
NASA/CR--1998-208521

Micromechanical Prediction of the Effective

Coefficients of Thermo-Piezoelectric

Multiphase Composites

Jacob Aboudi

Tel-Aviv University, Ramat-Aviv, Israel

November 1998



The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the
NASA STI Database, the largest collection of

aeronautical and space science STI in the world.

The Program Office is also NASA's institutional
mechanism for disseminating the results of its

research and development activities. These results

are published by NASA in the NASA STI Report
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of
NASA programs and include extensive data

or theoretical analysis. Includes compilations

of significant scientific and technical data and
information deemed to be of continuing

reference value. NASA's counterpart of peer-

reviewed formal professional papers but

has less stringent limitations on manuscript
length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from

NASA programs, projects, and missions,
often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to NASA's
mission.

Specialized services that complement the STI

Program Office's diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing research

results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page

at http:llwww.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076

l[l_I 7



NASA / CR--1998-208521

Micromechanical Prediction of the Effective

Coefficients of Thermo-Piezoelectric

Multiphase Composites

Jacob Aboudi

Tel-Aviv University, Ramat-Aviv, Israel

Prepared under Contract NAS3-97190

National Aeronautics and

Space Administration

Lewis Research Center

November 1998



NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076

Price Code: A03

Available from

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100
Price Code: A03



Micromechanical Prediction of The Effective

Coefficients of Thermo-Piezoelectric

Multiphase Composites

Jacob Aboudi

Tel-Aviv University, Israel

Abstract

The micromechanical generalized method of cells model is employed for the predic-

tion of the effective elastic, piezoelectric, dielectric, pyroelectric and thermal-expansion

constants of multiphase composites with embedded piezoelectric materials. The pre-

dicted effective constants are compared with other micromechanical methods available

in the literature and good agreements are obtained.

1 Introduction

Piezoelectric materials are dielectrics which exhibit significant material deformations in re-

sponse to an applied electric field, and produce electric polarization in response to applied

mechanical loadings. Piezoelectric materials are used as sensors and actuators, thus form-

ing important ingredients in smart material systems. Detailed discussion and numerous

references for piezoelectric sensors and actuators can be found in the book by Gandhi and

Thompson (1992). A concentric cylinder model that couples elastic, electric, magnetic and

thermal fields has been presented by Carman et a1(1995).

It is possible to combine piezoelectric materials with passive materials to form various

types of piezoelectric composite systems. For example one can disperse piezoelectric particles

into epoxy resin, or embed piezoelectric wires into epoxy resin. Other composite systems



are polymer filled holes in solid piezoelectric ceramic matrices, and porous piezoelectric

ceramics.Alternatively, one cangeneratesmart materials that consist of fibrous composites

with embeddedpiezoelectricactuators and sensors. Discussionsof various applicationsof

piezoceramic-polymercompositescanbe found in the book by Moulsonand Herbert (1990).

In all thesecasesthe overall behavior of thesecompositescanbe determined by a suitable

micromechanicalmodel,seeDunn and Taya (1993) and Dunn (1993) for example. Jain and

Sirkis (1994) considered the issue of damage caused by the growth of voids in piezoelectric

ceramics.

The method of cells and its generalization, referred to as the generalized method of cells

(CMC), is an approximate analytical micromechanical model which is capable of predicting

the overall behavior of long-fiber, short-fiber and particulate multiphase composites from

the knowledge of the properties of the individual phases. A review of the method of cells

followed by a monograph were given by Aboudi (1989,1991). This review has been recently

updated by Aboudi (1996), where critical assessments of the method and its application by

various researchers were outlined. As documented, many types of composites (e.g. ther-

moelastic, viscoelastic, nonlinear elastic and viscoplastic) were analyzed by the method and

the reliability of the predictions were demonstrated under many circumstances.

In the present paper, CMC is employed for the prediction of the overall behavior of

multiphase composites that include one or several types of piezoelectric materials. By im-

posing mechanical equilibrium and Maxwell's charge equation in the constituent re_ons it is

possible, in conjunction with the continuity of mechanical displacements, tractions, electric

potential and electric displacements, to establish the electro-mechanical concentration tensor

that relates the local field in terms of the global one. This readily enables the derivation of all

effective constants of the mu!tiphase piezoelectric material. The reliability of the predicted

effective constants is examined by comparisons with other results available in the literature.

As in previous investigations where GMC was used to develop the macroscale constitu-

tive equation and supplied as input to analyze composite structures, the derived constitutive

relations given in this paper can be used to investigate the behavior of composite struc-

tures with piezoelectric components. Piezoelectric composite plates were recently considered

by Tauchert(1992) and Jonnalagadda et a1(1994). Thus the proposed methodology can be



employedto perform thermo-electro-mechanicalmicro-to-macroanalysisof compositestruc-

tures basedsolelyon the propertiesof the individual phases.

2 Micromechanical Analysis

2.1 Model description

Consider a multiphase composite material in which some or all phases are modeled as thermo-

piezoelectric materials. It is assumed that the composite possesses a periodic structure

such that a repeating cell can be defined. In Fig. 1, such a repeating cell is shown which

consists of N,,NsN. _ rectangular parallelepiped subcells. The volume of each subcell is d,_hsl._,

where a, fl,7 are running indices _ = 1,...,N_; _ = 1,... ,Ns; 7 = 1,... ,N_ in the three

orthogonal directions, respectively. The volume of the repeating cell is dhl where

No, N_ N-,

_=F_,_o, h=_',hs, z=_ l., (1)
o=1 8=1 "_=1

Any subcell can be filled in general by thermo-piezoelectric materials. Piezoelectric uni-

directional long-fiber composites, short-fiber composites, porous materials, and laminated

materials are obtained by a proper selection of the geometrical dimensions of the subcells

and with an appropriate material fillings.

The micromechanical model employs a first order expansion of the displacement in the

subcell (aZT) in terms of the local coordinates (._o),_8), _)) located at the center of the

subcell.

_,(o8,)= _,(o8,)+ _o) ¢,(o8_)+ _8) x,(os,)+ _) ¢,(o8_) i = 1,2,_ (2)

where wi (_z_) are the displacement components at the center of the subcell, and ¢,(°_'_),

X, (_8_) and _,(o8_) are the microvariables that characterize the linear dependence of the dis-

placement u, ('z_) on the local coordinates _), _8), _). In eqn.(2) and the sequel, repeated

Greek letters do not imply summation.

Similarly the electric potential _(o8_) (voltage) is expanded linearly in terms of the local

coordinates of the subcell:



The componentsof the small strain tensor e,j are given by

--  to,u l'° i,j = 1,2,3 (4)

where 01 = 0/O_ _), 02 = c9/0_ #) and 0a = O/O_ _).

The components of the electrical field E_ °_) in the subcell are obtained from the potential

_(_) via

E['_'_)=-cO, _(=Z_) (5)

The constitutive equations that govern the interaction of elastic, electric and thermal

fields in a piezoelectric medium (that fills the subcell(a/37)) are given by (see Patton and

Kudryavtesev (1988) for example):

a(_) "(_) (_;_) _(°_)_(_) AI.__)AT (6),j = ('_ijkl ekl -- "kij ""k --

(7( ,_'r )
where cri(_) are the stress components induced in the material in the subcell, and "--,jkt ,

e('_Z_) and A (°_) denote the fourth order elastic stiffness tensor, the third order piezoelectric
kij _ " -ij

tensor and the second order thermal stress tensor of the material in the subcell, respectively.

The temperature change from a reference temperature is denoted by AT. In addition the

electric displacement vector is given by the relation

D!_) (_)_(_) _(_)_(_)- (_)^,,,, _- p, ,,_ (7)---- e,kl "-kl _ "_ik "_k

where _(_Z_) and -(_)_.,_ p, are the second order dielectric tensor and the pyroelectric vector,

respectively.

With the linear expansions of the displacements and the potential given by eqns.(2) and

(3) the static equilibrium of the material within the subcell (a_'7) is satisfied, namely

and

a("_) = 0 (8)

D(°_) = 0
i,i

Let the vectorsX (_*f_7)and y(_f_7) be defined as follows:

(9)

X (_) = [elZ, e22, Ca3, 2e_3, 2e,3, 2en, -E_, -E_, -Ea] (°_)

4
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Y(°_) = [Ull, 0-22, 0-33, 0-23, 0"13, 0"12, D1, D2, 03] (°_3"r) (11)

By excluding the temperature effects in the constitutive equations (6)-(7), one can rewrite

these equations in the compact matrix form:

y(o_'_) = Z(OO_)X(Ofl_ ') (12)

wherethe 9th order coefficient matrix Z (°_'d has the following form

Z(O_-d = (13)

In this equation the square matrix C ('_a'y) of the 6th-order represents the 4th order stiffness

tensor, e t(°D'y) denotes the transpose of the rectangular 3 by 6 matrix e (_'a'y) that represents

the corresponding third order piezoelectric tensor, and A(°0_) is a square matrix of order 3

that corresponds to the dielectric tensor.

The volume average of the stresses _ij and electric displacements D, in the entire repeat-

ing cell (namely in the composite) is given by

= i No, NB N'r
dh-"l _-" _ _ do h_ I._ Y(°Z'Y) (14)

a=l /3=1 "y=l

and similarly, that of the strains _j and electric field components/_ are

_= 1 No, NZ N.,
dh"_ _ _ y_" do hi3 l..r X (°z_) (15)

°=1 /3--1 7=1

2.2 Interfacial continuity of displacements

Imposition of displacement continuity conditions at the various subcell interfaces within the

repeating cell, and at the interfaces between neighboring repeating cells provide the following

NoN_ + NoN._ + NzN.y + N,_ + NZ + N. r relations between the volume-averaged subcell strains

and composite strains (Aboudi(1995)):

Na

d,_ e_'__a'v)= d e11, /3 = 1,..., N/3 ; 9' : 1,..., N. v (16)
o------1
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N_

h e e_ e_) = h _22, c_ = 1,...,g_ ; *y = 1,...,N_ (17)

N_

z; e_;e_)=l _33, _ = 1,...,No ; Z= 1,...,We (lS)
_=1

e=l "_=1

jv_

_: uol;_e;)= dz_13, Z= 1,..., we (2o)
a=l "1,----1

IVoN_

E: E _oh,_e_) =_h _1_, ; =1,..., N; (21)
a=l _=1

2.3 Interfacial continuity of tractions

The continuity of tractions at the interfaces (both between subcells and repeating cells)

provide the following 6N,_NzN._ - (N,_Nz + N,_N., + N_N._) - (No + N e + N._) conditions.

al?Z_)- -a_ _'r) a=l,.-.,No-1; fl=I,..,Nz ; 7--1,"',N_ (22)

o_e_)= o_;_) _ = 1,..., No; Z= 1,..., We- 1 ; ; = 1,..., g_ (23)

_r_gZ'_)-----a_'_) C_= 1,"',No; f/--- 1,...,N_ ; 7 = 1,...,N._- 1 (24)

a_e'_)= a_ _'_) _ = 1,...,Na; _ = 1,...,Nz- 1 ; ")' = 1,...,N-_ (25)

o_e'_)---a_ _) c_--1,.-.,No; f_=N e ; 9'--1,"',N-_-I (26)

_e'_)= a_-¢) c_ = 1,.-.,N,_- 1; f_ = 1,--.,Nz ; _ : 1,--.,N._ (27)



a3(_):cr_ _) c_=N_; _=I,.-.,N_ ; _=I,'",N_-I (28)

cr_'Y)= a_ _) c_ = I,...,N,_- I; {_ = I,...,N_ ; 9" = l,...,N.y (29)

a_) = o-_ _) c_ = N_; D : I,..., N_- 1

where & , _ and -_ are defined in the following manner,

&={ a+l a<N_

; 9'= (30)

___{ ,6+1 _3<Nz1 _=Nz

Note the definition for & , for example, ensures that for c_ < N_ the neighboring subcell in

the xl - direction is the one labelled by (c_ + 1,/3, 9') within the repeating volume element,

whereas for c_ = N_ the neighboring subcell is within the next repeating volume element

whose first subcell is (1_). A similar interpretation for f) and _ can be made.

2.4 Interfacial continuity of electric potential

The continuity of the electric potential at the interfaces within the repeating cell, and between

neighboring cells provides N,.Nz + N,_N- I + NzN-¢ relations as follows:

N.

d_ E_'r)=dt)l, _:I,...,N_ ; 9'--1,'",N-_ (31)
¢_----1

NO

h e E_)= h/_2, c_ = 1,...,Y_ ; "g= 1,...,Y_ (32)
_=1

7



4 l,...,no ;
7=!

where eqn. (5) and the fact that the average potential gradients are given by

(33)

0 _o(''_'')

Ox, = 4o,,---E, i= 1,2,3 (34)

for all .a, _ and 7 have been employed in eqns. (31)-(33).

2.5 Interfacial continuity of the electric displacements

Finally, the additional 3NoN_N7 - (N.N_ + N_N7 + N_N_) required relations are obtained

by imposing continuity conditions on the electric displacements D, (which ensures that they

are continuous at the interfaces in the ith directions), that is,

D_'_'Y)=D_ _e'Y) a=l,...,No-1; f_=l,...,Nz ; 7=1,'",N7 (35)

D_°_7)=D_ '_X}_) a=l,...,N_,; 3=I,...,NZ-1 ; "y=I,..-,N-, (36)

D_'_'_)= D_ '_) a = 1,...,N,_ ; _ = 1,...,Nz ;

where & ,/_ and _yare defined as before.

7= 1,...,N_- 1 (37)

2.6 Overall constitutive equations

The combination of the aforementioned continuity relations (16)-(37) forms a system of

9NoNaN7 equations in the 9NoNzN7 subcell unknowns. These unknowns can be combined

and represented by a single vector as follows.

Xs = (X (111), X 012), ..., X (N° N_N_)) (38)

This system of equations can be represented in the form

h X. = K X (39)



where A is the square matrix of coefficients of order 9N,.N_N_,,

X = (_11, _22, e33, 2_23, 2_13, 2_12, -El, -J_2, -J_3) (40)

being the average strain and electric field vector, and K is a rectangular matrix of the order

of 9NoN_N._ by 9, that involves the geometrical properties of the subcells. Note/_. and K

consist of the following submatrices:

AM

._k --.._ AG

AE

0

K= J

0

where AM, involves the elastic mechanical properties of the material, Ac the geometrical

dimensions of the subcells, AE the electrical properties, and J the dimensions of the repeating

cell.

The solution of eqn. (39) yields, the strain and electric field components in all subcells in

the form

X, = A X (41)

where

A=A-' K

and represents the resulting electro-mechanical concentration matrix of the GMC model

that expresses the local (subcells) variables, X,, in terms of the global (average) variables,

X. Consequently, eqn.(41) is usually referred to as localization.

Let the concentration matrix A be partitioned into N,_NzN._ 9-order square submatrices

in the form

A(lll)

A= :

A(NoN_N_)

It follows from eqn.(41) that

(42)

X (°z_)= A (_) X (43)

Equation (43) expresses the average strain in the subcell (a_7) in terms of the uniform

overall strain and electric field (i.e., the applied macrostrain and macroelectric field).



Substitution of eqn.(43) into (12) yields

y(o_) = Z(,_)A(,_'r) _: (44)

Consequently, in conjunction with the averaging procedure given by (14), the following

effective constitutive relations of the piezoelectric composite can be established

= z" (45)

where the effective elastic stiffness, piezoelectric and dielectric matrix Z* of the composite

is given by

1 Na N_ N_

z'=  h-7Z: Z: Z: 6o z (46)
a=l _=1 "),=1

The structure of the square 9 - th order effective matrix Z* is of the form

Z_ _____ (47)

Thus this micromechanically derived relation readily provides the effective 6 by 6 stiffness

matrix C*, the effective piezoelectric 3 by 6 matrix e*, and the effective dielectric 3 by 3

matrix A*.

2.7 Effective thermal and pyroelectric coefficients

In establishing the overall behavior of the piezoelectric composite, isothermal conditions were

assumed (see eqn. (12)). Although it is possible to use the same GMC model to predict the

effective thermal and pyroelectric constants, it is more convenient to utilize Levin's (1967)

result to establish these constants. This approach was previously used by Dunn (1993) to

establish these constants in conjunction with other micromechanical models. It was also

utilized by Aboudi (1995) to verify that the effective thermal coefficients and the overall

inelastic strains as predicted by GMC are in conformity with the corresponding prediction

by Levin's method.

To this end referring to eqns. (6) and (7), let us define the following vector of thermal

stresses and pyroelectric constants in the material filling the subcell (a/3-),):

F ('_'_) = (A_'_'_), ^('_z_),,_,"â('_Z'_) , A_°Z'_), ^(°z'_),,5,"6̂(,_-r) ,Pz(°Z'r) ,P2(°_) , p_°_'_)) (48)

10



The correspondingglobal (effective)vector is definedby

F* = (A1,A2,A3A4,A5,A6,pl,p2,p3) (49)

According to Levin's result, the relation between r (_'_) and F* is given in terms of the

electro-mechanicalconcentrationmatricesA (_) asfollows.

I No N_, N,

r'= dh--7E Z _ doh_l_[A(_)] r r (°_) (50)
a=l _=1 7=1

where [A(a_'_)] T is the transpose of A (°_). The above relation provides the effective thermal

stress A* and pyroelectric p* vectors of the composite.

Finally, the effective coefficients of thermal expansion a_ and the associated pyroelectric

constants Pi* of the composite can be assembled into the vector:

f)" = (oL*l,c_, o_, o_, a;, v_;, p;, P_, P;) (51)

This vector is given by:

_" = z'-'r" (52)

It should be mentioned that a similar relation holds for the local quantities, namely for

the the coefficients of thermal expansion and the associated pyroelectric constants of the

materials filling the subcells. In such a case Z* and r* should be replaced by Z (_z_) and

r ('*z_), respectively.

3 Piezothermoelastic Laminated Plate

The micromechanically established effective constitutive relations

_ij = C_jkl_kt -- e*k_Ek -- A,jAT (53)

can be utilized to derive the basic equations for piezothermoelastic laminated plates in con-

junction with the classical plate theory. To this end, let us consider, N layers of orthorhombic

piezoelectric materials. For this type of material, the constitutive equations, eqns. (53), that

describes the behavior of a single lamina, can be written in the following form (Tauchert,

11



1992).

' • r
_11 C_1 C_2 C13 0 0 0 ¢_11

_22 c_ c_3 0 0 0 _22

0"33 C_3 0 0 0 h3
--- ,(

O'23 C_4 0 0 2_23

0"13 C_5 0 2_13

_12 $_//I. C_6 2_12

0 0 e_l A_

oo0 0 e_3 E2 - A_ AT

l 0 e_4 0 ._'3 0

el5 0 0 0

0 0 0 0

(54)

When the behavior of the lamina is referred to the plate system of coordinates x, y, z = x3,

and plane stress conditions are imposed, the following constitutive relations can be obtained

from (54).

_zz i

Uyy

drzy

£z: /
[2e=_

0 0 _'31

0 0 _32

0 0 _36

E__- h_ aT (55)
E, A=y

In this equation [Q,j] are the reduced stiffness coefficients which are given in terms of the

transformed effective stiffnesses [e_] by the standard relations (see Herakovich (1998)):

Qi3=c_j _3c_J i,j= 1,2,6
e33

The transformed piezoelectric constants and thermal stress coefficients are given by

e;1 --- e;1 c2 + e_282, e_2 = e;1 s2 -[- e_2 c2, e_6 _- (e_l -- e_2)sc

A= = A;c 2 + A_s 2, A_ = Als 2 + A_c 2, A=y = (A; - A_)sc

with c and s denoting the sin and cos of the angle between the x and xz axis.

12
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The stress resultants, N, and moments, M, of the laminate can be readily obtained in

the form:

(56)

where A, B and D denote the standard extensional, coupling and bending stiffnesses, and,

e°and t¢ represent the middle surface strains and curvatures, respectively. In eqn.(56), the

electric resultants, N E, and moments, M E, are defined by

NE -_ Ny E -- _'32
k=l

N E
xy _'36 k

(E_)k(hk-hk-1) (57)

ME = M E = _ _32 (E_)k(h_ - h2_z) (58)
k=l

M E
xy 0"36 k

where hk denotes the thickness of the kth lamina. The thermal resultants, N T, and moments,

M T, are given by

N T -- N: = A_
k=Z

k

AT(hk-hk-1) (59)

M T = M T = _ A_ AT (h_ - h__l)

M T k=l Axy
xy k

(60)

4 Results

In order to assess the reliability of the effective constants of piezoelectric composites predicted

by GMC, comparisons with other micromechanical methods and with measured data must

be performed. Dunn and Taya (1993) and Dunn (1993) conducted extensive study of the

effective constants of piezoelectric composites based on various micromechanical models, and

performed several comparisons with experimental results. They concluded that the Mori

13



and Tanka (1973)scheme(MT) is the recommendedone for application. Consequently,we

presentherecomparisonswith MT predictionsasgivenby Dtmn andTaya (1993)and Dunn

(1993) in order to verify the validity of GMC predictions. To this endpiezoelectricmaterials

with hexagonalsymmetry in which the axis of symmetry is aligned in the 3-direction are

considered. The constitutive law of the material that possessesthis type of symmetry is

given by eqn. (54)when

1 , ,

C_l = C_2 , C_3 = C_3 , C,_4 = C;5 , C;6 = _(Cll -- C12), e_l = e_2 , e_4 = e_5.

Tables 1-3 present the properties of several piezoelectric materials together with the proper-

ties of isotropic polymers.

In Fig. 2 comparisons between GMC and MT predictions are given for the effective

piezoelectric constants of a porous PZT - 7A ceramic. Clearly, good agreement is observed.

Let us define the effective compliance matrix S" to be the inverse of the effective stiffness

matrix C*. Figure 3 shows the effective elastic compliances S_1 + S{'2 of a piezoelectric

PZT-7A ceramic long fiber reinforcing an epoxy matrix. Here the GMC and MT predictions

coincide.

Another set of effective piezoelectric coefficients di*j (which appear when the constitutive

relation of the piezoelectric material is formulated as strains expressed in terms of stresses

and electric field) are defined as follows

dq = e_kSkj

In Fig. 4 the above effective piezoelectric constants as predicted by GMC and MT are shown

for a PZT - 5 ceramic matrix reinforced by long polymer fibers. The agreement is excellent

for d33 and satisfactory for dh.

Figures 5-7 present the effective coefficients of thermal expansion and the effective py-

roelectric constants of a polymeric matrix reinforced by long piezoelectric fibers. The pre-

dictions of GMC and MT coincide, as expected since both micromechanicai approaches use

Levin's method.

Figures 8 and 9 present the effective coefficients of thermal expansion and the effective

pyroelectric constant of a polymeric matrix reinforced by piezoelectric particles. The pre-

dictions of GMC and MT coincide for the effective thermal properties shown in Fig. 8 and

14

iF[I



closely correspondfor the effectivepyroelectric coefficientgiven in Fig. 9. For the same

compositesystem, the effectivepyroelectric constant -P_/Z_ -1 as predicted by GMC and

MT is shownin Fig. 10. Here,slight differencescanbe observedin the vicinity of very high

volume fraction wheresteepgradientsoccur.

Previous analysescarried out by various researchers(seethe update review by Aboudi

(1996))haveshownthat GMC is areliableandefficientmicromechanicalmodel for predicting

the behavior of varioustypesof compositematerials. Basedon the presentresults, it canbe

concludedthat GMC is alsoareliablemicromechanicaltool for the prediction of the effective

parametersof piezoelectricmultiphasecomposites.

5 Conclusions

Micromechanical prediction of the effective elastic, piezoelectric, thermal and pyroelec-

tric constants of piezoelectric composites by the generalized method of cells (GMC) have

been derived. These constants were verified by comparisons with those predicted using the

Mori-Tanaka (MT) model and found to be in good agreement. An advantage of the present

model, over other micromechanical formulations, is its ability to predict the behavior of

multiphased piezoelectric materials and composites. In this connection it should be em-

phasized that the Mori-Tanaka method has been previously shown by Ferrari (1991) to yield

an asymmetric effective stiffness tensor in general, which obviously is a shortcoming of the

method. Additionally, GMC can be used, to investigate other effects (as previously shown

by several investigators), such as; the effect of inelasticity of the host material, the effect of

weak bonding between the constituents, and the effect of fiber distribution and architecture

on the overall response of piezoelectric composites. Also, the established macromechani-

cal relations can be readily linked to a structural analysis for the analysis of piezoelectric

composite structures.

15
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Material

Table 1. Elastic material properties.

Cl,(GPa) C,2(GPa) C,a(GPa) Ca3(GPa) C,,(GPa)

PZT- 7A 148 76.2 74.2 131 25.4

BaTi03 150 66 66 146 44

Epoxy 8 4.4 4.4 8 1.8

Polymer 3.86 2.57 2.57 3.86 0.64

Table 2. Electric material properties.

Material els(C/m 2) e31(C/m 2) e33(C/m 2) Al(lO-9C/Ym) A3(10-9C/Vm)

PZT - 7A 9.2 -2.1 9.5 4.07 2.07

BaTi03 11.4 -4.35 17.5 9.86 11.15

Epoxy 0 0 0 0.037 0.037

Polymer 0 0 0 0.079 0.079

Table 3. Coemcients of thermal expansion and pyroelectric material properties.

Material c_1(10-6/K) a3(10-8/K) Pa(IOSN/CK)

BaTi03 8.53 1.99 0.133

Epoxy 60 60 0
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Figure 2._omparison between the effective piezoelectric
moduli e_i as predicted by GMC and MT for a porous
PZT - 7A ceramic as a function of the porosity volume
fraction.
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Figure 3.--The effective elastic compliances S;1 +
S1"2of an epoxy matrix reinforced by continuous
PZT - 7A fiber as a function of the fiber volume
ratio. The predictions of GMC and MT coincide.
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Figure 5.--The effective coefficients of thermal
expansion e_ = (_, (x_ for a continuous BaTiO 3
fiber reinforcing a polymer epoxy matrix as a
function of the fiber volume fraction. The pre-
dictions of GMC and MT coincide.
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Figure 4._omparison between the effective piezoelectric
* "* d* *moduli d33 and cIh = 31 + d32 + d33 as predicted by

GMC and MT for a PZT - 5 ceramic matrix reinforced by
a continuous polymer as a function of the fiber volume
fraction.
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Figure 6.--The effective pyroelectric coefficients
P_, of a continuous BaTiO 3 fiber reinforcing a
polymer epoxy matrix as a function of the fiber
volume fraction. The predictions of GMC and
MT coincide.
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Figure 7.--The effective pyroelectric coefficients

-P_/7_._9 -1 of a continuous BaTiO 3 fiber reinforc-

ing a polymer epoxy matrix as a function of the
fiber volume fraction. The predictions of GMC

and MT coincide.
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Figure 9.--Comparison between the effective pyro-

electric coefficient P_, as predicted by GMC and

MT for BaTiO 3 particles reinforcing a polymer epoxy
matrix as a function of the particles volume fraction.
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Figure 8.--The effective coefficients of thermal

expansion a_ = a_, o_ for BaTi03 particles

reinforcing a polymer epoxy matrix as a function

of the particles volume fraction. The predictions
of GMC and MT coincide.
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Figure 10.--Comparison between the effective
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