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PREFACE
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I. INTRODUCTION

Mony of the new moferlols bemg developed are mulhphose or in fhe com=
posites fomlly. For example, glass fubers are used extensively to reinforce orgonuc
matrices. Dispersion strengthened alloys consist of a finely divided second phase
distribufed in a crystalline matrix. Glass-cermaics make use of controlled crys=-
tolli}zotion from a glassy melt. Rubber reinforcements are used in glassy polymers
:to enhance the impact strength of the brittle matrix. In all the cases, the pa;o"
perties of the composite material depend on the properties of the individual
components, their disfribution, and their physical and chemical interaction.

For the effncuent use of composite moternols, n is necessary to understand.
how these materials behave under applied loads. A micromechanics analysis of
composlfe moternols is needed to accurately predacf the internal stress distributions
which are mainly responsible for the ultimate behovnor of the composites under
glven loading conditions. A knowledge of stress distributions helps in the under-

stondlng of the motenal behavnor in two ways. As will be duscussed in fhe later

sechons, the boundary stresses and the dccompanying dusplocemenrs can be used

to colculofe the modulus of elasticity and Poisson's ratio of the composite moternols.

- These elastic properties predict the macroscopic response of the composite moferiol

to the applied loads. Second'ly, the internal stresses determine the areas of high
stress concenfrotiong in the material. These areas are critical because failure is
most likely to start there., The onset of failure may be the formation of a crack in
the cefomic matrix composites, or the start of yielding in case of the metal matrices
or the iniﬁofion of internal crazing in the rubber modified polymers. A number of
analytical studies of stress distributions have been performed by the use of simplified

physical models. Most of these studies have used elasticity theories to obtain the



solufidﬁs(] -

(6)

)’?‘ Some pf the solutions have been summarized by Holister»and
Thomas'~’. Elasticity solutions of some of the problems are obtained from -
MUSkhelishvili's(n solutions using complex variables. Thus solefiens exist for
simplified- models which do not necessarily represent an actual composite material.
It is difficult to use the elasficify approoeh for solvfﬁg ereblems involving complex
geemeffies. In.any realistic model of a cem,posite materiel such complex geometries
are unavoidable. The finite element method which has been used in the present
inVes-tig:ofions olllews any cemplex geometry to be enquzed with equal eese .

' The finite -elemenf method is not new. For more than a decdde; it has been
opplled exfensively to fhe analysis of large complex structures. Conventional -
engmeerl ng structures can be visualized as an assemblage of sfructural elemenfs
mferconnecfed at a discrete number of nodal points. [f the force"dlsplacement
relahonshlp for the mdnvndual elements is known it is possnble, by using various
fechmques of structural onalysns, to derive the properhes and study the behovnor
of fhe assembled sfructure. |

Inan elashc continuum the true number of interconnection pomfs is fmlte,
and here lies the biggest difficulty of the numerical soluhons. The dvfflculfy can
be overcome (and the approxnmohon made) in \ the following manner:

(a) Tﬁe continuum is separated by imaginary lines or surfaces into a number ,
of "finite elements". - |

(b) The elements are assumed to be ifterconnected at 5 discrete number of
nodal points situated en their boundaries. The displacements of these nodal points

will be the basic unknown parameters of the problem, just as in the simple struc-

tural analysis.

* For-all numbered references, see bibliography’



(c) A function (or functions) is chosen to define uniquely fhé state of dis-
placement within each "finite element" in terms of its nodal displacements.

(d) The displacement functions now define uniquely the state of strain
within an element in terms of the nodal displccements; These stroins:}. together
w'ith' any initial strains and the elastic properties of the material wi.ll define the
state of stress throughout the element and, hence, also on its boundaries. -

(e) A system of forces concentrated at the nodes and equilibriating the
b_;:undcry stresses and any distributed loads is de‘fermined.

. Once this stage has been reached the solution procedure can follow the
sfan&ard structural routine. The detoilr; such as the formulation of finite element
characteristics, mathématicql basis, the applicability of the method, etc. can be

(8)

found in the text written by Zienkiewicz ' ’. In the present investigations,
e_x‘isﬁng jcomputerAprogt;ams»were used with minor changes. The details alnd N
referénce will be given in appropriate sections of this thesis. |

| The next two sec*ions deal with the particulate cohposifes. In the first of
the f\&o, axisymmefric representation of the composite has been assumed. The
éffécf of the volume‘fraction of the inclusions on the internal stresses ana elastic
constants is diséusséd in défcil. The re;ﬁlfs are compared with the available ex-
perimental data and with some of the predictions obtained by using elasticity
theory. Another important problem of the particulate composites, namely the
effect of an interface, which received very little attention from other investigators
has also been studied. In the third section a general three-dimensional model of
the composite mate‘rial has been analyzed. The emphasis, once again, has been
on the internal stresses and the elastic constants. Some conclusions have been

drawn concerning the use of a complex and relatively expensive computer program

to analyze the general three-dimensional solids.



Sections IV and V deal with the discontinuous fibrous composites. In Section

1V, an elastic analysis has been used to study in detail the effect of an interface.

It covers a number of areas such as weak and strong interface, effect of interface
on intemél stresses and elastic constants, and effect of fiber end conditions. " In
Section V, an elastic-plastic analysis of fibrous composites has been performed to
study the internal stresses. Effect of matrix yielding on the composite stress=strain-

curve has been investigated.



.. AXISYMMETRIC ANALYSIS OF PARTICULATE COMPOSITES

Introduction

The composites which consist of particles of one phdse dispersed in o second

phase are usually referred to as the parhculote composites. The filler porhcles

in a parf|cu|ate composite have no |ong dimension. ‘tt may be round, square or

'even frlangular, but the dimensions of its sides are approximately equal Ina

parhculate composite, fhe mofrnx and dispersed particles share the Ioad Strength-
ening of particulate-reinforced composite occurs initially when the dispersed -
pdrtic|es re'.stric'f the matrix deformation by a mechanical restraint. The &adg-
mfude of fhe restromt is unknown and complex, buf itisa funchon of the mter'
parhcle spocmg ond the ratio of fhe elashc properhes of the matrix ond parhcle
A mlcromechamcs onalysw is needed to understand the mfluence of rhese foctors
on fhe behavnor of composnfe matencls. o | |
Previous investigators have discussed the sfresses oround spherlcol mcluslons
as onplied to porous ceramics or sphericolly filled ceramic particulate com-

(9-12

sites" ). The 'Goodier soluﬁon(l), which was used for all of these analyses,
po y

dpplies only to a single §nc|usion or cavity; thus, interactions between particles

are ignored when the theory is applied to actual camposites in which particle
interactions can influence the stress state. Even in particulate composites with

only 30 vol% particles, local regions of the composite may have effective con-

centrations of 50 to 60 vol% as a result of non-uniform parﬁcle' concentrations.

The results presented indicate how the interfacial stresses are influenced by

particle spacing.



Approximations and Boundary Conditions

The present investigations were carried out using an analysis of axisymmetric
solids. In the finite element approximation of axisymmetric solids, the continuous
structure or medium is replaced by ‘a system of axisymmetric elements interconnected
at nodal circles. |t was assumed that the porous or filled ceramics (assumed to
possess symmetry) could be approximated by a unit cell (Fig. 1) which when ro-
tated 360° around axis AD produces a hemisphere embedded within a cylinder.

T‘we interparticle spacing |s equal to 2 (r] - r2); " and ro are shown in Fig. 'l
The volume percent ofkfi.ller particles or cavities '(rodius‘= r2)‘ can be altered and
calculated frém the ratio rz/r] (no}e AB = BC = CD = ADin Fig. 1). This axi=-
symrﬁetric representation of the composite only approximates its real packing and
sfrucfdo;e. These axiSymmefric cells are not an, octuol repetitive unit but are re=
Iafed in their dimensions to I’he interparticle spacing. A 3-dimensional computer
progrom without restrictions (e.g., using tetrahedral elements) has also been used
(m Cection IH1) to truly model a parhculafe compos:fe

The unit cell shown in Fig. 1 is subdivided into small elements.  The F.inil"eA
elé'mAeht grias used for sixAdifferenf intérparticlé spacings are shown in Figs. 2-7.
The finite element. method permits calculation of the stresses in -oll the elements and
the displacements at the nodal circles for any loading and boundary conditions. |t
is assumed that the compo;sife is strained in the z~=direction and that no tractions are
obplied in the r-direction, By symmefry) on the boundary ABCD(#ig. 1) the shear

stresses are:
7 . =1._=0

rz zr
The sides AB and BC remain parallel to their original positions after they are
displaced due to strain in the z direction, whereas the normal displacements of AD

.and DC are zero. Thus, AB and BC will undergo normal displacements, and the

traction in the r direction must be zeroso that:
Q S, dz =0
BC
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Fig. 4. Finite Element Grid for rz/r] = 0.615
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Fig. 5. Finite Element Grid for rz/r]

= 0.714
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Fig. 5. Finite Element Grid for rz/r] = 0.714
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where the integral is replaced by a summation in the finite element method.
The following assumptions were made concerning the material:
1. Filler particles and cavities are spherical and of uniform size; packing
| ~ of particles can be represented by an oxisymmefric element (Fig. 1).
- 2. Both filler and matrix materials obey elastic stress=strain relations};ips.
3. Perfect bonding exists between filler and matrix (continuity §f displace=
ments at the interface).

The calculations were made on a large digital computer* by using a computer

U3 The

“program for the analysis of axisymmetric solids written by E. L. Wilson' /.

boundary conditions were prescribed in the mixed mode i.e., the displacements
were prescribed on some of the boundaries whereas tractions were prescnbed on "

the others. The prescribed boundary displacements were selected to obtain the

desired compgsite strains. . The average composite stress was calculated From a

'knowledge of the sfresses in the elements at the boundory of the unit cell The

composite stresses and strains are used to calculate the composite modulus of

elasticity and Poisson's ratio. The details of the prbcedure to satisfy the boundofy

conditions and to calculate composite stress, strain, modulus of elasticity and

- Poisson's ratio have been given in the Appendix.

“ Internal Stresses

- The internal trioxial stresses were calculated fhroughéuf the volume (in each
element shown in Figs. 2-7) of porous and filled cermaics with ca'vi.ty or filler
volume contents up to 43.83 percent (minimum mferparhcle spacmg 0.26r,,
where r2 = radius of sphencal particles or cavmes)

For a porous cermic the following properties were assumed for the ceramic '

with no porosity:

* Univac 1108, Univac Div., Sperry Rand Corp., Philadelphia, Pa.
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E (modUlus of elasticity) =10 x 106 psi
v (Poisson's ratio) = 0.24
'lwo filled ceramic systems were analyzed. The cotnponent properties aseumed
- for system 1 were:
Glass matrix E = 11.8x 10° psi
| v o= 0.197
Alummc filler E = 60.4 x 108 psi
o v = 0.257
These properties are those. reported by Hasselman and Fulrcth(l4).
For the syeterrl 2, the values were |
| .. Glass matrix_‘ E = 11.8x 10° psi
Cv= 097
Tungsten fnller E = 52.2x 10° psi
- v = 0.1985
as reported by Hosselmon and Fulrath( )
o Volume contents of vond or f||ler can be calculated from the ratio rz/rl, by
assuming an oppropriate packing of the cylindrical region analyzed. Three dif-
ferent orrangenlents, namely sphere in a cylinder, hexagonal packing of cylinders
and souore packing of eylinders (this coincides with the cubic array of spheres),
~have been shown in Fig. 8. Expressions for the volume fractions have olso been
indicated on the fugure. The ratios r2/r and filler or void contents corresponding
to the above packings are given in Table 1. The volume fractions used in l'l’\lS
chapter were calculated by assuming a sphere in a cylinder. Significance of

assuming a different packing will be discussed in the next chapter.



~ Fig. 8.

3
© V¢ = F )

Volume Packing (A) Sphere in a Cylinder, (B).H‘e.xagonol Array;
and (C) Square or Cubic Array
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Table 1. The Relation Between Particle Spacing and Volume Fraction |

; 2/r , Spé\elr.e ina - Hexagonal : Sqt:uare or

ylinder Array Cubic Array
0.357 O 3.04 2.75- . 2.38
0.500 8.33 7.56 . 6.54
0.615 .. 1554 14.09 12,20
0.714 24,30 22.03° - 19.08
- 0.83.. | 38.58 34.99 30.30
- 0.870 43.83 - 3975 © 34,43
0.952 57.59 52.23 . 45.23

" The stresses qroene tHe spherical cev'sty are shown in Figs. 9 and 10. The
stresses are represented as a fctio o/ 52 , where 62 is the average stress applied
to the composite. Thus, the ratio represents the stress concentration around the
: covify. The stress system is defined in Fig. 9. Fig. 2 shows that there are 9 finite '
' eIements around the mferfoce of the cavity; the colculated stresses are ossumed to,
acf at the center of eoch elemenf. In all of the cases shown, the radlal cnd tan= |
gential stfesses at the interface are almosf eqpn\(alent fo rhe prmcupal_ stresses and -
thus the shear stresses (e.g., 'rx‘y) are nearly zero. The obso}lurte value(o‘f me)iimum

shear stress is calculated from:

e

The variation of stresses at the pole (6 = 90°) and equator (6 = 0°) of a
seherical cavity are shown in Fig. 11 as a function of porosity percent. The curves
for stresses were extrapolated to Vf = 0 percent. For fqng_e.nﬁol stresses ‘at the pole,
perfect agreement is obfainea with the Goodier solution for an inclusion in an in-
finite matrix. For the stress at the equator, the agreement ns within five percent of

the theoretical solution of Goodier. The difference results from the size of the
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Fig. 11. Pore Boundary Stresses as a Function of Porosity (vol.%)



21

Fini-te element and the averaging which thus occurs. Also, the stress normal to the
cavity boundary (cx) should be zero at the boundary. The very small positive or
negative value obtained in the present solution results again from the size taken
for the finite element. |

The decay of stresses away from the interface is shown in Fig. 12, The stresses
have been plotted beginning from the interface and oontinuing along the boundaries
AD and CD’ as shown. Only the stress normal to the-boundory has been'plotted.‘ It
can be seen that for a low volume percent filler (3%) the nommal stress along CD
reduces to the averoge‘stress, 52, at the midlpoint between two covities while the
normol stress a|ong AD opproaches zero as it should However, the results‘ for higher
volume percent show that the stress concentrations persist even ot the midpoint be-
tween two cavities because of the close cavi ty spacing.

The stresses around the interface between the Al,O 3 partlcles and glass matrix
are shown in Flgs° 13 and 14 The stress system is the same as that defuned in Flg.
9. The varlctnon of stresses at the pole (6= 90° ) and the equator (9 = 0 ) of an |
A|2O3 portlcle (assumed sphertca|) is shown in Fug. 15, cgcnn the theoretical
solutnons of Goodler agree qmte well at zero volume percent flller.

' The vcnruatuon,of stresses was not reported for the glass=W system.‘ Hovres'er,
these stresses are very similar to those for the g|<Jss-A|203 system. These onolyses
show that, for porous: composutes, the stresses around the pores are influenced by

| interactions from neighboring pores when r2/r.' = 0.5 or when the spacing between
pores is equal to one pore diameter. For the filled composites, interactions are not
important until the inclusions ore within approximately 1/4 diameter of one another.

Broutman and Panizza(lb) mode some micromechonics studies with rubber rein-
forced glassy polymer. This represents an interesting case where the reinforcing

particles have a modulus of elasticity much less than that of the glassy polymer
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matrix and Poisson's ratio is greater than that of the matrix. The results of the

present study qualitatively confirm those of Broutman and Panizza.

Elastic Constants

The predicted moduli of elasticity and Poisson's ratios are shown in Figs. 16,
17 and 18 and Table 2. The modulus and Poisson's ratio decrease with increasing
porosity. Experimental data of Fryxell and Chandler“n agree quite well with the
predicted values; the data of Manning _et_al_:(ls) do not agree so well. It can be
seen that the normailized experimental data of Fryxell and Chandler do not agree
well with those of Manning et al. This may be due to the inherent differences in
the material used and also partially to the experimental techniques used by the
investigators. Therefore, one simple theory may not be expected to predict the
experimental data concerning different materials with equal accuracies.

The modulus of elasticity of a composite increases as the filler content in-
creases (Figs. 17 and 18). The predicted values are compared in Figs. 17 and 18
with the experimental results of Hasselman and Fulmth(M"S), the excellent agree-
ment between the experimental and predicted values is shown.

In the present analysis, the moduli of elasticity were calculated on the basis
of the actual stress distribution in the composites when the continuous medium is
approximated by a system of discrete elements. Therefore, the present studies permit
a unique calculation of elastic moduli and do not present the bounded solutions (such
as that of Hashin and Shtrikmqn(a)) previously used to predict experimental results.
However, Hashin and Shtrikman's lower bound agrees well with the predictions of
the present analysis and with the experimental results of Hasselman and Fulrath(M'ls).
Moduli of elasticity calculated from the lower bound of Hashin and Shirikman's

theory are also shown in Table 2.



COMPOSITE MODULUS / MATRIX MODULUS

27

—— PRESENT STUDY |

——-FRYXELL AND CHANDLER
(REF. 23)
0.9 —-—MANNING ET AL.
(REF, 24)
—0-3
Y
—0.2
0.2 ! o i %Q'
0 10 20 30 320

POROSITY PERCENT

Fig. 16. Comparison of Predicted Modulus of Elasticity
of Porous Ceramic with Experimental Data and
Prediction of Poisson's Ratio



28

Alumina Filled Glass

&  Experimental Data

Finite Element
Analysis

Modulus, E, (10° psi)
N
o

(&)

s | | | |
O 10 20 30 40 S0

Alumina Volume Percent

Fig. 17. Comparison of Predicted Modulus of Elasticity of Alumina-
Filled Glass with Experimental Data of Reference 14,
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Table 2. Predicted Properties of Porous and Filled Ceramics

"GLASS ALUMINA " GLASS TUNGSTEN

Modulus of Elasticity A -
Relative (106 psi) Modulus of ‘
Vol. Fraction Modulus Poisson's . Finite . Lower Poisson's Elasticity Poisson's
Filler or Pores (E/Eo)* Ratio .. Element.  Bound** ‘Ratio (106 psi) Ratio
3.04 10,932 0.255 . 12.3 12,3 0:198 123 0.197
8.33 0.859 '0.232 13.2 13.2 0,199 13.1 0.196
15.54 0.753 0.222 14.7 14,7 0.197 14.5 0.192
24.30 0.639  0.208° . 16.7 16.6 0.193 16.3 - 0.18
38.58 0.469 0.178 20.7 20.3 0.186 19.9 | 0.175
43.83 0.410 0.1 - 22.4 220 0.184 21.4 0.172
. *Eo = matrix modulus; E = composite modulus.
** Hashin=Shtrikman theory (Ref. 3). :
: ®

0]



31

Effect of a Weak Interface on Composite Properties

Inan actual composite material, the properties of the material at the inter-
face may be different from those of the filler and matrix. Continuous d'isplocen;nents
at the interface imply perfect bonding between the filler particles and the matrix.
When pe#ecf bonding does not exist between the filler and the matrix, behaviur of
the inferfaée should be simulated by assigning different property values to the ma=
terial at the interface. This is very éosily accomplished 'us.ing the axisymmetric
finite element method. The shaded elements in Figs. 19 und 20 have been assumed
to represent the finite thicknesses of the interface for filler contents of 3.04 and .
24,30 percents respectively. The shaded elements aucounf for 0.48 percent of the
total vo'lume in the former uose and 3.02 percenf in the latter case. A close exam-
mcmon of the finite elements in Fig. 7 reveals that a much finer grid is needed to
study the effect of the mterface at a high volume fraction of the ﬁller. The mod-
ulus of elasticity assngned to the elements at the interface was 1000 psi which is
very small compared to that of the matrix (E = 11 .8 x 'IO6 psi) or the filler _(E =
60.4 x 106 psi). This:‘represenfs the case of a very weak interface. '
| The weak interface as described above completely changes the stress dis-

‘ tributioh'uround the interface.. The stresses in the elements (in the matrix)
adjacent fo the interface have been plutted in Figs. 21 and 22.. A very small
magnitude of radial stress around the interface indicates a free boundary. The
curves for tongéntia| stresses with finite interface are very similar to the ones
obtamed for stresses around the cavity as shown in Figs. 9 and 10. Due to very
low modulus, the interface is not able to transfer any stress from the matrix to the
hard inclusions and therefore represents a case of the filler particles completely
debonded from the matrix. The hard inclusions with weak interface -'corry very
low stresses and hence do not contribute to the enhancement of the modulus of

the composite. This is similar to what Stett and Fulroth(l N have described as
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Fig. 19. Shaded Elements Represent Finite Thickness of the
Interface for ro/ry = 0.357



33

.
.
LL
-
ol |
D)
bt
vew
‘..'
4

Fig. 20. Shaded Elements Represent Finite Thickness

of the
Interface for rz/r-l =0,714



3 —— WITHOUT WEAK INTERFACE

——=-WITH WEAK INTERFACE

-1 | 1 | | | | | | J
0] 10 20 30 40 50 60 70 80 90

6 IN DEGREES

Fig. 21. Comparison of Matrix Stresses With and Without a Weak Interface in a Composite
(rz/r] = 0.357)

14



3l WITHOUT WEAK INTERFACE
bl ————WITH WEAK INTERFACE
2
ol |
O.:_"""—'_—"" e e e e e e e e i —"‘-—___-‘—-:-—-—- —
-1 l l ] ] l ] 1 ] i
O 10 20 .. % W0 80 60 70 80 ' 90

& IN DEGREES

Fig. 22. Comparison of Matrix Stresses With and Without a Weak Interface in a Composite
(rz/r-l =0,714)

g€



36

"’ pseudoporosity which results in the weakening of the composite. The modulus of

“ elasticity of the composite decreases with higher filler contents as indicated in

Table 3.

Table 3. Effect of Interface on Modulus of Elasticity of Composite

e —

Volume Fraction Composite Modulus (psi)

Filler Withouf. Interface With Interface
"~ 3.04 | 12.3x 10> 11.05x 10°
o  6.97 x 10°

24.30 16.7 x 10
43.83 22.4 x 10° 3.84 x 10°




1. THREE DIMENSIONAL ANALYSIS OF PARTICULATE COMPOSITES

i
Introductlon
It was pomted out in Sectlon Il that axisymmetric representation of the
‘composite only approximates its real packing and structure. The axisymmetric
cells ure not an actual repetitive unit but are related in their dimensions to the .
interporticle spacings. They do not account for the total volume of the r:omposite
as shown in Fig. 8. The volume fractions of filler are calculated by assuming an
opproprlate packmg of the axisymmetric cells and each arrangement gives a dif- |
ferent number as md‘lcoted in Table 1. A computer program which anolyzes three
dimensional solids without restrictions enables one to overcome the apparent major
A hmltahon on the use of an axisymmetric ana|ysrs of the composrte moterrals. :
| The program, SAFE-3D(I9) for the three-dumensuonol elastuc analysns of
heterogeneous composute structures was used in the onolysus dnscussed in thns Sectlon. |
This program uses the fol_lowmg types of finite elements:
1) tetrahedral elements to represent the continuum
2). tnangular p|cme stress membrone elements to represent inner Imer or .
outer case, cnd “ | | |
.3) uniaxial tensuon-compresswn elements to represent mternal remforce"
- ment as shown in Fig. 23. ; ,
The structure can be ef arbitrary geometry and can have any desired distributions
of material properties, temperutures, surface loedings, and boundary eonditions.
The generality of the SAFE-3D program puts a limitation on its use from an econom-
ical standpoint.
" To 5|mp||fy the geometric subdivision of the solids, the tetrahedral elements
are ploced into groups of three, which together form an octohedron (eight=sided

figure). In a uniform mesh the octahedron may look like a triangular prism, as

37
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(8). ' - (C)

Fig". 23." Finite Element Types: (A) Tetrahedral Elemeﬁf, () Membrane
Plane Element, and (C) Uniaxial Bar Element
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shown in Fig. 24(a). The octahedron becomes the input element, and it is internally
subdivided by the program into three fetrqhedra, as shown in Fig. 24(a). At irreg-
ular regions in the solids, the octahedral elements may degenerate to elements of

one or liwo‘tefrahedro as shown in Fig. 24(b) and (c).

Boundary Conditions

~ Stresses in three~dimensions were calculated around spherical inclusions for
_ various i'hten;parﬁcle‘ spacings. Spherical inclusions were assumed packed in a

B cubic oﬁay as shown in Fig. 25.- As m the case of the axisymmetric analysis, the
stress=strain relations of the martix and the filler were assumed glasﬁc and also
perfect Eoﬁding was éssumed between the filler and matrix. | |

Due to the symmetry of the problem, one needs to analyze only one eighth
éf the sphere embedded ina cube as shown in Fig. 26. Three-dimensional meshes
(subdivisions) of the solid for the ‘cose's r2/r1 = 0.357, 0.714, 0.870 and 0.952
(where m and ro are shoWn in Fig‘. 26) are shown in Figs.}‘27-30. It was assumed
that the ;:omposi_te'is strained in the z-direcﬁondr'\d that no trections are
applied in'the x or y direction. The following boundary conditions for the t.yA_rpical,
region (Fig. 26) have to be satisfied.

By symmetry, the éhéar stresses on all the faces of the cube ABCDEFGH are:

Txy - Tyz= Tzx © 0

The fcé:es ABFE, EFGH and BCGF of the cube remain parallel to their original
positions after they are di§p|oced by the force in the z-direction whereas the
normal dispiacement of the faces ABCD, ADHE and DCGH is zero. The normal

forces on the faces ABFE and BCGF must be zero so that:

(odA 0 on x =ry
X

A

A,Q.GydA

]
o

ony=.rl
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Fig. 24. Octahedral Element and Degenerate Cases: (A) Basic

Octahedral Element, (B) Two Tetrahedra Degenerate
“Case, and (C) One Tetrahedron Degenerate Case

()
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Fig. 25. Packing of Spherical Inclusions in a Composite
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Fig. 26. A Typical Three=Dimensional Region Analyzed
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Fig. 28. Three~Dimensional Mesh for r2/r1 =0,714
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47

where. the integral is replaced by a summation in the finite element- method. These
boundary conditions are equivalenf to the ones used previously for an oxieymmetric
representation of the composite material.

The above boundary conditions were satisfied by a superposition method.
This superposition method and subsequent calculation of composite modulus of -

elasticity and Poisson's ratio are discussed in Appendix .

Internal Stresses

The infernul triaxial stresses were calculated throughout the volume of re-
presenfahve fllled ceramics with filler contents up to 45.23 percent (minimum
mterporhcle spacing = 0. 096 For where r, = radius of spherical porhcles)

The fo||owmg component properties were ossumed

Glass matrix E = 11.8x 10° psi

| - v = 0.197

Alumina filler E = 60.4x 10° psi
v = 0,257

These properhes are the same as used in Section Il and equwalenf to the -
experlmenfol values reported by Hasse Iman and Fulrath( )

The stresses around the spherlccl inclusions are shown in Figs. 31 -34 for
four different interparticle spacings (T]"—" 0.357, 0.714, 0.870 and 0.952). The
stresses are represented as a ratio o/ S, where g, is the average stress o'pplied to
the composite. Thus, the ratio represents the stress concentration around the
cavity. The stresses are in the elements adjacent to the inclusions and are assumed
to act at the center of each of the elements.

The radial and tangential stresses obtained in the axisymmetric analysis of .
filled ceramics have been compared with the results of the three-dimensional

r
analysis for three different interparticle spacings ( ?'ll— = 0.357, 0.714 and 0.870).
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Figs. 31-33 show that the two analyses give almost identical stress distributions.

'Minor‘ differences at some places may be attributed to the shape and size of the
‘ r

: fini4te elements. The siresses for the case "= 0.952 (Fié. 34) show the same
general trend of the stresses around the inclusion, and as would be expected
: the radial stress at 9 =90° is much higher compared to fhat for the other three
cases. L ‘

The v'criatioﬁ of stresses at the pole (¢ = 90°) en_d the equator (6 = Ob) of
sphe‘tfi‘cdl' p'art‘icles are shown in Fig. 35 as a function of r'2/rl (wHich represen.is
a definfte interparticle spacing). The curves were extrapolated to rz/r] =0
which corresponds to a single inclusion in an infinite matrix. Theoretical results
of Goodi.er(l):cpplicable fer rz/r] = 0, agree quite ‘well with the predicted values.
Also shown in Fig. 35 are the stresses obtained by the axisymmetric analysis. The
results of the two analyses are quite comparable in all cases except for fangentiel
stresses at © = 0°. In the oxisymmetric' analysis, at 8 = 0° the stresses are in-
dependent of position around the equator. This is not true for the three-dimensional

analysns. Thus, the averagmg effect is probably the reason for the dlscreponcy in

the tangential stresses.

E Iastic Constants

The predlcted moduli of elasticity are shown in Fig. 36 and Table 4 as a
fuﬁctlon of the ratio r2/rI The modulus of elashcuty increases as the filler
centent increases. The moduli of elasticity values predicted by axisymmetric -
analysis have also been plotted in Fig. 36. It is seen, once again, that the

resulfs of the two.analyses are quite close when plotted as a function of inter=

particle spacing.
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Table 4. Predicted Modulus of Elasticity of Alumina Filled Glass

r 2/‘_ Modtz:\:)séo:slli)lashcny
0.357 . _ 12.30
0.714 | ~ 16.06
0.870 o 20.57
0.952 24.96

The predicted values-of moduli of elasticity have been plotted as a function
of volume fracfion of Al ‘03 in Fig. 37. For the three-dimensioncl analysis, the |
volume frcchons hove been cclculoted from cubic packing of the spheres as shown
_in. Flg. 25. In the case of the axisymmetric cnalysns, the volume fractions can be
calculated by assuming a sphere inside a ¢ylinder, hexagonal packing or a cubic
@ckfng of the spBeres as shown in Fig. 8 and Table 1. At lower values of the
" ratio of r2/r-| the volume frc‘lctions calculated 'by assuming three different pocl;ings
do not- differ appreciably but at r2/r] = 0.87, the volume fraction may be assumed
to be 34.43 or 43.83 depending upon the assumed packing. The values of modulus
of elasticity predicted by the axisymmetric analysis have been plotted against the
rBree volume fractions in Fig. 37, At lower volume fractions all the values compare
satisfactorily with the three=dimensional stress ondlysis. However, at higher
r2/rl ratio the values plotted against volume fractions calculated by assuming a
hexagonal packing agree very well with the results of the three-dimensional anal-

ysis, which lie in between the other two cases.
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Fig. 37. Comparison of Modulus of Elasticity of Alumina-Filled
Glass as a Function of Alumina Contents, Predicted by
Three-Dimensional and Axisymmetric Analyses
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The present results strongly suggest that the interparticle spacing is a more
significant parameter than volume fraction for presenting the internal stress dis-
tributions in a composite material. - An average volume fraction of the filler is
usually a more familiar term to the investigators. The interparticle spacing and
the. volume fraction can be easily related to each other in a composite with thé
uniform distribution o% filler particles. However, the real composite olwoy§ has
some non-uniformity. Thus, in a region of the composite, where the concentration
of the filler is hfghgr than .the average filler concentration, the internal stresses
may. be significantly hnge( than would be expected on the basis of a uniform
disfributfon of filler particles.

The results of the axfsymmefric onolysiAs and the three-dimensional analysis
agree very well when presented as a function of interparticle spacing (which is

uniquely determined by fhe ratio r2/r]) The axisymmetric analysis may be used

.. without much loss of accuracy in place of a relatively complicated and much more

costly three-dimensiono| analysis of composife materials. |t may be mentioned

here that the cost of obtaining mformuhon from the SAFE"3D( ?) program is about 4

(13)

20 times that of obtaining the same _mformchon from Wilson's program for fhe

analysis of axisymmetric solids.



IV. ELASTIC ANALYSIS OF THREE PHASE FIBROUS COMPOSI'iES

Infrbd'ucfion

The mcmy‘ outstanding features of high performnnce fibrous composites have
~ made ihem attractive structural mafericls. Oriented fibér reinforcement offers a
'sfrengfhen.ed and stiffened material having a high sfrengfh-fowei'g'hf ratio.
Additional advantages of fibrous compoasites include improved behavior at high
temperatures, the p:roduc_:tiqn of structural forms otherwiseincqmienient or im=
possible and controlled qniﬁéiropy in physical properties.

| In a unidirectional fiber reinfnrced composite the matrix serves two purposes,
nar.neI.y, to transfer the load to the fibers and to bind the fibers together. In the
ca-se of continuous fiber reinfoicemenf, the effect of fiber ends, where the load is
transferred by .t‘h'e .mcifri'x, is insignificant. The stress is assumed to be constant
over the whole length of the fibers. The principal purpose of the matrix is to blnd
the fibers together The sfrengfh of the composite is S then dependent upon the
sfrengfh of the fibers. However, in sfudymg the fracture of continuous fiber comn=
posntes it has been found fhat lﬂleldUOI fibers fail well before the entire composnhe
froctures. In this case Ioad fransferred to the broken fibers by the matrix and the
mferfacnal conditions may thus influence composite fracture partlcularly as the
number of broken fibers increases.

In the discontinuous fiber-reinforced ccim'posite, the attainment of high
strength in the composite will depend upon efficient load transfer from the matrix
to theifibers. Therefore, it is of considerable interest to understand hoi/v stress
builds; up in each individual fiber. A study of the length required for effective
reinforceme nt and the factors influencing this length sucn as the pronerfies of the
mcterial at the interface and the fiber end condition, should fhuis be helpful in
- guiding the development of nomposifes.

. 58



59

it is well known that in discontinuous fiber reinforced systems with all fiber
axes parallel to the direction of loading, the mechanism of load transfer from .
matrix to the fiber is an interfacial shear stress. A number of analyticcl studies
concerning this shear stress transfer have been carried out using simplified models.
| Fiber-matrix interaction has been studued for elastic matrices by Cox(2o) Dow (2])
and Rosen(22). They give expressions for axial fiber stress and for the shear stress
af the fiber matrix interface as a function of position along the fiber length. These
expressuons are quite similar to each other, although different assumphons were made

(24)

in deriving them. Tyson and Dav:es( ), and Schuster and Scala measured
in'.tér'focial shear stress between a metal fiber and epoxy resin by using photoelastic
fec.hniques.' Sfu.d.ies of Fuiiwora(zs) for resin-fibe;‘ load transfer in a single fiber-
resin compos:te mdncate that the stress distribution depends upon glass fiber Flmshes,
especially under wet condmons. Carrara and McGarry( 6 studied the effect of
fiber end geomefry on the sfresses near the end of an elastic fiber embedded in an
elashc matrix. They found that the stresses depend strongly on the geometry of

| the fiber tip More recenfly, MocLoughlin and Barker( 7) investigated the effect
| of modulus ratio on stress near a discontinuous fiber. They analyzed a two-
dlmensmnol plane stress compossfe conflgurahon usmg moire strain analysus and
fmlfe element analysis.

'One of the most important factors'influencing the transfer of load from the
matrix to the fibers is the interface condition. This factor has been thus far lorgély
ignored by investigators. |t wﬁs pointed out in Section Il that a weak interface
comp‘lete|y changes the stress distribution and results in low modulus of elasticity
of the' composite. A stronQ interface allows an efficient transfer of load to the
fibers ahd would produce a composite with high tensile strength and high modulus

of elasticity, therefore a low ultimate elongation. The low ultimate elongation

indicates a lower energy absorption of the composite. Some intermediate properties
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of the inférface may produce a composite which would have a higher impact strength
' yvithout much loss of tensile strength. However, a 'very detailed study assigning
different property values to the material at the interface is needed to understand
the-actual role of an interface on the load carrying capacity of the composite
material. Such a study should be helpful both in pfedicﬁng the behavior of a
composite in which fhe inferfociul conditions can be varied and in developi'ng.a'
composite to meet the requlrements regarding the final property values. Th.e’l
present mveshgohons were underfaken with fhus |dea and interfaces with properties

: varymg over a wide range were studied. This study, once again, was carried oQt
using“fhe axisymmetric analysis of composite materials witH the computer program

(13).

written by Wilson

' Representah ve Area

Umdurechonql dlsconhnuous flbers were assumed to be pocked in a regular
array as shown in Fig. 38. Although this does not represent an actuol packing of
the fibers in the composite, this idealization is necessary for an axnsymmefruc anal-
ysus. The relation of the model to the actual composite will be d|scussed furfher in
_the next 'section. |
_A It was assumed fhct the fibrous composite could be approximated by a cell
(Fig. 39) which when rotated 360° around axis AD produces a cylinder embedded
within'a cylinder. The interfiber spacing.is equal to 2 (r] - r2) in both dvirecﬁorA\s
as shown in Fig. 39. The finite elements used for the case —:..% = 0.67, are sh.‘o‘wn
in Fig. 40(A). Based on a cylinder within a cylinder, this corresponds to a fiber
volume fraction equal to 42.4 percent. The fiber aspect rafio used (ratio of fiber
length to fiber diameter, 1/d) .is 10.375. The elements adjacent to the fiber (shaded
elements in Fig. 40(B)) have been assumed to represent the finite thicknes_s of’Athe

interface. The property values (mainly the modulus of elasticity and Poisson's
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Fig. 38. Symmetrical Packing of Discontinuous Fibers in a Composite
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Fig. 40. (A) Finite Element Grid for r2/r1 = 0.67, and (B) Finite Thickness of the Interface
Represented by Shaded Elements :




: -'ratio_in the present case) assigned to these elements are chonged to sim‘ulote a
chaoge in the interface conditions. A high modulus of elasticity of the interface
'reoresenfs a strong interface capable ‘of transferring more 'looc‘! whereas a low
modulus represenfs a weak interface. The shaded elements account for 7.76
percent of the totol volume. In some cases the thickness of the mferfoce was
reduced by a half to study the effect of this change. The elements adjacent to

the fiber end may be assigned property values different from those for the interface.
: Ti’\is enables o'n'_e'fo sfudy the effect of fiber end condftioh on the stress distribution.
.For‘example', 5 Qéry low modulus of elasticity for these elements .may be assumed

to r'elpresent a debonded end because a negligible lood'WiII be transferred through

:the fiber end in this case:.

Boundary Condmons and Component Properhes

Stresses in three dlmensmns were calculated in all the elements.shown in
F|g40 for various interface conditions. As in the case of the particulate com-
pos_ites, the sfress-ssroin relations of the} mofrix and the fibers were assumed elastic.
The sh'ess"sfroio relaﬁons for the materials at the interface and the fiber end were
also assumed eloshc. It was also assumed that the composufe is loaded by a force
in the z direction and that no tractions are applied in rhe r direction. These
assumphons lead to the boundary conditions |clent|co| to those for the particulate
composite described in Section II. Therefore, the procedure to sqhsfy these bound-
ary conditions and the subsequent calculation of the composite modulus and Poisson's
ratio was also the same as described in the Appendix .

The following component properties were assumed:

Matrix E = 0.4x 10° psi
v = 0.35

Fibers E = 11.8x 10 psi
v = 0,197
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These properties represent a typical glass fiber reinforced polymeric material.
Properties of the interface were varied over a wide range. Investigations

were carried out using eleven different combinations of property values as shown

in Table 5.

1

Table 5. Properties of the Interface

me

—
—t

'S, No. | E (psi) v ~ Vol. Percent _E at the fiber end
N g x10° 0.2 7,76 8 x10f
2 g x10® 035 7.7 8 x10°
3 8 x10%  0.45 7.76 -8 x10°
4 8 x10° 0.2 3,79 | 100
5 g x10® 0.2 7.76 00
6 0.8x10° 02 . 77 - 0.:8x1dc®
7 0.4 x 10° 0.2 .79 - 0.4 x 10°
8 0.ax10® 02 BN 0.1 x 108
9 10,000 0.2 3.7% 10,000
10 000 0.2 776 1,000
. S0 02 77 100

Modulus of elg_sticity of the inferjface has be.,e_n:‘\.'aried from a very high v-alue
- of 8x 10° psi which is close to that of the fibers to a very low value of only 100
psi which may be considered to represent debonding of the fibers from the matrix.
The ffrst three sets of prdperfies have been selected to study the effect of Qarying
.Poissqn's ratio of the interface. Modulus of elasticity of the elements adjacent to
the fiber end is the same as that of the interfaée for all cases except for 4 and 5.
For these two c'asés it has é very low value (100 psi) compared fo that of the inte;'-

face. This représents a case c;f strong interface with debonded fiber end. The
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only difference in the eose'4 and the case 5 is the thickness of the in_terfece which

would change the volume percent of the interface.

. The stresses in a fwo-phase fibrous composite (i.e., with the elements at the
interface having the same properties as the matrix) have been shown in Figs. 41~
44, The stresses have beeh normalized with respect to the applied etress on the
composufe (o ) In the figures Z is the'distance from the fiber eed and d is the
flber dlumeter. Varlahon of the axial stress in the fuber and the mterfacual shear
sfress along the flber is shown in Fig. 41. The fiber axial stress attcnns its maxi=
mum value in less than two f|ber dlometers from the flber end. In about the same
: dlsfance the mferfacual shear stress drops down to zero. The axlal stress at the
fuber end is about l 50 whnch mducates that the Ioad transfer from the fiber end
- is sngmf'canf. Thls can also be seen from Fig. 42 in which the variation in the |
" radial dnrechon of the matrix ax|a| stress (in the elements adjacent to the flber '
end) has been shown The axial stress in the elements with r/r2 less than-one
(where,r2 is the radius of the fiber) is nearly 1.30_. This s:gmflcant load transfer
fro'm‘ the fiber eed 'leads to a small ineffective fiber length over which the fiber |
.dzoes not carry the mcnximum stress.

The maximum fl ber stress (cf) in case of unidirectional long fnbers can be
calculoted( ) by assuming sharmg of load befween the fiber and fhe motnx as | .
follows: |

% Ac - cfAf * amAm (M
where A represenlls the area. Since there is perfect bonding between the fiber
and the matrix, fhe strain experienced oy the composite is equal to the fiber strain
and also the matrix strain

€ ;e"= & o (2)
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Fig. 42, Radial Variation of Normalized Axial Stresses in the Matrix of a Two=Phase Composite
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9 i
Therefore T E;— , (3)
_ m

Combining equations (1) and (3)

c ( m o _m
L s AL g AL E g
- - f 4 m 5«  "m 0.4
For the present case = Y and e n - fhus
. o .
f _ :
- = 2.15

¢

This f;atio of fiberl‘stress to the composife. sl;eﬁs is very close to thé_one obtained
by finite element- onalysus (—f— =2.17) ond shown in Fig. 4,
‘Variation of the matrix :xnol stress and the matrix radial stress at the inter-
~ face along the fiber |ength’ are shpwn in Figs. 43 and 44 In bpfh cases the stresses
increase sharpl); near .'t.he. ﬁber end.. Figs. 43 and 44 oléo show. discontinuities in the
stresses upon passin_g the fiber.end. This is not unexpected Because of the dfscan-

tinuity in the material prbpérﬁes at this point.

Effect of Intgrface

The stress distributions for three phase composi tes-were obtained for all .the
cases indicated in Table 5. In the first three cases, the Poisson's ratio of the inter-
face was assigned three different values of 0.2, 0.35 aﬁd 0.45 while keeping all
other properties unchanged. The stresses thus obtained in the three cases were
almost identical to each other and hence they have not been plotted separafel)'if
These stresses have been shown along with the other stress distributions for different

interface elastic moduli.
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Disfributionﬁ- qf fiber axial stress along the length are shown in Fig. 45 :for
in'teirface moduli varying from 8 x 106 psi to 100 psi. When the interface moaulus
i nledt" the matrix modulus or Higher, the fiber axial stress attains a rhaximurﬁ yalue
~wffﬁin Mo fiber diameters from the fiber end. Thé stress distributions for the tﬁree
case of interface moduli (E = 0.1 x 106, 0.8x 10° and 8 x 106) 'are>ver’y s‘irlnilar'
to each other.  As the interface modulus decreases to 10,000 psi, the fiber axial
slfres‘s_a’ttq'ijnsvill"s moxi_mufn value in about four fiber diometer from thé_ fiber end..
But as tjheA'ihfechc;e modulus further decreases to l,OOO'ps,i or 100 psi, the fiber
- axial stress does not regc:H ‘a constant value with the present fibér |}engﬂ.1_ of ten |
ffber;d'icmetem. _Due to thg low interface médulus, the inféffacg does not transfer
|oad‘Afrom métrix to the fiber :c_afficienfly. In fact. the modulus of 100 psi is so low
thaif'if represénts the cusenic-:of com'pl.ete debonding of the fiber frém the matrix as
will Be shown later. . |

Interfacial shear stress disfriButions for all the above cases, except for fnfer-
face modulus of O'.BX ]06.‘ ps'i, have been shown in Fig. 46. The stress distribution
for the inferfaqé modulus of 0.8 x 10° psi is very close to the one for the interface
modulus of b.l x 108 psi. The stress distributions in Fig. 45 are related to those ‘
in Fig.‘46 be.c':ai:se}fibér stress build up is related to thg shear stress at the interface.
The lreldfion between the _fiber'axial stress and the interfacial shear sfress.ca-n be

ébfained by considering equilibrium of an infinitesimal fiber length dz (Fig. 47)

as follows: |
. o, ) . o _
(cyf + dof) Mr =0 meo 47 2nrdZ (5)
_ 2 ' : '
dop = — 7 dZ . (6)

.22 ) 4 )
of=c+-r—§'rdZ | (7
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i‘ wHere 0, is the stress at the fiber end and the exact form of r will depend upon
relative properties of the fiber, interface and the matrix. Equation (7) shows that
the area under the plot of shear stress .versus the length of the fiber represents the
change in fiber stress or in other words (from Eq. 6) the slope of curve for fiber
stress is given by the magmtude of shear stress at the interface at that' point, . It
can be seen that the stress dlsfrlbuhons in Fig. 45 are consistent with those in Fig.
46 The shear stresses at the fiber end for interface moduli of 0.1 x 10% and
'8 X, 10 psi are hlgh and they drop down to zero in obout two f|ber duameters. Due
to the high mferfac ial shear stress, the flber ox‘nal stress increases rapidly and reaches
d eonstonf vﬁ lue as the shear stress drops to zero. For the interface modulus of |
10, 000 psi the sheor stress does not drop to zero as quickly as in the previous cases
and thus Ieads to a hlgher maxnmum stress in fhe fiber. Normahzed shear stress at
the flber end for mterface modulus of 1000 p5| is less than hclf of those in the -
prevuous cases. However, fhls does not decrease very fast uway from the flber end‘ :
and hence the oxnal stress in the fiber builds up to about tw:ce fhe stress on the '
composne. It may be expected that in this case the flber stress~cou|d reach a .
constant va Iue if the flber was long enough. Interfocnal shear stress in the case of
mterfoce modulus of 100 psu is very small and fherefore very Imle lood transfer is
poss:ble from the matrix to fhe flber. | |

Fiber axial stress at the end has been plotted as function of log of interface
modulus in Fig. 48. Thi; stress gives aﬁ idea of the load transfer through the fiber
end. At very low interface modulus the stress at the fiber end is very small indi-
catihg that ne significant Iqad transfer takes place through the fiber end. The stress
at the fiber end increases with the increase of interface modulus.: When the inter-
face modulus is close to or higher than the matrix modulds, the fiber end stress is
quite high. indicating substantial load transfer through the end. As the interface
modulus varies from 10° psi to 8 x ]A06,psi fHere is not much change in the fiber end

stress.,
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S Variation in the radial direction of the matrix axial stress (in the elements

adjacent to the fiber end, refer Fig. 42) has been shown in Fig. 49 for interface

~moduli of 100, 1,000, l0,000 and 100,000 psi. Fer interface moduli higher than

. . . _ |
3 psi, the variations are almost identical to the one for modulus of 10° psi. All
the curves in Fig. 49 show a discontinuity at —E{ = 1.0 because of the disconti-~

10

n-'ufty in the material properties at this point. In the case of inrerface modulus of
3 p5|, the matrix axlal stress is about 1.5 o_ for r/r2 less than .one and it sharply
drops away from the fiber end. This is beccuse the fi ber carries more load than the

matrix. For the interface modulus of 10,000 psi, the matrix axial stress does not

‘change appreciably as 'r/r2 varies from zero fo 1 .5 In the cases of interface

medbli of 100 and 1,000 psi, the matrix axial stress for r/r2 less than one is very
smoll but increases very sherply away from fhe fiber end. In these two cases the

load transfer from the matrix to the fiber is very small because of the weak inter~

| face Therefore most of the load is carrled by the matrix.

D|srr|buhon of mcm'lx axlal stresses along the fiber length are shown in Flg.

50 for the mterface modull of 100, 1,000, 10, 000 and 10° psi. Inall the cases the

sfresses increase sharply near the fiber end They also show dlsconfmumes in the

sfresses upon passmg the fi ber end because of the physical dnsconhnunty at this -
pomt. In the cases of interface moduli of 104 and 10° psi, the stresses away from
the fiber end drop to a very low value indicating that most of the load has been

transferred to the fibers. However, low modulus of the interface (100 or 1,000 psi)

does not help in the transfer of load from matrix to the 'fibers and therefore the

axial stresses in the matrix away from the fiber end are consuderably hlgher than the
applied composite stress in these cases.

Radial stresses in the matrix have been plotted along the fiber length in
Fig. 5! for interface moduli of 100, 1,000 and 10,000 psi. The stresses increase

sharply near the fiber end. The stresses away from the fiber end are compressive
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" in case of tHe interface moduli of l‘,OOO und 10;000 psi. For the interface modulus
of‘j 00 psi, the radial stresses in the matrix are zero. It was shown in Fig. 49 that
. the axial stresses in the matrix adjacent to the fiber en& Ore nearly zero for inter=
face modulus of 100 psi. Small magnitude of the stresses may be attributed to the
size of the finite ’elerﬁeufs. Thus the. normol stresses in the matrix ddiacer;t to the
f:ber are zero mdlcahng a free boundary. Therefore this represents a case of com-
plefe debondmg of f’bers from the matrix. This effect is the same as obtamed in
the case: of parhculafe composlfes ( Section ||)

o Composlte modulus has been plotted asa functlon of Iog 'mterface modulus
,'" Fug. 52 At very Iow mterface modulus the fibers do not confrnbute to the
shffness of the compostte. As explamed earlier, this is due to the fact that the
weak interface does not permit any load transfer from the matrix to the fiber.
Therefore, the composite behaves as. if these were voids of the size of the fiber

and the interface. As fhe-interface modulus increases, the |ood transfer takes _
place from the matrix to the fiber and consequently the composite modulus i m-
creases as shown in Flg. 52 The Ha|pm and Tsai equahon( 29) may also be used

to colculate the modulus of the- two phase composlte with dlsconhnuous fuber rein=

forcemenf. For fhe modulus in the |ong|tudma| direction, the equation can be

wrlffenas
) 24 E
EL=’+T’Vf'"L | @
En T an |
where € Y1 o

"= ey FZ7d

and E_, Ecand B} arg the matrix, fiber and the composite moduli respectively.
For the present case Ef- ]—H , 51 = 10.375, Vf = 0.424 and Em =0.4 x 106 psi
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thus
E, = 3.15x 10° psi
This value of the composite modulus compares favorably with the valve of.
3.58 x 108 psi obtained for the two phase composite by the finite element method.
The onset of failure may be predicted from the knowledge of the stress dis-

tributions in the composi te. To this end, distortion energy given as follows:

U= pliegmep? e (dz-a)z tgme?l (0
(where Oys Oy and Oy are principal stresses) was calcu |ated for all the elements
(Flg. 40) for different mterface moduli (normclnzed stresses were used for this -
| calcu lation). Maxlmum dlstortlon energy in any element of the matrix has been
plotted asa functlon of interface modulus in Fig. 53 Maximum dustortlon energy.
| always occurs in an element near the fiber end. Strength of the compostte based
on von Mlses fallure cntenon (i.e., the initiation of composnte failure occurs as
soon as the dnstortlon energy in any element of the matrix reoches a lmutmg volue)
is shown qualitatively in Fig. 54, The actuol strength values will depend upon the
matrlx strength. For very low interface modulus. the strength of the composlte is
low due to high stress concentrations at the dnscontmuuty Strength of the com=
posife increases as the interface modulus increases. But as the interface modulus |
changes from 104 psi to 8 x 108 psi, the composite strength remains almost constant.
However, Fig. 52 shows a significant change in the composite modulps over this
range of interface modulus. Thus, the ultimate elongation of the composite can be
controlled without cffectfng the failure stress by suitably controlling the interface
_modulus (using e surface treatment on the fibers during manufacturing). This also
shows that a good combination of the tensile strength and toughness (or the impact

strength) may be obtained by suitably selecting the interface properties. .
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Effect of Fiber End Condition

[t has now been shown that a very low modulus of rhe interface does not allow
for load transfer across the interface. This fact has been made use of in studying
the stress distribution in a composnfe with strong mterfoce but with the fiber end
debonded from the matrix. Elements of the interface adjacent to the fiber end
were a.{signed a modulus of . 100 psi.while the rest of the interface had a modulus of
8 x TQéipsi. Studies with the debonded fi'ber end hove_Been carried out for two'
tﬁickneéses of the interface i.e. with interface volume of 3.79 and 7.76 percent.
Resulting stress 'disfribu.trons are shown in Figs. 55-58.

Axial stress distributi.on in the fiber (Fig. 55) shows that the stress at the
flber end is sngmflconfly reduced due to debondmg of the end. The sfresses m-
crease very rapidly away from the end. This is because very high shear stress is
developed in the mherface near the end (Frg. 56) The hlgh shedr stress is produced
due o the dnsconhnuny at the end. The strong mferfoce allows an effi cnent transfer

Aof load from the matrix to.the fibers. The fiber axial stress reaches a consfonf value
in Iess than two f' ber dnomefers from the end and the shear stress drops to zero in-

the same dnstonce. These resulfs are m ogreemenf with the observations of Chen
and Lovengood( 0) that debonding at the fiber ends tends to increase the maximum
interfacial shear but has relatively little effect on the maximum fiber stress. ngs‘.
55 and 56 alsoéhorv that the change in interface thickness has very little effect on
the stress distributions. |

Variation in the rad.iol direction of matrix axial stress (in the elements ad-
jacent to the fiber end, refer Fig. 42) shows (Fig. 57) that the axial stress vanishes
for -;'-'2- less than one. This is to be expected becouee Ft acts as a free boundory
due to debonding of the fiber end. The axial stress increases very sharply near

-l:r— = 1. The variation of matrix axial stress along the fiber length is shown in
.
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Fig. 58. This shows the stress increases very sharply near the fiber end and the
discontinuity in the stress at this point is much severe than the one with the bonded

fiber end.

Some Comments on the Results

Results of the elastic analysis of three phase fibrous composnfes have been
presented in this sectlon. Vcnous stress distributions should glve an insight for
their relative importunce and their application. A close exammahon of Fig. 46
shows that the maxiﬁum shear sfre;ss at the ’interfoce is about 0.4 times the applied
sfre;s and Fig. 45 shows that the maximum shear stress in the fiber is‘ 2,5 times the
applied stress i.e. the shear stress is approximately one si;cth of the fiber stress .
For a typical fiber strength of 150,000 psi, the shéar stress produced in the matrix
| will be 25, 060 psi. If no yielding is alrlvbvi)ed ‘the interface would faill at this high
shear stress and hence may be fhe controlling factor for the composute sfrengfh

The shear stresses in case of debonded fiber ends are extremely high (Fag. 56).
These stresses are high enou_gh to cause the complete debonding of the fiber from
the matrix. Debonded fiber end represents a case of very pracl.'icol' iﬁpoftonce be-
cause the fiber et;d may be debonded due fo high stresses at the interface or one
brbken fiber would produce two debonded fiber ends. A fiber once debonded from
_ the matrix does not usually carry any load and its load has to be shared by other
fibers. fhis results in an increase inthe sﬁ’ess iﬁ other fibers and therefore ma‘);
trigger the failure of other fibers and ultimately the composite. However, some=
times co,mpressi‘ve residual stresses are present in the matrix which are produced |
during manufacturing of the composite. The radial compressive stfésges at the
interface would cause a mechanical friction llaetwéen' the fiber and the matrix.
Under thege conditions, a fiber which has been chemically debonded from the

“matrix may still carry some load. The present analysis does not take into account
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the residual thermal stresses of the‘cdnpogi te. A separate analysis has to be carried
out whenever these stresses are deemed significant. Another limitation to the
present analysis is the assumption of elastic behavior of the matrix. This assumption
is valid in the case of some polymer matrices such as the epoxy resins. In case of
méfollic matrices, where the plastic flow may be quite significant, the elastic anal-
ysis has a very limited appliccfion; Behavior of the composites with the yielding -
mcfr.ices can be understood only by an é-lastic-picstic analysis. This has been the

subject of investigations in the next section.



V. ELASTIC-PLASTIC ANALYSIS OF FIBROUS COMPOSITES

Introduction

 The behavior of a composite material can be divided into three regimes:
(1) linear elastic response up to the elastic limit of the matrix materiol,A(Z) in-
elastic behavior beydnd the elastic limit and up to that loading at which first
foiluré occurs locally, and (3) subseqqénf crack propagation and total ;;ornpoﬁité
failure. ’.

So far in the thesis, behavior of the composife materidls has been investi=~
gatedAc-)nIy in the firs} re,gime (i.e. with linearly e-losﬁc motrix) which has received
greoter attenhon of other mvesflgafors than the other two reglmes. But due to the
assumption of a Imeorly eloshc matrix material, fhese studies are applicable in
predlchng the behavior of the composite maternal- with very special matrix material
féf examélé the époxiés or a ceramic or in predicting the initial (el'css‘tic or Young's)
“modulus of the composnfe and eloshc stress concentrations. ‘
However, a number of materials, for .example metals and polymers, selected
" as the matrix mofenals for the composutes exhibit high strain capabshfy i.e., h|gh
ductllnty or yleldmg. This duchlnty permlfs large local strains to occur in matrix
near fuber discontinuities and-in regions between closely spaced fibers. But since
elastic analyses do not permit this local yielding they are only valid up to the
o#p]ied composite stress at which the most stressed material region reaches the
elastic limit value. And this applied stress Ievel is typically only a fraction of
that at which composﬂe failure occurs.

The consuderchon of nonlmeqr material response represents a somewhat mére
formidable undertaking. As a result, not much work in the general area of micro-
me chanical behavior of composite materials, i.e., consideration of local states of

stress as affecting gross or éomposite properties, has been done. Doughty and

.94
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_ McGarry(sl) studiedaéiﬁgle fiber model of a disconfi‘nuous fiber reinforced com-
posite material with an elastic-plastic and viscoelastic matrix. They show that even
at the composfte stress lower than the yield stress of the matrix stress concentration
at fhe fiber end causes some local yielding in the mofrix,.fhe ex*enf of which
depends on the shape of the fiber end. This yielding has a prof;)und effect on the
(32)

stress in the fiber end. - Adams carried out an inelastic analysis of a unidirec- |
tional cdmposi_te subjected to transverse normal ﬂoadiujg. His results indicate that
éxtenéive local yielding and redistribution of stresses can occur in'a composite with
véry little indicafign.of such behavior being apparent by observation of the total
stress=strain response of the composite alone. These sfu&ies show the importance

of elastic-plastic analyses to the understanding of composite material behavior.
HdWe;/ef,_ much work has to be done before the design criteria and :theor;ies of
f@ilQre could be established and inférprefed in the light of elasfi.c-plostic analyses
‘of the composite material. The present-elastic=plastic analysis of fibrous composite

subjected to longitudinal (axial) loading is a step in that direction.:

: Aﬁaiysis- of the Models

Pa}ckirng- of the fibef:s in the composites was assumed to be the ;'.dme a§ in
Section 1V (Fig. 38). .it was pointed out that this idealizaﬁqn of the comlposife‘
has a definite limitation sfnce in the region between the two rows of fibers the
total load is supported by the matrix. Such a secfidn would, therefore, be the
weakest and hence the confro.Hing one for the strength of the composite. An
elastic-plastic analysis would show that fh'is section would be the first to yield
and the stresses in this section can not build up beyond a certain value although .
the strains may be very large. Thus, the applied stress on the composf_te studied

by this model (Fig. 38) is limited by the section between the two rows of fibers.



Fig. 59. Packing of Discontinuous Fibers in a Composite
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Fig. 60. Finite Element Grids for (A) ro/ry = 0.67, (B) ro/r) = 0.25
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boundary conditions for elastic analysis, can no longer be used due to the elastic-
plastic matrix. The following procedure was used‘ to saﬁsfy the boundary conditions:
" The stress and dnsplacement dustrnbuhon is found (with reference to Flg. 39)

such ‘that

(U_) = 'K] (Specified displacement in z=direction),
z AB : .

’ (Uz) . =0 (Symmetry),

. DC _

) = Koy "(Specified displacement in r-direction),

(U) = 0 (Symmetry),
- TAD |

.'r ‘ .=.‘ ‘1' r, = 10 (on ABCD).

| F-ror;mjthese bounc.iaryAconditions, ‘c and o, in all elemenfs and displocemenfs

U ond U at all nodal circles are determmed Ky is selected to obtain the desired
volue of stram in z-dnrechon The valve ofK, has to be plcked such that fhe net
force i pn the.r-direcho_n along BC is zerp, Thus

- (Fr) =[ ,crdz="BC|v3'r=0. ' ' ('l)

~~"BC JBC g A :

. Se'v‘ero‘l values of K, may have to be tried to soﬁsfy _gqt':qfion m. Experiencé |
shows fh,af it Qspolly take:s 41'hree ctfeméts,to 'get. the correct value to K, which will
sqﬁsfy équation (i)_. Wi't'h', this \)olue of‘ ,K2, the sblufion obtained is the desired one |
which satisfies all the boundary conditions and is equivalent to the s.uperimlposed
soll;inon in the.case of elastic analysis. |

It was pomfed out that with the fiber packing shown in Fig. 38, thestressin a
single flber bunlds up due only to the transfer of load from the motrlx. The above

nmposed boundary condition that T vanishes on BC does not allow any stress transfer

from one fiber to the other and hence is invalid for the fiber packing of Fig. 59.
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ATTh,e distribution of Tr; is not known. A close approximation of the actual situation
would be to assume that the axial strain at each point of the outer boundary (BC)
of the representative cell (Fig. 39) is the same as ti’re average composite oxial
strain. This means that instead of shear stresses, the tangential displacements

are prescribed on BC. The stress and‘ displacement disfributi"on is found (with

reference to Fig. 39) which satisfies the following boundary conditions:

(U,) = k (Spécified displacement in z~direction), -
Y- DL S
(V.) =0 ~ (Symmetry), .
S 2pe | RN .
W) = | k2 (Spécifie‘d disploéement in r=direction),
(Ur) = -0 (Symmetry),
-~ AD

T = T = 0 on AB, DCcnd AD

: .(Uz-) = U(z)- (Specnfled tangential dnsplacement at all nodal
BC .

circles on BC)

* U(z) for each nodal circle on BC is prescribed such that the axial strain
along BC is constant and is equal to the one produced by displacement k] on AB..

It can be easuly seen that U(z) at a nodal cnrcle on BC is given by

k].z :
- |sc]

U(z)

where z is the distance of the nodal circle from DC whose normal displacement is
zero. Values of k] and k2 are picked in the manner discussed earlier. The stresses
and_ displacments thus obtained represent the state of stress in a composite with the

fiber packing shown in Fig. 59.
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Stresses With Axial Strains Imposed on One Boundary of the Representative Cell

To calculate the stresses, the following component properties were assumed:

Fibers . E = 11.8x 10° psi
| v = 0.197

Matrix E = 0.4x 10° psi
v = 0.35

' Yield Stresses = 8,000 and 20,000 psi
Yield Strains* = 2.0.ar'ad 5.0 percent
TPcsst YieldE = 100 psi |
The stress dtsfrlbutnons for the composnte with the fiber packmg shown in
Flg‘. 38 are dlscussed in thls section. The stress distributions for the second fiber
packmg will be discussed in the next section.
‘The stress d|sfr|buhons for rz/r = 0.67 and matrix yield stress of 8, 000 psn
are shown in Figs. 61-64 for four composite strain levels namely 0.2, 0.5, 1. 0
and 2.0 percent The average composite stresses are given in Table 6. Variation
of the axial stress m.ﬂ.me fiber is.éhown in Fig. 61. General nature of the curves
|s _fh‘elsdme as s_héwri m Fig. 41 for 'elas_t"ic ahalysis. _Fiber éfre;s atto?ns a maximum
valu'e._in about two fiber diameters from t.he fiber end. As the composite strain in-
creases the maximum fiber stress increases. Whén the composite strain increasgs'

x
from 1.0 to 2.0 percent, the increase in maximum fiber stress is very small.

* In case of triaxial stresses, the von Mises criterion for yielding has been used.
An effective strain e, is determined according to the formula:

ee = ) \/J? [(G] = €2)2 + (62- €3)2+(€3" 61)2]

(where ¢, ¢, and. ¢, are principal strains) for every element. If ¢ for an
element is greater than the yield strain of the material then that element is
considered yielded. ' ,



40| €=20%
| 1.0 %
30 05%
0 |
(2]
o
=~ 02 %
b .
10
0] B 1 o B Ly L
5 4 3 A o

z/d

Fig. 61. Fiber Axial Stresses Along Fiber Axis (r?/ri = 0,67, Matrix
Yield Strain = 2.0%, Axial Strain Imposed on One Boundary)

oL

zZol



T (103 PSI)

.4-
3
ol
Ir—l |
oL 1 ‘ T ', S
5 : 4 3 -2 b 0

z /d_

Fig. 62. Interfacial Shear Stresses Along Fiber Axis-(ri/rl = 0.67, Matrix-
Yield Strain = 2.0%, Axial Strain Imposed o One Boundary)

X0




20

10

o (10° PSI)

'FIBER END -

Fig. 63. Matrix Axial Stresses Along Fiber Axis (r, ry = 0.67, Matrix -
Yield Strain = 2.0%, Axial Strain lmpo oh One- Boundary) 5

¥01




o(io°Psl)

r/

Fig. 64, Radial Variation of Matrix Axial Stress Near Fiber End .
(rz/r = 0.67, Matrix Yield Strain = 2, 0% Axual Sfram S
Imposed on One Boundary) ‘

S0l



106

. | .
. : r ’ .
Table 6. ‘Average Composite Stresses for —r2 = 0.67 and (ay) = 8,000 psi
o ‘ ‘ ' 1 o ’m

W

Composite Axial - Matrix Yield Matrix Yield Average Composite

Strain- . Strain Stress “Stress
~ 0.2 percent 20 percent - | 8,000 psi 7,160 psi
- 0.5 percent - 2.0 percent - 8,000 psi 13,340 -psi |
1.0 percent 2.0 percent - 8,000 ‘ps:i 16,360 psi
2.0 percenf-, ‘ v2.-0 percenr 8000 psi - 16,820 psi

Thls |s because .the rnatrix between fhle two fiber rows (Fig. 38) has yielded and
fhe compoéi te stress does not increase significanﬂy dae‘to this change in composife
stram. Y|e|d|ng of the matrix is shown in Fig. 65 where the shaded elemenfs re-
present the ylelded regnon. There are no regions of ylelded matrlx at 0. 2 percent
stram.. Some elements of matrlx have yielded at 0.5 percent strain. More elements
yleld at 1.0 percent strain. But as the composite strain is increased from 1.0.t0
2.0 percent, the reg|on in whlch the matrix has yielded does not increase because
fhe weak sechon of fhe composute wuth matrlx alone has already ylelded Fig. 61 A
also shows that the F ber stress increases ||near|y near the flber end for compos:te
strains of 0.5, 1.0 and 2.0 percent. This is, once again, due to the yielding of |
matrix at the interface near the fiber end. S,hear stresses near the fiber end are
high and of nearly the same magnitude for composite sfrains;,of 0.5, 1.0 and 2.0
percent (Fig. 62). The initial straight line for fiber stress should be expected as
a result of equahon (7) in Section V. |

The shear stresses at the interface are shown varymg along the fiber length
in Fig. 62. Shear stresses for the composife strains of 0.5, 1.0 and 2.0 percent

are high near the fiber end and remain constant for some length and then very
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quickly drop to zero. The matrix axial stresses at the interface are plotted as a

_ function of distance from the fibelr end in Fig. 63. The stresses increase very’
" sharply near the fiber end due to the discontinuity. Variation in the radial di-
rection of matrix axial stress (in the elements adjacent to the fiber end, refer Fig.
42) fs shown in Fig. 64. The curve for 0.2 percent composite strain is si.rrjlilar‘ to |
one in Fig. 42 in the cusg_éf the elas‘fic‘unolys_is. This is because at 0.2 percent
‘composite strain .'e\)én the highest stressed element of the motri:é is elastic.” How-
" ever, at the composite strain of 0.5, 1.0 and 2.0 per.'c’ent the matrix near the fiber
lend has yjel‘ded énd hence "the stresses do not show much variation. - . |
The sfress_ distributions for rz/rl = 0.67 and the matrix yield stress of 20,000
psi are shown in Figs. 66;6?. The growth of yield zone for this jét‘:se is' shown in
Fig. 70. The average composite stresses are given in Table 7. |

. . r A :
" Table 7. Average Composite Stresses for -rl = 0,67 and (Uy) = 20,000 psi

V-Cdmpo:s'ite:vA)'(ia‘l' “Matrix Yield ~ Matrix Yield Average Composite -

.. Strain . Strain . Stress . . Stress ..
0.5 percent 5.0 percent 20,000 psn 17,730 psi

' 1.0 percent 5.0 percent 20,000 psi 31,810.psi

2.0 percent ' .5.0 percent 20,000 péi 3 - 40,420 psi

4.0 percent - 5.0 percent | 20,000 psi 41,830 psi

Due to h'igher.yiela stress, higher strain levels of 0.5, 1.0, 2.0 and 4.0 -
percent were selected for the analysis. A comparison of Figs. 66=69 with the
corresponding Figs. 61~64 shows that the stress distributions are véry similar for

the two cases of yield stress. The explanation of results for stress di;fribuﬁons
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inén'pré'viously for the matrix yield stress of 8,000 psi apply also for the yield
sfréss of 20,000 psi. Comparison of Fig. 70 with Fig. 65 shows that the growthof
‘ yielid zone is also identical with that in the case of matrix yield sfr.ess of- 8,000 psi.
 The stress distributions for r2/rl = 0.25 and the matrix yield stress of 8,000
psi are shown in F.igs. 71-74, Yielding of the matrix at different strain levels is

shown in Fig. 75. The average composite stresses are given in Table 8.

Table 8. Avérage Corﬁposite Sfresses for' rz/r] =0.25and (cy) = 8,000 psi

Composnte Axial  Matrix Yield Matrix Yield Average Composite

Strcnn L Strain . Stress | - Stress
‘0.5 percent 2.0 percent 8,000 psi - 4,410 psi
1.0 percent 2.0 percent N - 8,000 psi- - 8350 psi
2.0 percent : .' 2.0 percent 8,000 psi - 12,670 psi
3.0 percent . 2.0 percent - 8,000 psi | 13,930 psi

."Axnol stresses |r;| the fnber (Fig. 71) attain the n maximum value in less than '
thlrteen fiber duometers from the fiber end. The. maximum stress in the fiber in= x
creases with the- composnfe sfraln. The change in maximum f’ber stress as fhe

‘ compoglte strain- i is increased from 2.0 to 3.0 percent is small because of the
extensive yielding of the matrix at these strain levels (Fig. .75). A linear increase
-in the :Ifiber stress near the end is due fo the yielding of |the matrix at the interface.
Shear stresses at the interface are shown varying ‘::long the fiber length in
Fig..72. Shear sfresses héar the fiber end are high. For the composite strain of‘
: 0 5 percent, the shear sfress drops very rapidly and becomes zero in ten fnber
dlamefers away From the end For composite strain of 1.0 percent the shear stress

remains constonflfor some dnstonce, which is even longer for strains of 2.0 and
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' 3.0‘perc'ent an'd. fh’ep drops rapdily. The stress in\all the cases reduces to zero
‘within thirteen fiber diameters which is consistent wuth the observations based on
Flg. 71. The matrix axial stresses at the interface are plorfed as a funchon of
.dlstance from the fiber end in Fig. 73. Variation in the radtol durechon of the
matrix axial stress (in the elements adjacent to the fiber end, refer Fug. 42) is
“shown in Fig. 74. Both Fig. 73 and 74 show 'disconﬁnuify in the matrix s'fress
| 'ﬁeor the physico‘l discopﬁncify at the fiber end. Yielding of the matrix is shown -'
in Flg. 75 At 0. 5 percent composn'e strain only a few elemenfs of fhe matrix -
.have ylelded near fhe ﬁber end As the composufe strain is rmsed to 1.0 percenf
| '~_more matrnx ‘y\nelds near fhe fiber end and also along the mferfoce. There is an

extenswe y|e|d|ng of the matnx at the composite strains oF 2.0 ond 3 0 percenf.

Stress=Strain Curves With- Axlal Strams Imposed on One Boundary of the Repre- '
sentahve Ceﬂ ' , )

Preducted stress-stram curves for the composnte with the fiber packmg of -

E ng. 38 are shown in Figs. 76 and 77 Effect of change in fiber contents is shown
m ng. 76 Imhal modu|us of elcshclty of the composne with 5.62 percent Flbers

s s 0.88 x 'IO psi. compared to 3 58x 106 p5| for the composnte with 42, 4 percent

flbers. It was pomted out in Section |V that the Halpm cnd Tsai equahon( )

may also be used to ¢alculate the modulus of the composnte with discontinuous r .

. fiber reivnforceme.nt. ',-ln Section IV, the elastic modulus calculated by this equa=

tion for 42. 4'percent.fiber contents compared favorobly with the present predictions.

The Halpin and Tsai equation predicts an elastic modulus of 0.83 x 10® psc for

5. 62 percent fiber contents and a fiber aspect roho of 27 (i.e. for the present

fiber geometry ). This value is also <I1U|fe compqroble with the prediction of

Ali'he present study. Flg 76 shows that the composite with 5.62 percent fibers

has low initial modulus (0.88 x 100 psi), but it shows the effect of local yielding
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of mafr'ix.offer- 1.0 percent composite strain. Initial modulus of the composite
with '.’42.4 percent fibers is quite hligh A(3.5_8 x 10° psi) but this composite ;hows )
yielding even at 0.5 percent composite strain. The effect’éf a change in fhe_‘
 matrix yie'ld stress is shown in Fig. 77. It is quite clear that the matrix yield
stress does not influence the ini‘tial modulus of the composite. Yield stress of
the composite increases in about the Qa\mg .proportion as the yield stress of the
mdfrix. HéWeVe'r, in b;:th cases the composife yield strain is much smaller than
the matrix yield strain. This_is because the fiber end prod‘uces' high strain con=

_ .cenfrations in the matrix inits vicinity which cause yielding of the matrix between
the two rows of f’bers. ' The stresses do not build up beyond a certain v&lue al-
fhough the strams are large. It was pomfed out in an’ eorller sechon thot the
boundary condlhons may be |mposed in'such a way that the overage composute '
stress is. not completely confrolled by a weuk section. Results of the analysis |
wnth such boundary cqnd| tions are presented in the next section.

Stresses and Stress-Strain Curve with Axial Strains Imposed on Enhre Outer
Boundary of the Represenfahve Cell -

‘Results of the analysis of the composites with the fiber packing shown in.
Flg. 59 are dnscussed in this section. The two geomernes of fhe fibers (Fig. 60)
used were the same as in the prewous case- The component properties were also
assumed to be the same as in the precedmg section of this chapter. However, the
analysus was not carried out for the matrix yield stress of 20,000 psu because of the
similarity of results with the yield stress of 8, 000 psi .

The stress distributions for r2/r] = 0.67 are shown in Figs. 78-81. Yielding
of the matrix of different strain levels is shown in Fig. 82. The'average composite
stresses given in Table 9 were calculated by taking an average of the axial stresses

over the entire volume of the composite. In the previous case the average over the
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entire volume wes not necessary because the average stress on any cross=section was
the same since the shear stress on the outer boundary of the representative cell
(Fig. 39) was p.i'escr;i'bed to be zero. But with tﬁe present boundary conditions shear
“stresses exist on the outer boundary of the representative cell and hence the average
axial stresses on diffen;ent cross=sections are different. |

- Table 9. :Average Composite Stresses for r—l- = 0.67 and (Gy)-m = 8,000 psi

| Com‘posife Axiel " Matrix Yield | Matrix Yield Average Composite

Strain Strain ~ Stress Stress
0.5 percent 2.0 percent 8,000 psi- | 19,670 psi
1.0 percent - 2.0 percent 8,000 psi 31,440 psi
2.0 percent _ 2.0 percent 8,000 ps: ' 35,50_0 psi

The axual stresses in f‘bers are shown in an. 78 for the composu te strain of
0 5 l .0 and 2 0 percenf. The stresses near the fnber end are low but increase
Iaway from the end in all cases. At 0.5 percent composne strain the flber stress
reaches a constant volue within five fiber diameters from the end. However, unhke 5
the previous case (Fig. 61), the fiber stresses at the composlte strains of 1.0 and
2,0 p‘ercerit do not attain a constant value in the assumed fiber length (i.e., 10.375
fibef diameters). This is because the redistribution of load along the fiber length
allows hfgher stresses to be carried by the fibers at highef composite strains. Longer
fiBers are needed. to transfer this higher stress. The transfer of load is aided by the
yielding of the matrix along the fiber-matrix interface as shown in Fig. 82. A
linear increase in the fiber axial stress at 2.0 percent composite strain is, once

again, due to the yielding of the matrix at the interface.
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| _The shear sfresses at the interface are shown \rorying along the fiber lengrh

in ng‘. 79. fhe stresses are hiéh near the fiber end at all fhe composite strains
(0. 5 1.0 and 2.0 percent). ‘At 0.5 percent composute stram, the mferfocnal shear
stress sturfs decreasmg rapldly very near the flber end, whereas due to yielding of
' the matrix it remains nearly constant for more than two fiber diameters at 1.0 per-
‘cen‘f eo'mposife sfrain and for more than four fiber diarnefers at 2.0 éercent composite
strain. The stress ‘vdistributie,ns. in Fig. 78 are eonsistenrwith the ones in Fig. 79 |
acéording toequaﬁ'on (7) in Section IV. The matrix axial stresses at the'infer'fdce
are’ p|ofted asa funchon of dustance from the fiber end in an 80. The stresses in-
crease sharply near the flber end and show a discontinuity due to the dusconhnmty
in fhe material propertues at this point. Variation in the radlal dlrechon of the
matrlx axnal stresses (in fhe elements ad|acenf to the fiber end refer Fig. 42) is
shown in Flg 8'! The varmhon in the stresses is not very large due fo the yueldmg
of the matrnx near the end.. an. 82 shows that only few elements of the mamx near
‘ ’the fuber end have ynelded at 0.5 percent composufe stram. The ylelded reglon of
the matrlx enlarges as fhe composute strain increases. . There is extenswe yleldmg
of the matrix at 2.0 percent compbsite strain. | - |

The predlcted stress-strain curve for the cornposife with the fiber pdeking of
Fig‘s 59‘is’ shovrn in Ir'ig. 83. The stress—strain curve in Fig. 83 shows much higher
'values of stresses compared to the corresponding curve in Fig. 77. This 'is' not
unexpecfed because tne higher stresses are expected due to the load redistribution
between the fibers. There are no experimental data in the literature to'tne auvthor's
| knowledge which could be ‘direc'tly compared with the present predictions. Studies
of Kelly and Tyson(33) concerning fhe. tensile properties of fiber-reinforced metals
show that in the case of discontinuous molybdenum fibers in copper matrix'(with

yield stress & 10,000 psi) the composite with 42 percent fibers has a yield stress
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of about 40,000 psi. Studies of Weeton and Signorelli(34) indicate that the com-
posite reinforced with continuous § mil diameter tungsten wire (vf - 53.6 percent)
has a yield stress of about 150,000 psi compared to 10,000 psi yield stress of the
copper mafrix. [n the ||ght of these studies, the stress=strain curve shown in Fig.
83 seems closer to the reohty Definite conclusions can be drawn only after more
experimental doto are accumulated and the analyses ore carried out by varying
other parameters such as volume troction of F’tpers and ftber aspect ratio.

For the r2/r = 0.25 and fiber ospect ratio of 27, the stress distributions
were obtained for the composite strolns of 1.0 and 2.0 percent. The results are
shown in Figs. 84-87. Yielding of the matrix at the two strain |eve|s is shown in
Flg. 88. These results are quute similar to the ones obtomed for the closer ﬁber

pocklng (r2/r = 0 67) It may be noted that at the low volume froctlon of flbers

(i. e 5. 62 percent) the Flber aspect ratio of even 27 is not enough for the fiber

OXIGI stress to reach a constant valve. It suggests that the onolyses wuth hngher E
fnber ospect rotnos would be of consnderoble interest.

| The present studles mdncote thot the behowour of a composlte can be simy=
Iote_'d very close |_.y by corefully |mposmg the boundorycondltlons ona representotwe

cell. The studies show the effect of yielding of the matrix on the internal stresses

and predict the stress=strain relation of the composite. The influence of changing

the matrix yield stress has also been studied. However, the studies are not extensive
enough in some areas of the composite materials. Studies have been carried out |
with only two volume fractions of the fibers (5.62 and 42.4 percent) ano at each
volume fraction only one fiber aspect ratio has been studied. The effect of relative
elastic properties of the fiber and the matrix has not been investigated. For the
better understanding of _the behavior of the composite ‘mot‘erials further 'investigotions

should be carried out in these areas. More attention should be devoted to the
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selection of the mode! and the associated boundary conditions. Finally, to gain
_confidence regarding the usefulness of the analyses, experiments should be per-

* formed and the data compared.



Vi. - CONCLUSIONS

Finite element methods have been used to calculate internal stresses within
a spherical particle or discontinuous fiber composite. The internal stresses have
been analyzed as a function of interparticle spacing and the elastic constants

have'been 'calculated from a knowledge of these stresses. The effect of altering

'the mterface properties has been simulated by asugmng dnfferent propertnes to

the f'mte elements formmg the nnterface. For the case of composites with elastic-

‘plostlc matnces the boundary condltlons employed had to be altered in order to

slmulate the behawor of a real compos:te.
In the case of spherlcal portscle composites, a comparison has been made

between an axusymmetrlc analysns and a three-d:mensuonal analysus to represent

the geometrucal arrangement of the partlcles. Although the axnsymmetrlc analysus

a

is easy to use and the computer runnmg tlme is nommal the axlsymmetrlc cell
used to represent the composnte does not actually fill the enture space. Thusa -

three-dumensnonal analysns was performed assummg the spheres were placed on

‘ the corners of a cube to represent a sumple cubnc packmg. ‘For this case, the

.interparticle spacmg can be directly related to the volume fraction of spherical

partlcles in the composite. It is seen that the results of the two analyses are in
good agreement. At low volume fractions or at great mterpartlcle spacings the
results are in agreement with the predictions of the Goodier theor)r for stresses
around a spherical inclusion. Predictions of the elastic constants of the composite
are in good agreement with the experimental data available in the literature. The
influence of a weak interface has also been studied. The weak interface has the

effect of debonding the filler particles from the matrix.

For the analysis of aligned discontinuous fiber composites an axisymmetric

analysis was utilized since for spherical composites the results were in close

139
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agreement with the three-dimensional representation. An elastic analysis of a
fhree phase (matriix, fiber and interface) fibrous composite was carried out to

study in detail the role of an interface on the load carrying copocnty of the com-

'posne . The relative mporfance of the various stress distributions and thelr

mfluence on the strength of the composnfe has been discussed. 1t has been shown

fhat by weakemng the mferface both the modulus of the composute and the strength
of the composite can be mdependenfly alfered Thus itis possnble to select an
'nlnterfa_ce“modulus to optimize the impact sfrength or energy absorption capability

of the composite. ‘The influence of an elastic-plastic matrix on internal stresses

and éombosife properﬁes was also studied. Here, different types of boundary con-

‘dmons were apphed to fhe oxnsymmetrlc cell representing the composute. It has

been found fhat the behavnor of a composufe can be snmulated very closely by
corefully imposing the boundary condmons on the representahve cell. The com-'.
posite stfress-sfram behovuor has been predlcted and a compunson has been made
Wl fh available experumental data.

. The presenf stqdles are an attembt to predict the behavior of complex com-
posife materials using simplified mic':romechqr'\ics analyses. The powérful tool of
fmute élemént mefhodsA rﬁakes it possible‘ to analyze complex problems with gréat
ease. Limitations concernihg the applicability of the results have been pointed -
out at fhe appropriate places in the thesis. Suggestions have been made for _

resgdréh work which would further enhance the understanding of the behavior of

composite materials and would increase the confidence in the application of

analyses such as the one presented here.
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APPENDIX

In case of elastic onalysns it is possible to superpose specuf‘c mdwudual
boundary-value problems i in ‘order to obtain the solution for a given set of boundary
condlhons(35 36). Superpos1f|on of two boundary valué problems is needed for

the axisymmetric analysis and three for the three-dimensional analysis.

Axlsymmetnc Anolysns

To satisfy fhe boundary conditions sluted in Section 11, the following stress
and d|sp|acement dlstrlbutlons (with reference to Fig. 1) were obtained and pro-

perly superposed
. (1) The stress and dlsplocement distribution (No. 1) is found such that

() ]) =1 -(Arbitrarily specified unit displacement),
Va8 . RN
U,) =0 (Symmetry),
DC
(U l)' = 0 (Specified displacement condition),
- UBC -
(U = 0 (Symmetry),
~AD ‘ '
T_ =" =“0-(onABCD).

rz  zr
From‘these bouhdury cdndifions, g and 0,y in all elements and displacements
Url"' Uy at all nodal circles are determined.

(2) The stress and d|sp|ocement distribution (No. 2) is found such that

(Uz2) =0 (Specnfled displacement condition),

) (U22)D'c: = 0 (Symmetry), |
(U’Z)Bc = 1 (Arbitrarily specified unit displacement),
U _,) = 0 (Symmetry),

2 \p 4 Y

=" =-0 (on ABCD).
rz oz .
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(3) These stress and displacement distributions are superimposed to obtain

o= o * ko

where k is determined such that' the net force in the r direction along BC is zero.
Thus- |
7 = [ (64 + kgp)dz = [BCl (5, + ke = O
: (where G_represents the average stress) so that
; g
k= - [

o
r2 BC

The averog'é' sﬁ"éss'o:n. AB is thus

- (s,
() =150 - == 6
Zap . VA \G2f. “Zas
“and the displécemenf is
W) =Wy o) W) =y
2 2Vas |7 22,5 zlpp
o 2foc | |

since (U ) = 0, °

To calculate the stiffness or modulus of elcsticity of the composite, the

average stress on the boundary AB is calculated:

G dA .
o-z = J.A Z = (0. )
A Z'AB

where A is the area of the top of the cylindef in the finite element analysis and

“the integral is }eplaced as a summation as follows:
= N n .

' 2 .

chdA = 2 r o rdr = 2n z 2 (ri - ';-12) o

z

A o i=1
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~ where . ‘on'd Fioq ‘are the radii to the nodal circles that define the elements on the
'top of the cylmder, n is the number of such circles, and g, is the correspondmg
normal stress in each element.
The modulus is defined as
g

' "z
E = —
€z

where the strain used is cdl;uqued from the specified boundary displacement,

Z
=" el

(Uz-) " is the net displacement of bound&ry as follows:
AB. e ne :

)

= (U, "’k(U )
0 A *as Zps
bt (U, = O
- 2Zpp-
e ) =Wy
T TFas AB

The dusplacement of fhe boundary BC is obtamed in the same way as
'.(U_r)B =k (Ur2) J

The net displocemen'ts of the bouhdaries AB and BC are used to calculate the

Ponsson s rclho whtch can be written as follows

l‘”r)Bc [/188] k1M |5c)
V) BC U AB
w171 [ Wy, Tas]

qm'i'since Vo) =W ,’) and |BC | = |AB|

BC

|k| lecl . Ik

| as8|
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It may be observed that the modulus of elasticity and Poisson's ratio are
calculated in the process of combining solutions.

A Thfée-Dimenﬁional Analysis

In the three~dimensional analysis, three solutions are needed to be SUper-

- poseel to g.et the desired Boundcry conditions as stated in the text. Otherwise,
the procedure is'quif'e similar to thet for the axisyhm,e,frAi,c, o’hal.}sis. The following
steps are used with reference to Fig. 26 ‘

(1) The stress and d;splacement distribution (No. 1) is found such thot

(U ]') = 1 (Arbitrorily specified uni_t displa'cement),
ABFE | S
(U ) .= 0 (Symmefry),
DCGH A
(U ]) = O. (Specified displacement condition)
YLBCGF : B '
(U .'I)‘ | =0 (Symmetry),
- YUADHE t
: (U ]) L= ‘0 (Specified displacement condition),
ZVEFGH . S
(v z2) =0 (Symmelt“ﬁy)
ABCD :
and 1 = 1 _ = '1__ = 0 (onall faces of fhe_.cube).
Xy yz - zx

From these bodndar;y'condiinns, stresses S, 10 o1 and dﬂ in all the elements

and displacemenfs UV -' and U, at all the nodal points are determ.ined.

(2) The stress and dlsplocemenf distribution (No. 2) is found such that:

U 2) O (Specified dusplocement condmon)
*ZABFE
.(Ux2) = 0 (Symmetry)
DCGH ' ' |
(U, 0) = 1 (Arbitrarily specified unit displacement)

Y<BCGF
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U =0 (S
‘ YZ)ADHE . (Symmetry)

(UL, =0 (Specified displacement condition)
22EFGH S R

(U,)) = 0 (Symmetry)
ACD"

and 1 y= ‘ry‘z = T = 0» (on all faces of the cube).

(3) The stress ~.and displqcémeﬁt distribution (No. 3) is found such that:.

(U 3) = 0 (Specified disf)lqcemeﬁf cbndition)
I apre A .
) 20 (Symmetry)
*¥peGH |
(¥ 3) =0 (Specified displacement condition)
YBCGF :
(Uyz) =0 (Symmetry)
.o YUADHE- L
(U 23 o= (Arbitrarily specified unit displacement)
EFGH :
W,y =0 (Swmmehv)
8 AB'CDV
and'r =1 _=1_.=0 (oq 9;“ faces of the cube).

xy T Tz T Tax | |
| (-4'»)‘ These s.“fress and displacemenf distributions are supérim’poséd to obtain: |

o kl o+ ko 2% %

U kl 1t kz”z + Uy

~ where k.l' ond l<2 are determmed such that net normal forces on the foce§ ABFE and

BCGF are zero. Thus :

xABFE ASFEkIG +|<20’2+O3)dA A(k& +k26’2+03)—

where A is the area of face of the cube. Therefore kl’xi + k26x2 + 6x3 =0.
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Summation of the force in y=direction on the face BCGF leads to another
" equation: | |

Solution of these equations gives

ke = _a’ 2 6)_;3 Y 6y3
1 Ox1 ,5y2 ) 6yl G2
. and _ - -
| e 2 0x1%3 7 Sy1%a3
2 - - - - - -
C%1%2 7 %y1%2

‘The average normal stré#s on face EFGH is thus

(5,): |

Z'EFGH

- ky (5_1) 5.0
1 1 2 zzEFGH

(6.9  + o+
“23EFGH 2VeFGH

Average stress, 52 , for a stress distribution is calculated as:

- _ A csz

%2 - T A
where the integral is replaced by a summation as follows:

A g : ' n o
A c,z:CIA = . Oz Ai l .
. . '.= ;l (i

where dz is the stress in an element and Ai the area of the element on the face
under consideration and n is the total number of such elements.

The modulus of elasticity is calculated from the average stress

E .=

i'nlAQl
N

r4

where the strain uééd is calculated from the specified boundary displacement
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(V)

- _ _ EFGH
eZ
(U.) is the net normal displacement of the boundary as follows:
r4 .
EFGH |
LU =k U kg Uy (U
EFGH ! ‘EFGH 2 2EFGH 2¥EeGH
" but (U ) = (Ul,) | =o
- lerenMeron
thus (L) = (uz3)
UZEEGH | 2YEFGH

.. The normal dnsplacement of the faces ABFE and BCGF are found to be:

(u D ,'l'e]'(u

)
V asre x1’ ABFE -

) =k

- Y'BCGE BCGE

Pmsson s rchos sz and v,y ore calculoted from these displaceme__nts:

RICAI onr“' |k |<u !AE!
_ o 1 ABFE
zx U AE | u, AD
'-,‘( z)'_EFGH V1aE] K EFGH' '
smce (U ]) =_(Uz3.). . and |AE | = |AD]
- ABFE EFGH i
‘sz = kl .
Similarly ...
ozy = ky

‘Due to the symmetry of the problem v__ and Vzy should be the some. How=
ever, the size and the orientation of the elements near the surface may cause some
difference in the values of k] and‘kz. Here also the modulus of elasticity and

Poisson's ratio are calculated in the process of combining the solutions.
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