded by static compressive stress. Static

loading forces the joint to close leading to the increase of

the contact area. Therefore, transmissivity of the joint also

grows.

A particle model of the joint that reproduces a generic

rock joint under normal stress and emulates the increase in

contact area and corresponding growing stiffness with

applied stress is developed. Then, transmitted and reflected

waves that result from the interaction of waves and the

compressed joint are analysed.

2 Simulation of Rock and Rock Fractures with BPM

2.1 Generation of a BPM for Hard Rock

The procedure employed to generate the particle assembly

is adapted from Potyondy and Cundall (2004). To model

wave propagation and capture the complete waveforms, a

long (90 9 600 mm) rock specimen is produced. It is

composed by 34,773 particles with radii that vary uni-

formly between 0.50 and 0.83 mm (average diameter is

1.33 mm). Disk density is set to 3,150 kg/m3. Given that

the porosity of the packing is 14.3%, continuum-equivalent

porosity is 2,700 kg/m3 (this value is relevant only in the

dynamic part of the study, as self-weight is not considered

in the static calculation). As to the ball–ball contact, two

kinds are possible: simple contact bonds and parallel

bonds, the latter being able to offer resistance to rolling

between particles. Since there is very little experience with

wave propagation in granular assemblies, it is decided to

employ contact bonds, which having simpler individual

response results in a more predictable macroscopic model.

Contacts normal stiffness is set to 6.20 9 1010 N/m, 2.5

times the shear stiffness.

2.2 Boundary Conditions

To define the model borders where loads and other

boundary conditions are applied, a strip of balls is identi-

fied at the top, sides and bottom of the sample, as shown in

Fig. 3. The width of the strip is defined with enough size to

leave no part of the model unbounded.

Since stress is a concept valid only in continuous media

it must be translated into forces that are applied to the balls

centres. If a stress value r is to be applied at a cylindrical

particle with unitary height, the equivalent force (Fball)

must take into account the transversal area of the particle:

Fball ¼ r � Aball , Fball ¼ r � 2 � rball: ð4Þ

The passage from stress at the boundary to forces

applied to the balls must also take into account the border’s

depth (measured in terms of balls). In regular rectangular

packings, the boundary may be easily set to be one ball

deep. Thus, no correction is necessary. In irregular

packings with thicker boundaries, the boundary depth

correction factor bfdepth is:

bfdepth ¼
lbound

2 � rmean
� 1

nbbound
ð5Þ

where lbound is the boundary length and nbbound is the

number of balls in that boundary. The force in each particle

is given by the product of Eqs. 4 and 5:

Fball ¼ bfdepth � r � Aball , Fball ¼
lbound

rmean

� 1

nbbound
� r � rball:

ð6Þ

The present model has a 90 mm width the average ball

radius being 0.665 mm. One ‘‘average’’ row of balls has

thus 90/(0.665 9 2) & 69 balls. The top boundary has 164

balls, so the force in each particle becomes

Fball ¼ bfdepth � r � Aball , Fball ¼
69

164
� r � 2 � rball: ð7Þ

2.3 Model Static Properties

An unconfined compression test of the assembly shows

Young’s modulus to be fairly constant in the range of

Fig. 3 Top and lateral boundaries of the model
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compressive stresses of interest (0–120 MPa) with an

average value of 43.5 GPa and a standard deviation of

0.54 MPa, while Poisson’s ratio is approximately 0.2

(Fig. 4). In this test balls at the lateral boundary can rotate

and move in all directions. A null-velocity condition is

applied to the bottom boundary balls. Balls at the top

boundary are not allowed to rotate and move in the hori-

zontal direction. A vertical downwards force is applied to

enforce the normal stress in the model.

The slight increase in the Young’s modulus with normal

stress is consequence of creation of new contacts. Since the

goal of this simulation is in a first stage to isolate the

influence of the BPM fabric in the wave progression, and

after to focus on the phenomena that occur at the joint

contacts are not allowed to fail. This is achieved by setting

their bond strength to very high values. This decision is not

free from criticism. In a joint compression test, it is the

failure at asperity level that after a certain amount of

compression causes non-linearity, but this is dealt with in

another way, as will be shown ahead. In addition, micro-

fracturating or plastic damage can occur in the rock

material that supports the asperities which means that it is

difficult to define exactly where the material in the rock

core ends and the joint begins.

2.4 Simulation of Joint Behaviour

Rock joints’ behaviour under normal loading has been the

object of less attention than shear behaviour. The main

reason is that rock masses under low to medium stress fail

mainly due to joint tangential movement. It is in seismic

and hydraulic scenarios that joint deformation under nor-

mal loads is particularly important because joint aperture

commands hydraulic conductivity and wave transmissivity.

The need for models that realistically incorporate the

normal behaviour of joints increases as dynamic and

hydro-mechanical coupled analysis become more frequent

driven by the modelling of hydrocarbon reserves, thermal

energy production and storage of CO2 and radioactive

waste.

The stress–displacement curve of a compression test

displays the distinct hyperbolic shape, as shown in Fig. 5.

The curve shows initial low stiffness stepping up as the

joint closure increases. In the beginning of the test, when

the top part of the specimen is placed over the lower part,

the area of contact between both halves may be very small.

The load applied in each half of the specimen is transmitted

through these few contact points, which are under large

local stresses. They deform significantly and/or are par-

tially or totally crushed, depending of their strength to

stiffness ratio. The increase in displacement that corre-

sponds to each load increment is large in this initial part of

the curve, leading to an almost flat curve.

As joint compression goes up, walls distance shortens,

more asperities from both sides come in contact, the load

gets distributed over a larger area and the stress in each

contact zone diminishes. The deformation of an asperity

also increases its own area but this effect contributes much

less than new contacts to the global increase in contact area

and therefore to stiffness. As the load is supported by more
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and more contacts, the resistance to closure grows and the

stress–displacement curve gets steeper. The rock material

that supports the asperities also deforms, which makes it

harder to distinguish where the effect of the rock joint

deformation ends and that of the rock material starts.

As mentioned in the introduction, particle models have

been used to model static tests of rough undulating rock

joints in shear (Kabeya 1999; Cundall 2000; Kusumi et al.

2005) but not in compression. Gutierrez and Barton (1994)

employed UDEC to represent a shear test of a rock joint.

The joint topography is described by a continuous, irregular

line that mimics typical JRC profiles (Bandis et al. 1983).

The model allowed the investigation of the micromechanics

of the shear failure of these joints and also the evolution of

hydraulic aperture. Recently, Karami and Stead (2008) used

the hybrid FEM/DEM code ELFEN to model the shear

behaviour of several JRC profiles under varying normal

stresses. Several other authors (Toomey 2001; Park et al.

2004; Min et al. 2005) have employed block discrete ele-

ment and particle models in a larger scale to represent large

volumes of rock masses that include several joint sets. The

topography of discontinuities’ walls is not represented as

joints are defined by assigning lower contact strengths and/

or stiffness to particles that lay upon or on the vicinity of the

line (in 2D) or plane (in 3D) that define the joint. Never-

theless, macroscopic influence of joint sets in rock mass

properties is evident in these models.

2.5 Normal Behaviour of the Jointed Synthetic Rock

Specimen

Micromechanical models can be used to emulate the

geometry of joints to a degree of detail that is limited by

the means to characterize their geometry and the hardware

capacity. If particles with a mean radius of 0.25 mm are

employed (granite typical grain size is greater than

0.5 mm), a 100 9 100 mm 2D sample can be modelled by

approximately 50,000 particles. It has been found that a

model with this level of detail is appropriate to represent

the basic features of a joint under static and dynamic

loadings being manageable by a standard personal

computer.

To simulate a real test, both the stress–displacement

curve and a detailed surface characterization of both joint

surfaces that can be reproduced by the particle assembly

are necessary. As these are not available, a generic rock

joint geometry is generated and tested. Another feature of

this simulation is that, given that 3D runs are many times

more time-consuming than 2D runs, the simulation is run in

2D.

Previous utilizations of BPM to model rock joint shear

tests used various strategies to generate fractures. Cundall’s

(2000) approach to generate the surfaces for the shear test

of a rough joint was to use a sum of varying wavelength

sine waves, thus replicating the several orders of rough-

ness. Kusumi et al. (2005) reproduced different JRC pro-

files by erasing particles from a rock model. Another

method is to create a realistic fracture surface by submit-

ting a notched rock core to a tensile load (possibly in

combination with shear) until complete separation of the

two halves. The employed method, which is also the most

straightforward one, is to simply delete enough balls in the

middle of the synthetic specimen until there is no contact

between the two halves. The resulting joint surfaces are

potentially less rich, but have the advantage of being very

predictable, planar and with small irregularities (Fig. 6).

Inter-particle contact drives the macroscopic behaviour

of synthetic rock samples. Microproperties are not related

to measurable properties like Young’s modulus or Pois-

son’s ratio through analytical laws, but by empirical rela-

tions that have been established through experience.

When it comes to the simulation of the microscopic

properties of joint wall-to-wall contacts, no previous

experience is available. The displacement in rock joints

under compression is mostly caused by elastic deformation

of the asperities followed by their partial or total crushing

together with deformation of the rock that supports the

asperities. It is then postulated that after suffering a certain

amount of deformation and crushing the contact area of

each asperity increases and consequently the same happens

to the contact stiffness.

In the current representation of the rock surface each

peak is represented by a small number of particles (see

Fig. 6b), thus keeping the number of balls in the model

manageable through the whole static and dynamic calcu-

lations. Peak deformation, crushing and hardening must be

Fig. 5 Non-linear, hysteretic normal-closure behaviour of rock joint

(Bandis et al. 1983)
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simulated at each ball. A new contact constitutive model is

developed and compiled, resulting in a C?? dynamic

linked library that is invoked by PFC.

It was found that if the contact properties of the rock

material are used at the contact between balls in each joint

wall, the first balls to come into compression withstand

very high values of contact force and do not deform enough

to allow new contacts to be created. On the other hand, if

low contact stiffness is employed inter-penetration of balls

in opposing faces is such that their centres cross each other

and the direction of repulsive forces reverses, pushing the

sample halves against each other, as represented in Fig. 7.

The constitutive model developed in order to overcome

this problem is bi-linear in shear and compression, with no

tensile strength and a Mohr–Coulomb strength criterion in

shear. Its force versus ball overlap curve is shown in Fig. 8.

The contact initial and final stiffness are set as a per-

centage of the stiffness of the contacts in the rock material

(kn) via the parameters dki and dkf. The point where stiff-

ness value increases, simulating a fast increase of area in

the contact, is defined as a percentage of the radius of the

smaller ball of the pair.

To maintain the model calibration as simple as possible,

shear and compressive stiffness evolve in parallel, and the

final stiffness is equal to the rock matrix stiffness, which

corresponds to dkf = 1. The behaviour is then defined by

two parameters: initial percentage of the rock stiffness dki
and percentage of the radius of the smaller ball in contact

that triggers hardening dradius.

Strategies to represent asperity degradation, such as ball

radius decrease, ball deletion or ball breakage have shown

to be either inadequate or more difficult to implement

adequately.

The normal stress versus normal displacement curve for

the parameters dki = 1%, dradius = 10% and dkf = 100% is

depicted in Fig. 9a. The stress–displacement curve shows

the main characteristics of rock joint normal tests. These

are initial low stiffness due to a small number of contacts

followed by a gradual increase of the contact area that

leads to an almost vertical graph. This reflects the creation

of new contacts and the increase of stiffness in existing

ones. In Fig. 9b, the stiffness evolution is represented. Its

evolution is also according to the experimental results. The

abrupt variations, also observed in real tests, are due to the

high sensibility of the stiffness to very small features on the

(a) (b)Fig. 6 Generation of joint

surface. Balls marked for

deletion (a); detail of the

surface after deletion of

marked balls (b)

Fig. 7 Green arrow denotes repulsion exerted by green ball on red ball and vice versa. As balls’ centres pass through each other, direction of

repulsion is inverted

Fig. 8 Joint constitutive model diagram
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joint surface. Figure 10a shows how contact forces pass

from one side of the model to the other one through the

active contacts. The visualization of the contact forces is a

very good tool to understand the mechanics of joint closure

in the model and in real joints, if the model is accurate.

This method for modelling joint closure can still be

improved, but already provides a simple method to model

joint closure and its main features. The following consid-

erations regarding this model can be made. First, the main

mechanisms of joint normal behaviour are correctly rep-

resented and; second, though very simple, the method of

joint generation resulted in a competent two dimensional

representation of planar low roughness joint.

The major shortcomings of the method are (a) complete

closure of the joint is attained for very high normal stress,

(b) parametric control over the behaviour is difficult (trial

and error), (c) real asperities have longer wavelengths

and (d) characteristic of undulating fractures are not

represented.

2.6 Stress Wave Propagation in BPM

To simulate the stress–wave interaction with the fracture it

is necessary to understand how waves propagate and are

changed while crossing the dense non-organized bonded

particle assemblies that are used to simulate the rock

material.

The study of the mechanics of particulate media has

been object of research for some decades. Mindlin (1954)

summarizes some of the first works on a mathematical

theory of small deformation of compact granular media.

Several other authors contributed to the derivation of

stress–strain relations for planar and spatial organized

arrangements of disks or spheres. Analytical stress–strain

relations and consequently wave velocities for simple

particle organization schemes (rectangular, hexagonal and

cubic) have been derived (Duffy 1959; Hoover et al. 1974)

and point the way in more complex cases and in assessing

the performance of particle codes. Mechanical properties of

unstructured assemblies or particles with non-uniform

diameters cannot be determined analytically. It is only

possible to statistically characterize the particle fabric

through such quantities as the particle size distribution,

particle density or porosity, coordination number and

branch vector (Tai and Sadd 1997).

2.7 Dynamic Properties of Organized and Unorganized

Particle Assemblies

By considering the equivalence between a rectangular or

hexagonal constant radius particle organization and a solid

that encloses the particles, dynamic properties for both

arrangements can be found. In a rectangular packing of

constant radius undeformable disks or spheres, each parti-

cle has four neighbours while in a hexagonal arrangement

each particle is in contact with six other particles. In

rectangular packings, there is no particle imbrication, so

Young’s ratio is null while in hexagonal packings with

constant normal and shear stiffness the Poisson’s ratio is

0.25. These are the simplest modes of organizing circular

constant radii particles. The porosity or void ratio of rect-

angular and hexagonal disk assemblies, which yields the

relation between the particle assembly and an equivalent

continuum density that encompasses it is 1 - p/4 &

21.5% and 1� p=2
ffiffiffi

3
p

� 9:31%, respectively. 9.31% is the

minimum porosity attainable in a disk assembly. Compact

0 2 4 6

x 10
-4

0

20

40

60

80

100

120

joint displacement [m]

n
o
rm

a
l 
s
tr

e
s
s
 [
M

P
a
]

0 1 2 3 4 5

x 10
11

0

20

40

60

80

100

120

normal stiffness k
n
 [Pa/m]

n
o
rm

a
l 
s
tr

e
s
s
 [
M

P
a
]

(b)(a)Fig. 9 Normal stress versus

joint closure (a) and tangent

joint stiffness (b)

748 R. Resende et al.

123



bonded contact models generated through the method

explained above have porosities from 14 to 16%.

Wave velocity for a compressive wave in an array of

disks with radius r and thickness t connected with elastic

linear springs of stiffness kn is:

cp;disk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

4kn

pqdisk

s

: ð8Þ

A shear wave in a string with shear contacts of stiffness

ks has equivalent solution. While in static calculations it is

indifferent if disk or sphere-like particles are used (given

that the self-weight is correctly calculated), in dynamic

calculations particle mass influences wave velocity.

Equations 9 show that in disk assemblies wave velocity

is independent of radius, which does not happen in sphere

assemblies, so the former are used.

The solution for a hexagonal packing of disks with no

shear interaction (ks = 0) is:

cp;disk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9kn

2pqdisk

s

and cs;disk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3kn

2pqdisk

s

: ð9a; bÞ

If the particle arrangement is not organized due to

particle disposition irregular size and/or properties

distribution, analytical solution is not possible and wave

velocity must be found by testing each model.

2.8 From Static to Dynamic Analyses

Dynamic analyses are frequently preceded by static cal-

culations where an initial stress state may be found. This is

done too in the present study. In the static calculation, the

top half of the model is loaded against the bottom half

compressing the fracture. In DEM, static equilibrium is

reached through the dynamic relaxation method (Bely-

tschko 1983) and the mass of each particle is scaled up or

down so that the critical timestep of the model becomes

one (a process called density scaling used to optimize run-

times). When the static calculation ends the model is

almost at rest since unbalanced forces are small compared

with the repulsive forces between particles. As density

scaling is turned off, masses return to their real value which

is usually several orders of magnitude lower and the same

happens to the timestep. However, since the timestep

decreases proportionally to the square root of the particles

mass, the acceleration of the particles increases generating

abnormal particle velocities that compromise the previ-

ously attained equilibrium. To prevent this, the timestep

must be lowered gradually to allow artificial damping to

dissipate the excessive velocities. When this stabilization is

attained the dynamic mode is switched on, which corre-

sponds to assigning the rock’s correct dynamic damping

coefficient turning off the mass scaling and using the cor-

rect dynamic timestep (Potyondy DO, 2008, Personal

Communication). The second step of the calculation, which

consists in the injection of a velocity time-history at the

base of the model while the model is kept under the stress

of the previous step, may then take place.

2.9 Dynamic Loadings and Boundary Conditions

Mechanical loadings or more generally boundary condi-

tions can be kinematic, static, or mixed. Kinematic load-

ings are materialized by prescription of particle movement

(translational and rotational displacement, velocity or

acceleration), while static loadings correspond to applica-

tion of forces and/or moments.

Fig. 10 a Evolution of contacts through the test. Green balls are in

contact, red balls are in contact and in the second branch of the

constitutive model (Fig. 8). b Sections where balls’ velocities are

probed in the dynamic part of the study
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The correspondence between velocity and stress in

continuous media is given by:

r ¼ q � c � _uload ð10Þ

where r is the applied stress, q and c the medium’s density

and wave velocity, respectively, and _uload is the load pre-

scribed velocity.

Tests with both velocity and force loadings in PFC2D

show that the methods produce practically equivalent

waves, the only difference being that the force load occurs

with a lag of one timestep as the force load is integrated in

the motion equation one timestep after introduction, while

an imposed displacement produces its effect immediately.

When a particle’s movement is constrained by a velocity

loading (in all or just in some degrees of freedom), the

corresponding equations of motion are not solved, there-

fore static boundary conditions cannot be applied. In

addition, as the movement at the boundary is constrained it

will reflect and invert any incoming wave, which may be

inconvenient. A possible solution is to release the boundary

balls as soon as the injection of the dynamic load ends.

However, waves coming from other sources or waves

reflected in the interior of the model may arrive at the

border before the end of the loading (Fan et al. 2004 paper

discusses in detail the implications of these options). To

avoid this kind of interferences and ease the extraction of

waveforms from the model, a mixed boundary condition,

in which static and dynamic loadings coexist with an

absorbing boundary, is implemented in PFC2D via a FISH

function.

Absorbing or silent boundaries simulate the dynamic

continuation of the domain without representing it. Bely-

tschko (1983) lists some of the most relevant strategies to

implement silent boundaries. Of these, viscous boundaries

as proposed by Lysmer and Kuhlemeyer (1969) are one of

the most widely used strategies. They have been imple-

mented in the source code of all Itasca programs (except

PFC2D and PFC3D) and also on several popular FEM

codes.

When a wave hits a viscous boundary, a symmetric

wave that cancels the incoming one is generated. This

symmetric wave is materialized by imposition of equiva-

lent forces such as in the velocity–stress Eq. 10. A minus

sign and _ubody, standing for the velocity in the interior of

the model are included:

r ¼ �q � c � _ubody: ð11Þ

Forces calculated through this equation are added to

other forces (contact forces, external static or dynamic

loads, gravity, etc.) acting at that particle. This allows the

edge to simultaneously support an absorbing boundary,

and static and dynamic loading. The cancelling wave is

produced with a delay of one timestep, but this lag is

usually too small to introduce errors. The density of the

boundary particles must be set to half of its real value, in

order to simulate the continuation of the domain. If a

dynamic load is to be introduced simultaneously in the

same place of an absorbing boundary, it must be set as a

force loading. Because half of the load will be absorbed by

the viscous boundary, the load magnitude must be

doubled.

To translate dynamic stress into particle forces, particle

dimensions and boundary depth must be taken into account

via the boundary depth correction factor bfdepth displayed in

Eq. 5.

Fball ¼ bfdepth � r � Aball

¼ lbound

2 � rmean � nbbound
� q � c � uload � 2 � rball: ð12Þ

In the top boundary of the model this results in

Fball;load ¼
69

164
� q � c � uload � 2 � rball and

Fball;absorb: bound: ¼ � 69

164
� q � c � _uball � 2 � rball

ð13Þ

for dynamic loads and viscous boundaries.

Another particularity in the application of viscous

boundaries in unorganized particulate media is that shear or

compressive wave velocity are not available prior to the

calculation, they must be measured in a previous run.

The hybrid boundary is implemented in PFC and tested

with pure shear and compressive waves hitting linear

boundaries at normal angles. They presented an efficiency

(defined as the ratio between reflected and incoming wave

amplitude) superior to 99%.

It is well known that viscous absorbing boundaries loose

efficiency as the angle of incidence decreases. Further tests

are necessary to investigate these limits in particulate

media. We must take into consideration that the response

of the absorbing boundaries under mixed shear and com-

pressive waves has not been verified. This step is also

essential because both kinds of waves are present in most

real cases.

2.10 Load Waveform

The ultimate goal of this study is to mimic the passage of

dynamic compressive waves across fractures, so a wave of

frequency content similar to the studies of wave-fracture

interaction in real joints is used (Pyrak-Nolte et al. 1990;

Cai 2001). The Ricker wavelet is a null phase function

frequently employed in geophysics to model seismic

waves. It is the normalized second derivative of a Gaussian

function, and a special case of the family of continuous

wavelets known as Hermitian wavelets. It is composed by

one positive central peak surrounded by two symmetric
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lateral lobes, as represented in Fig. 11. The mathematical

expression of a Ricker wavelet is

vðtÞ ¼ 1� 2p2f 2t2
� �

e�2p2f 2t2 ð14Þ

where f is the central frequency, the only parameter of the

wave equation, and t is time. The function shows no high

frequency corners that aggravate wave dispersion and the

first frequency component is zero. The plot of the absolute

value of the Fourier transform is not symmetric, vanishing

when frequency approaches zero and when the maximum

frequency, which is approximately three times the central

frequency, is reached. The complete duration of a Ricker

wave corresponds to a frequency that is around 2/3 of the

peak frequency expressed in the wave function (6,667 Hz

in Fig. 11).

2.11 Quality of Wave Propagation

Since the discrete numerical representation of a wave never

expresses with all detail the original continuous waveform,

waves propagating in a numerical model inevitably have

their characteristics degraded. The principle behind wave

transmission quality is that the shortest wavelength of

interest must be correctly represented. Quality require-

ments vary with the modelling situation. If only the wave

arrivals are needed, more degradation can be allowed but if

peak amplitude or the entire waveform are to be used

quality requirements increase. To adjust ball’s radius to

maintain the wave quality across the model can result in

excessively heavy models. To prevent this, the following

strategies may be used: (a) the quality of the wave trans-

mission must be partially sacrificed taking into account the

minimum necessary degree of precision, (b) the size of the

model is reduced (employing absorbing boundaries) or (c)

the frequency of the signals is scaled down or filtered to

eliminate the highest frequencies if their energy content is

not significant.

Toomey (2001) derived dispersion laws for hexagonal

(hence, constant radius) arrangements of spheres. An

equivalent expression can easily be deducted for disk

models but it is still of limited value when working with

unorganized BPM. Hazzard and Young (2004) studied the

consequences of thermal and mechanically induced

cracking in the seismic velocity in brittle rock. Since they

were interested in measuring wave arrival times they did

not focus on the preservation of wave characteristics. In

this work, however, not only the wave arrival times but

also the whole waveform is necessary. It is also desirable

that the effect of the ‘‘continuum’’ part of the model on the

wave is as small as possible to isolate the effect of the
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fracture. The parameter chosen to characterize wave

quality in dense non-structured particle assemblies is the

wavelength over the average ball diameter.

To determine the minimum number of particles per

wavelength in particle models, Ricker waves with central

frequencies from 5 to 200 kHz are injected at the base of

the model. Figure 10b presents the model and the sections

where waves are probed. These sections are 6, 180, 300,

420 and 450 mm from the bottom. A single particle is

hardly representative of the behaviour of a section, as it can

be in one extreme of radii distribution, less connected with

its neighbours or outside of the local path of wave passage.

This is especially true after a singularity such as a dis-

continuity or a void. Five particles, distributed horizontally

across the model, are probed in each section and their

arithmetic average is calculated.

Several BPM models generated using the same seed

parameters were tested and the very small variation in

dynamic properties is confirmed. Other methods of gener-

ation of compact packings may result in slightly different

particle organization, but if the radii distribution porosity

and contact type are similar this study’s conclusions should

hold valid.

In order to compare and frame the dynamic response of

the BPM, three other assembly types with the same

external dimensions, balls radius equal to the average

radius of the BPM model and similar microproperties

where generated. Ball density that plays an important role

in the definition of dynamic properties is set to a value so

that all assemblies have an equivalent continuum density of

2,700 kg/m3. Ball and contact properties are displayed in

Table 1.

In the rectangular model, contact normal stiffness is set

equal to the normal stiffness in the BPM model. The same

value is attributed to normal and shear contacts in the first

hexagonal assembly model (Hexakn=ks), while in the second

hexagonal model (Hexakn=2.5ks) normal stiffness is two and

a half times the shear stiffness, this being the organized

packing that resembles more the BPM. Similar static and

dynamic boundary conditions are applied in all models.

Absorbing boundary conditions are applied to the top of the

model and the waves are injected at the bottom by pre-

scribing a velocity time-history. Movement in the direction

normal to the wave propagation is restricted in lateral

boundaries. This simulates a semi-infinite medium in this

direction thus preventing the generation of surface waves

that drain energy from the compressive wave.

Timestep is set to 5 9 10-8 s that is slightly smaller

than the maximum stable timestep in all models. No

damping is used because all alterations to the waveform

must come from assembly-caused dispersion. Waves with

central frequencies of 5, 10, 20, 30, 40, 80, 120, 150 and

200 kHz were tested in each of the four models.

2.12 Wave Velocity

Wave propagation velocity is calculated using the time

lapse between the wave arrivals in the five sections of the

model shown in Fig. 10. Figure 12 displays the velocity of

propagation measured in several sections for all tested

frequencies. Wave velocity is fairly constant in the central

and final areas of the model where the wave has stabilized

its progression mode.

At the bottom of the model where the velocity loading is

imposed, the wave has to adapt to the particulate medium

as it ‘‘chooses’’ local paths of progression. The effect is

stronger in the unorganized packing and when number of

balls per wavelength is lower. Notwithstanding the varia-

tion in wave velocity in the initial zone of the BPM and

Hexakn=ks, the velocity values measured in the middle

sections of each model are stable. These are the propaga-

tion velocity values used in the subsequent analyses. Fig-

ure 13 displays the relative evolution of propagation

velocity with wave frequency. It can be seen that wave

velocity is almost constant across the considered frequency

range and that higher frequencies travel at slightly higher

velocities as is characteristic of dispersive media. It should

be noted that even for the higher frequencies when the

waveform is almost completely destroyed, wave velocity is

nearly constant showing that wave velocity is independent

of wave quality.

With a non-organized structure, BPM is the most dis-

persive assembly: from 5 to 200 kHz, wave propagation

velocity increases around 3%. The variation is smaller in

the other assemblies, topping at about 1%. Given that cp
presents small variation with frequency in the range con-

sidered, an average value is used in the subsequent studies.

Compressive wave velocities are then 4,191 m/s in the

Table 1 Ball and contact properties in the four modelled packings

Radius (mm) kn (GN/m) ks (GN/m) qball (kg/m
3) Porosity (%) qcontinuous (kg/m

3)

BPM 0.5–0.83 62.0 24.8 3,150 14.3 2,700

Rectangular 0.665 62.0 – 3,438 21.5 2,700

Hexakn=ks 0.665 62.0 62.0 2,977 9.31 2,700

Hexakn=2.5ks 0.665 62.0 24.8 2,977 9.31 2,700
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BPM assembly, 4,819 m/s in the Rectangular assembly,

6,279 m/s in Hexakn=ks assembly and 5,750 m/s in

Hexakn=2.5ks assembly. The lower wave velocity occurs in

the BPM, which is logical because this is the packing with

the lowest degree of organization and waves have to find

and follow less direct paths to travel across the model.

Between the two hexagonal packings there is a 10% dif-

ference in wave velocities as the smaller shear stiffness in

the Hexakn=2.5ks model cuts wave velocity. Since waves

travel with different velocities in the various models, waves

with equal frequencies will have distinct lengths.

2.13 Wave Attenuation

The other key parameter in wave propagation in numerical

models is the way in which the quality of the wave rep-

resentation as it crosses the model. To assess this, waves of

increasing frequencies are sent across the model and the
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peak amplitude recorded at the sections indicated in

Fig. 10b. The decay of peak amplitude is chosen to be the

quantitative indicator of wave quality because it has been

observed that waveform degradation is proportional to

decrease in the maximum amplitude. In Fig. 14, the rela-

tive amplitude decay is plotted against distance divided by

the average ball diameter. The initial amplitude value is

measured at Sect. 1 (Fig. 10b) placed near the base is the

reference value. In all organized assemblies, the rate of

amplitude loss is constant meaning that wave degradation

accumulates while the wave travels. In the BPM model,

degradation is higher at the beginning of the model where

the wave adapts to the particulate medium. After that initial

adjustment, the rate of peak loss is approximately constant.

Figure 15 provides a compact convenient way to com-

pare the performance of all models, representing the rela-

tive loss of velocity amplitude between the end and the

start of the model for all studied wavelength–ball diameter

relations. It should be noted that only in the rectangular

packing particles are perfectly aligned with the particle

movement thus only in this case the wavelength/ball

diameter ratio is absolutely meaningful.

If a maximum loss of amplitude of 5% is set, the wave

frequency and associated wavelength/particle diameter

relation that complies is 82 for the BPM, 24 for

the Rectangular, 31 for the Hexakn=ks and 42 for the

Hexakn=2.5ks. BPM model is much more demanding than all

organized packings. Of these, the one that preserves better

wave quality is the rectangular packing, followed by the

Hexakn=ks and Hexakn=2.5ks.

3 Propagation of Compressive Stress Waves Across

Fractures in BPM

Wave-fracture interaction numerical tests come in the

sequence of the static joint closure tests and are possible

because of the knowledge on wave propagation gained in

the previous section.

3.1 Numerical Tests Description

At the end of each load increment of the joint compression

calculation, the model is saved. In some selected cases
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(compression of 1, 5, 17.5, 25, 80 and 120 MPa), a Ricker

wave with a peak frequency of 15 kHz is injected at the

bottom boundary. The input wave, the wave that crosses

the fracture (Transmitted) and the wave that is bounced

back (Reflected) are processed and the dynamic charac-

teristics of the fractures are calculated according to the

DDT (Pyrak-Nolte et al. 1990).

In the joint closure tests, a vertical downwards force

corresponding to the normal stress is installed in the balls at

the top boundary. This force is maintained and an

absorbing boundary is installed at this location. The balls

velocity at the bottom boundary is constrained and kept

null except for the injection of the Ricker wave history

loading. Horizontal movement at the lateral boundaries is

constrained to prevent formation of surface waves. No

damping is used and timestep is set to 5 9 10-8 s, below

the minimum stable timestep.

Particle velocities are recorded at three sections located

at the bottom and top of the model and 135 mm (one and a

half times the width) below the fracture located at mid-

height. At each section, five balls are probed. The input

wave is extracted from the section nearer to the bottom and

the transmitted wave from the section at the top border.

The reflected wave is captured at the section below the

fracture. As the upwards-going input and downwards-

travelling reflected waves superimpose in time it is nec-

essary to isolate the reflected wave by subtracting the input

wave to the total recorded waveform. The section where

the transmitted wave is recorded is chosen at a distance

from the fracture that allows the reconstruction of the wave

after the passage through the fracture since during the

passage through the fracture the wave ‘‘squeezes’’ through

the active contacts, as illustrated in Fig. 16. One of the

rewards of micromechanical models is exactly the visual-

ization of this kind of fast microscopic phenomenon.

4 Results and Discussion

According to the DDT, the analysis of the waves that

originate from a rock fracture when it is excited by an

impinging wave allows, the identification of the dynamic,

or seismic, stiffness of the fracture. It is expected that the

more the fracture is compressed and closed the better it will

transmit the wave to the other side and the less it will

reflect.

Since the input wave frequency content and the intact

material impedance are known, it is possible to find a

dynamic stiffness that generates T(x) and R(x) curves that

adjust the ones measured in the model. In laboratory tests

of rock fractures (Cai 2001; Pyrak-Nolte et al. 1990, among

others), a good adjustment between measured and theo-

retical wave amplitudes has been registered. Can the

numerical model of a fracture that mimics the microscopic

deformation mechanics do the same?

Figure 17 shows how the waveforms of the reflected and

transmitted waves evolve while the compression in the

joint increases. A minimum treatment of the time series is

necessary to isolate the reflected and transmitted wave

from other waves that pass the measurement spot simul-

taneously. A tapered cosine time-window with a tapper of

5% (Achenbach 1973) is applied in the time domain to the

series of the reflected wave. When the joint is lightly

compressed, the transmitted wave is nearly imperceptible

and the reflected wave almost equals the input wave. With

increasing compression, the transmitted wave grows and

the reflected wave shrinks. This can be observed in the

absolute value of the Fourier transform of the input and of

each of the transmitted and reflected waves.

Since wave passage produces a reflected and a trans-

mitted wave, two seismic stiffness values can be deter-

mined. This is an advantage in relation to the laboratory
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tests found in the literature where only the transmitted

waves are measured.

Figures 18 and 19 show the fit between the model’s

reflected and transmitted frequency amplitudes and the

DDT predictions. To find DDT’s predicted transmitted and

reflected waves, optimal dynamic stiffness values (KR and

KT) must be determined. In an initial step, Eqs. 1a and b

are fed with the incident wave I(x) and with tentative

stiffness values. The resulting frequency amplitudes are

compared with the models’ and new stiffness values are

tried until an optimum fit of the curves is attained.

This fit is better in transmitted waves, which can even-

tually be explained by the fact that these are not contam-

inated by the incident wave. Both model and predicted

reflected waves’ central frequency increase with compres-

sion stress, but this effect is stronger in the model, causing

the adjustment to degrade in higher stresses. As a whole

model and predicted transmitted waves match up very

well, the correspondence being almost perfect in lower

frequencies. In higher frequencies, the model amplitude is

slightly higher. This divergence can be attributed to the

hypothesis that, contrary to what is admitted in the DDT,

dynamic stiffness is not constant being a function of fre-

quency. Pyrak-Nolte and Nolte (1992) investigated this

hypothesis and attributed the variation of the stiffness with

the frequency to the relation of the wavelength to the dif-

ferent spacing between contact points. To test this

hypothesis, simulations where the effect of the average

spacing between contact points on dynamic stiffness is

studied are necessary.

As predicted by the DDT and observed in laboratory

tests, the fracture acts as a low-pass filter transmitting

preferentially the lower frequencies; and this effect is

stronger in the lower normal stresses when the seismic

stiffness is lower and the ratio x � Zp=Kdyn
n is higher. Even

at the maximum stress of 120 MPa, the wave is not

completely transmitted and the reflected wave is still vis-

ible meaning that the fracture is not totally closed. The

(a) (b)Fig. 16 Ball velocity vectors of

wave passing across fracture.
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stress–displacement curve of the static joint compression

test is also not completely vertical at the maximum stress

level.

The fracture behaves elastically: the wave does not loose

energy when crossing it (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ T2
p

¼ 1). Figure 20 plots

the transmission and reflection coefficients and the square

root of their sum, their sum, which is very close to one,

corroborates the energy conservation. The only exception

is the test under the lowest stress (1 MPa) where the

transmitted wave is nearly flat and the reflected wave is

almost equal to the input wave. In this scenario, the error

margin of the fitting routine that finds stiffness values

adjusting theoretical and measured frequency curves is

considerable.

Displacement Discontinuous Theory and common sense

indicate that the dynamic stiffness should grow with the
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Fig. 18 Frequency content of

the reflected waves (in red) and

DDT prediction (in black). Input

wave (in dashed blue) is shown

for reference
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Fig. 19 Frequency content of

the transmitted waves (in green)

and DDT prediction (in black).

Input wave (in dashed blue) is

shown for reference
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joint normal stress. The evolution of the transmitted and

reflected dynamic stiffness with static normal stress is

similar (Fig. 21) and the small gap between them is thought

to be due to the better quality of the transmitted wave. The

energy balance and the match between both stiffness values

demonstrate that the BPM joint correctly simulates the

dynamic behaviour of rock joints. Figure 21 also displays

the evolution of static stiffness in the same joint. The trend

followed by the static and seismic stiffnesses, both being

tangent values, is similar with the latter being always

smaller. In all tests of static and dynamic properties of rock

and rock joints, dynamic values (Young modulus, shear

modulus or joint stiffness) are invariably higher than static

ones. Cai (2001) tested artificial cement mortar joints with
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compression stress from 2 to 20 MPa and a central wave

frequency of 20 kHz under three growing deformation

velocities: quasi-static, dynamic deformation on a dynamic

press and ultrasonic waves. He found that dynamic stiff-

ness on wave passage tests is typically 2–3 times the value

of dynamic deformation tests, which is itself 1.2–2 times

the static stiffness. Cai seismic stiffness values are in the

20–1,200 GPa/m range depending on the compression and

the density of contacts in the joint. The values found in the

current study are in the same order of magnitude,

increasing from 100 to 1,200 GPa/m for compression

stresses of 1–120 MPa. On the other hand, values deter-

mined by Pyrak-Nolte et al. (1990) for transmission of

waves across natural fractures on quartz monzonite com-

pressed up to 85 MPa yielded much larger seismic stiffness

values, from 2,000 to 150,000 GPa/m. However, the wave

central frequency is higher, from 500 to 1,000 kHz. The

static stiffness for the same samples is in the same order of

magnitude in this study, but always lower ranging from

2,000 to 30,000 GPa/m.

Even though no viscous parcel is present in the discrete

element model as it was employed and no strain-rate

effects are included in the contact models of the joint and

rock material, dynamic elastic parameters are higher than

static parameters. The reasons for this difference, also

found in laboratory and field tests, are identical for frac-

tures and for intact rock. First, due to inertia effects when

rates of deformation are high, the fractures and asperities

do not have enough time to deform. Second, the stress level

induced by the dynamic wave is much smaller than the

static stress. In the present study stress waves amplitude is

approximately 0.1 MPa, which is one to three orders of

magnitude smaller than the static stress installed in the

joint. The wave with very small amplitude excites the

fracture around the current location in the stress–dis-

placement curve without perturbing the fracture state.

5 Conclusions

This paper describes an innovative method for modelling

rock fracture dynamic behaviour using BPM, focusing on

the propagation of compressive waves across fractures.

A simple method to generate a fracture in the BPMmodel

is proposed and a contact constitutive with stiffness hard-

ening, compiled in C?? and linked to the source code of

PFC2D, is employed in wall-to-wall interaction. The goal of

this first part of the study is to reproduce the basic charac-

teristics of a rock joint under normal load including the

increase in the number of contact points and stiffness with

stress. The limitations of this part of the study are also the

ground for future developments. First, besides joint non-

linearity, also rock non-linear behaviour and failure can be

integrated. Second, real joint profiles are extremely varied

with peaks and valleys of different wavelengths and heights.

The method used for the joint geometry generation does not

reflect that, and the new contact model still has to be tested

in other joint geometries. Third, though having a physical

meaning, the contact model parameters do not correspond to

rock joint walls measurable characteristics like hardness or

resistance of the wall material. Finally, 3D modelling will

allow for a better representation of the joints rich spatial

variation. This is within reach if parallelized codes that run

on multi-core or multi-processor machines are used.

On the second part of the work, the conditions for

propagation of stress waves on rock bonded particle models

are tested. The performance of dense non-uniform assem-

blies of particles is put side by side with known analytical

results of organized packings and they are found to be

demanding in terms of particles per wavelength but not

enough to hinder the continuation of the work. A number of

modelling details such as the transition from static to

dynamic calculation modes, static and dynamic load con-

ditions and absorbing boundary conditions are imple-

mented. This shows that particle methods are no more a

promising tool in rock mechanics but already a certainty,

and a very adequate one for dynamic analyses.

The final part of the study is the simulation of stress

wave interaction with rock fractures. Compressive waves

with wide frequency content are sent into compressed

fractures and the resulting reflected and transmitted waves

are captured and compared with the theoretical solutions.

The first success to mention is that the physical phenom-

enon is consistently reproduced. Both transmitted and

reflected waves are captured with good quality, energy

conservation is verified, and dynamic fracture stiffness

values calculated from the DDT for both waves are in

agreement. Moreover, when dynamic and static joint

stiffnesses are compared, the former shows to be higher, as

in laboratory studies.

The joint geometric representation is still limited by

model size constraints. The major immediate task ahead is

the implementation of more realistic joint geometries and

contact models that simulate with more accuracy the

mechanics of asperity deformation. In addition, joint filling

or weathering is sometimes encountered in nature and they

alter the joint behaviour. Strategies to simulate their effect

can be devised.

All tests should be also carried out with shear waves in

order to calculate the dynamic shear joint stiffness as well

as the rock dynamic shear and bulk moduli. Other wave-

forms can also be used and the consistency of the results

checked. The study of waves oblique to the fracture will

demand larger models and more sophisticated methods for

wave extraction and separation but will also allow for the

complete verification of the DDT.
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Mixed static compression and shear loading are the

general condition of joints in nature, and higher degrees of

joint degradation may result, which affects their static and

dynamic properties. The BPM should be able to simulate

this.

Finally, the expansion to three dimensions will also

allow for greater realism not only on the joint surface

representation, but also of the waves, which can then have

different polarizations in relation to the joint.
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