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PREFACE

Finite element methods have been  used to calcu late internal stresses
within   - -------.-i---I----I-- -*il.-Il

a spherical particle and discontinuous fiber composite. The internal stresses  have

been analyzed as a function of interparticle spacing and the elastic constants have

been calculated from a knowledge of these stresses. The effect of altering the

interface properties has been simulated by assigning different properties to the

finite elements forming the boundary  of the interface.
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1.    1 NTRODUCTION

Many of the new materials being developed are multiphase or in the com-

posi tes family. For example, glass fibers  are used extensively to reinforce organic

matrices. Dispersion strengthened al loys consist of a finely di vided second phase

distributed  in a crystalline matrix. Glass-cermaics make  use of control led crys-

tallization from a glassy melt. Rubber reinforcements are used in glassy polymers

to  enhance the impact strength  of  the  bri ttle matrix. I n a l l the cases,  the  pro-

perties of the composite material depend on the properties of the individual

components, their distribution, and their physical and chemical interaction.

For the effic ient  use of composi te materials,   it is necessary to understand

how these materials behave under applied loads. A micromechanics analysis of

composi te materials is needed to accurately predict the internal stress distributions

which are mainly responsible for the ultimate behavior of the composites under

given loading conditions. A knowledge of stress distributions helps in the under-

standing of the material behavior in two ways.  As will be discussed in the later

sections, the boundary stresses and the accompanying displacements can be used

to ca|cu|ate the modulus of elasticity and Poisson's ratio of the composite materials.

These e lastic properties predict the macroscopic response  of the composite material

to the applied loads. Secondly, the internal stresses determine the areas of high

stress concentrations in the material. These areas are critical because  fai lure  is

most likely to start there. The onset of failure may be the formation of a crack in

the ceramic matrix composites, or the start of yielding in case of the metal matrices

or the initiation of internal crazing in the rubber modified polymers. A number of

analytical studies of stress distributions have been performed by the use of simplified

physical models.  Most of these studies have used elasticity theories to obtain the

1
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solutions .  Some of the solutions have been summarized by Holister and(1 -5)*

(6)Thomas      . E lasticity solutions of some  of the problems are obta ined from

Muskhelishvi Ii's(7) solutions using complex variables. Thus soluti6ns exist for

simplified models which  do not necessarily represent an actual composi te material.

It is difficult to use the elasticity approach for solving problems involving complex

geometries.  In any realistic model of a composite material such complex geometries

are unavoidable. The finite element method which has been used in the present

investigations allows any complex geometry  to be analyzed with equal ease.

The finite element method is not new.  For more than a decade,  i t  has  been

applied extensively to the analysis of large complex structures. Conventional

engineering structures can be visualized as an assemblage of structural elements

interconnected at a discrete number of nodal points.  If the force-displacement

relationship for the individual elements is known it is possible, by using various

techniques of structural analysis, to derive the properties and study the 6ehavior

of the assembled structure.

I n an elastic continuum the true number of interconnection points is finite,

and here lies the biggest difficulty of the numerical solutions. The difficulty can

be overcome (and the approximation made) in the following manner:

(a)  The continuum is separated by imaginary lines or surfaces into a number

of "finite elements".

(b)  The elements are assumed to be ;Rterconnected at a discrete number of

nodal points situated on their boundaries. The displacements of these nodal points

Wi I I  be the basic unknown parameters  of the problem,  iust as  in the simple struc-

tural analysis.

* For all numbered references, see bibliography
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(c)  A function (or functions) is chosen to define uniquely the state of dis-

placement within each "finite element" in terms of its nodal displacements.

(d)  The displacement functions now define uniquely the state of strain

within an element in terms of the nodal displacements. These strains, together

with any initial strains and the elastic properties of the material  wi 11 define  the

state of stress throughout the element and, hence, also on its boundaries.

(e)   A system of forces concentrated at the nodes and equi libriating  the

boundary stresses and any distributed loads is determined.

Once this stage has been reached the solution procedure can fol low the

standard structural routine. The detai Is such as the formulation of finite element

characteristics, mathematical basis, the applicabi lity of the method, etc.  can be

found in the text written by Zienkiewicz I n the present investigations,
(8)

existing computer programs were used with minor changes. The detai Is and

reference will be given in appropriate sections of this thesis.

The next two sections deal with the particulate composites.  In the first of

the two, axisymmetric representation of the composite  has been assumed.   The

effect of the volume fraction of the inclusions on the internal stresses and elastic

constants is discussed in detai I. The results are compared with the avai lable ex-

perimental data and with soine of the predictions obtained by using elasticity

theory. Another important  prob lem  of the particulate composites, namely  the

effect of an interface, which received very little attention from other investigators

has also been studied.  In the third section a general three-dimensional model of

the composite material  has been analyzed.. The emphasis, once again,  has been

on the internal stresses and the elastic constants. Some conclusions have been

drawn concerning the use of a complex and relatively expensive computer program

to ana|yze the general three-dimensional solids.
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Sections I V and  V deal  with the discontinuous fibrous composites.    I n Section

IV, an elastic analysis has been used to study in detail the effect of an interface.

I t covers a number of areas such as weak and strong interface, effect of interface

on internal stresses and elastic constants, and effect of fiber end conditions.  In

Section V, an elastic-plastic analysis of fibrous composites has been performed to

study the internal stresses. Effect of matrix yielding  on the composi te stress-strain ·
.

curve has been investigated.



11. AXISYMMETRIC ANALYSIS OF PARTICUlATE COMPOSITES

I ntroduction

The  composi tes which consist of particles  of one phase dispersed  in c second

phase are usually referred  to  as the particulate composi tes. The filler particles

in  a particulate composi te  have  no long dimension.    It may be round, square  or

even triangular, but the dimensions of its sides are approximately equal.   In a

particulate composi te, the matrix and dispersed particles share  the load. Strength-

ening of particulate-reinforced composi te occurs initially  when the dispersed

particles restrict the matrix deformation  by a mechanical restrc int.    The  mag-

nitude of the restraint is unknown and complex, but it is a function of the inter-

partic le spacing  and the ratio of the e lastic properties of the matrix and particle.

A micromechanics analysis is needed to understand the influence of these factors

on the behavior of composite materials.

Previous investigators have discussed the stresses around spherical inc lusions

as applied to porous ceramics or spherically filled ceramic particulate com-

posi tes(9-12) .   The'Goodier solution(1), which was used for all of these analyses,

applies only to a single inclusion or cavity; thus, interactions between particles

are  ignored  when the theory is applied to actual composi tes in which particle

interactions can influence the stress state.  Even in particulate composites with

only  30 vol% particles, local regions  of the composi te  may have effective  con-

centrations of 50 to 60 vol% as a result of non-uniform particle concentrations.

The results presented indicate how the interfacial stresses are influenced by

particle spacing.

5
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Approximations and Boundary Conditions

The present investigations were carried out using an analysis of axisymmetric

solids.  In the finite element approximation of axisymmetric solids, the continuous

structure or medium is replaced  by a system of axisymmetric elements interconnected

at nodal circles.   It was assumed that the porous or filled ceramics (assumed to

possess symmetry) could be approximated by a unit cell (Fig. 1) which when ro-

ta ted 3600 around axis AD produces a hemisphere embedded within a cylinder.

The  interpartic le spacing is equal  to 2 (r 1
-

r2); rl and r2 are shown in Fig. 1.

The volume percent of fi Iler particles or cavities (radius = r2) can
be altered and

calculated  from the ratio r2 rl (note AB=BC=CD= ADin  Fig.  1).    This axi -

symmetric representation  of the composi te only approximates  its real packing and

structure. These axisymmetric cells are not an actual repetitive unit but are re-

lated in their dimensions to the interparticle spacing. A 3-dimensional computer

program without restrictions (e.g., using tetrahedral elements) has also been used

(in  Section  111) to tru|y model a particulate composite.

The unit cell shown in Fig. 1 is subdiyided into small elements. The finite

element grids used for six different interparticle spacings are shown in Figs. 2-7.

The finite element method permits calculation of the stresses in all the elements and

the displacements at the nodal circles for any loading and boundary conditions.  I t

is assumed that the composite is strained in the z-direction and that no tractions are

applied  in the r-direction. By symmetry,  on the boundary ABCD(Fig.  1) the shear

stresses are:
T   =T   1 0
rz zr

The sides AB and BC remain parallel to their original positions after they are

displaced due to strain in the z direction, whereas the normal displacements of AD

and  DC are zero.  Thus,  AB and  BC  wil I undergo normal displacements,  and  the

traction in the r direction must be zero so that:

S  'r dz  -  0
BC
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Fig. 2. Finite Element Grid for r2/41  =  0·357
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Fig. 4. Finite
Element Grid for r2/rl

- 0.615
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Fig. 5. Finite
Element Grid for r2/41  =  0·714
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Fig. 7. Finite Element Grid for r2/rl
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0.870
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where the integral is replaced  by a  summation  in the finite element method.

The following assumptions were made concerning the material:

1.    Fi I ler particles and cavities are spherical and of uniform size; packing

of particles can be represented by an axisymmetric element (Fig. 1).

2.    Both fi Iler and matrix materials obey elastic stress-strain relationships.

3. Perfect bonding exists between fi Iler and matrix (continuity of displace-

ments at the interface).

The calculations were made on a large digital computer* by using a computer

program for the analysis of axisymmetric solids written by E. L. Wilson . The(13)

boundary conditions were prescribed  in the mixed  mode  i.e., the displacements

were prescribed on some of the boundaries whereas fractions were prescribed on

the  others. The prescribed boundary displacements were se lected to obtain  the

desired compgsite strains. The average composi te stress was calculated  from  a

knowledge  of the stresses  in the elements  at the boundary of  the  unit  cel I.    The

composite stresses and strains  are  used to calculate the composi te modulus of

elasticity and Poisson's ratio. The detai Is of the procedure to satisfy the boundary

conditions and to calculate composite stress, strain, modulus of elasticity and

Poisson's ratio have been given in the Appendix.

I nternal Stresses

The internal triaxial stresses were calculated throughout the volume (in each

element shown in Figs. 2-7) of porous and filled cermaics with cavity or filler

volume contents up to 43.83 percent (minimum interparticle spacing =

0.26 r2'

where r2
= radius of spherical particles or cavities).

For a porous cermic the following properties were assumed for the ceramic

with no porosi ty:

* Univac 1108, Univac Div., Sperry Rand Corp., Phi ladelphia,  Pa.
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6
E (modulus of elasticity) = 10 x 10  psi

v (Poisson's ratio)  =  0.24

Two fi I led ceramic systems were analyzed. The component properties assumed

for system 1 were:

G lass matrix       E   =    1 1.8 x  1 0 6  psi

v = 0.197

Alumina filler  E  =  60.4 x 106 psi

V = 0.257

These properties are those reported by Hasselman and Fulrath(14)

For the system  2,  the  va lues  were

Glass matrix   E     11.8 x 106 psi

v   0.197

Tungsten filler E  =  52.2 x 106 psi

v = 0.1985

(15)
as reported by Hasselman and Fulrath

Volume contents of void or filler can be calculated from the ratio ry/rl' by

assuming an appropriate packing of the cylindrical region analyzed. Three dif-

ferent arrangements, namely sphere in a cylinder, hexagonal packing of cylinders

and square packing of cylinders (this coincides with the cubic array of spheres),

have been shown in Fig. 8. Expressions for the volume fractions have also been

indicated  on the figure. The ratios rY/rl  and fi lier or void contents corresponding

to the above packings are given in Table 1.. The volume fractions used in this

chapter were calculated by assumi ng a sphere  in a cylinder. Significance  of

assuming a different packing will be discussed in the next chapter.

1 A
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Table 1. The Relation Between Particle Spacing and Volume Fraction

r2/r 1 Cylinder Array Cubic Array
Sphere in a Hexagonal Square or

0.357 3.04 2.75 2.38

0.500 8.33 7.56 6.54

0.615 15.54 14.09 12.20

0.714 24.30 22.03 19.08

0.833 38.58 34.99 30.30

0.870 43.83 39.75 34.43

0.952 57.59 52.23 45.23

The stresses around the spherical  cavi ty are shown  in  Figs.  9 and  10.    The

stresses are represented as a ratio 0/8-z' where a-z is the average stress applied

to the composite.   Thus, the ratio represents the stress concentration around  the

cayity. The stress system is defined in Fig. 9.  Fig. 2 shows that there are 9 finite

elements around the interface of the cavity; the calculated stresses are assumed to.

act at the center of each  lement.  In all of the cases shown, the radial and tan-

gential stresses at the interface are almost equivalent to the principal stresses and

thus the shear stresses (e.g., 'rxy) are nearly zero. The absolute value of maximum

shear stress is calculated   from:

'1 - 02
T =

max        2

The variation of stresses at the pole (0 = 900) and equator ( e = 05 of a

spherical cavity are shown  in  Fig.   11   as a function of porosi ty percent. The curves

for stresses were extrapolated to Vf = 0 percent. For tangential stresses at the pole,

perfect agreement is obtained with the Goodier solution for an.inclusion in an in-

finite matrix.  For the stress at the equator, the agreement is within five percent of

the theoretical solution of Goodier. The difference results from the size of the
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- finite element and the averaging which thus occurs.  Also, the stress normal to the

cavity boundary
(ax) should be zero at the boundary.  The very small positive or

negative value obtained in the present solution results again from the size taken

for the finite element.

The decay of stresses away from the interface is shown in Fig.  12. The stresses

have ·been plotted beginning from the interface and continuing along the boundaries

AD and CD as shown.   Only the stress normal to the boundary has been plotted.   It

can be seen that for a low volume percent filler (396) the normal stress along CD

reduces  to the average
stress,  6-z' at

the midpoint between two cavities whi le  the

normal stress a16ng ADapproaches zero as itshould. However, the results forhigher

volume percent show that the stress concentrations persist even at the midpoint be-

tween two cavities because of the close cavity spacing.

The stresses around the interface between the A
'203 partic les and glass matrix

are shown in Figs. 13 and 14. The stress system is the same as that defined in Fig.

9.  The variation of stresses at the pole ( 0= 90') and the equator (0 = 00) of an

A'203 partic le (assumed spherical) is shown in Fig.  15, again the theoretical

solutions of Goodier agree quite well at zero volume percent filler.

The  variation of stresses was not reported  for the glass-W system. However,

these stresses  are  very  simi lar to those  for the glass-A|203 system. These analyses

show  that, for porous composi tes, the stresses around the pores are influenced  by

interactions from neighboring pores when  41 - 0.5 or when the spacing between

pores is equal  to  one pore diameter.    For the filled composi tes, interactions  are  not

important unti I the inclusions are within approximately 1/4 diameter of one another.

Broutman·and Panizza made some micromechanics studieswith rubber rein-
(16)

forced glassy polymer. This represents an interesting case where the reinforcing

particles have a modulus of elasticity much less than that of the glassy polymer
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matrix and Poisson's ratio is greater than  that of the matrix. The results of  the

present study qualitatively confirm those of Broutman and Panizza.

E lastic Constants

The predicted moduli of elasticity and Poisson's ratios are shown  in  Figs.  16,

17 and  18 and Table  2. The modulus and Poisson's ratio decrease with increasing

porosity. Experimental data of Fryxell and Chandler agree quite  we I I  with  the
(17)

predicted values; the data of Manning et al. do not agree  so  we 1 1.     I t  can  be
(18)

seen  that the normalized experimental  data of Fryxel I and Chandler do not agree

well with those of Manning et al.  This may be due to the inherent differences in

the material used and also partially to the experimental techniques used by the

investigators. Therefore, one simple theory may not be expected to predict the

experimental data concerning different materials with equal accuracies.

The modulus of elasticity of a composite increases as the filler content in-

creases (Figs. 17 and 18). The predicted values are compared in Figs. 17 and 18

with the experimental results of Hasselman and Fulrath(14,15),the excellent agree-

ment between the experimental and predicted values is shown.

I n the present analysis, the moduli of elasticity were calculated on the basis

of the actua I stress distribution  in the composites  when the continuous medium  is

approximated  by a system of discrete elements. Therefore, the present studies permi t

a unique calculation of elastic moduli and do not present the bounded solutions (such

as that of Hashin and Shtrikman(3)) previously used to predict experimental results.

However, Hashin and Shtrikman's lower bound agrees  we I I  wi th the predictions of

the present analysis and with the experimental results of Hasse Iman and Fulrath(14,15)

Moduli of elasticity calculated from the lower bound of Hashin and Shtrikman's

the ory  are also shown in Table  2.
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Table 2. Predicted Properties of Porous and Filled Ceramics

GLASS ALUMINA GLASS TU NGSTE N

Modulus of Elasticity
Relative (106 psi) Modu lus  of

Vol. Fraction Modu lus Poi sson' s Finite Lower Poisson's E lastici ty Poisson 's

Filler or Pores (E/Eo)* Ratio . E lement Bound Ratio ( 106 psi) Ratio
**

3.04 0.932 0.255 12.3 12.3 0.198 12.3 0.197

8.33 0.859 0.232 13.2 13.2 0.199 13.1 0.196

15.54 0.753 0.222 14.7 14.7 0.197 14.5 0.192

24.30 0.639 0.208 16.7 16.6 0.193 16.3 0.186

38.58 0.469 0.178 20.7 20.3 0.186 19.9 0.175

43.83 0.410 0.163 22.4 22.0 0.184 21.4 0.172

*  Eo    = matrix modulus;  E =
composi te modulus.

** Hashin-Shtrikman theory (Ref.  3).
40

8
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Effect of a Weak Interface on Composite Properties

'*

In  an actual composi te material, the properties  of the material  at the inter-

face may be different from those of the fi Iler and matrix. Continuous displacements

at the interface imply perfect bonding between the filler particles and the matrix.

When perfect bonding does not exist between the filter and the matrix, behavior of

the interface should be simulated by assigning differentproperty va|ues to the ma-

terial atthe interface.  This is very easily accomplished using the axisymmetric
...

finite element method. The shaded elements  in  Figs.  19 and 20 have been assumed

to represent the finite thicknesses of the interface for filler contents of 3.04 and

24.30 percents respectively. The shaded elements account for 0.48 percent of the

tota| vo|ume in the former case and 3.02 percent in the latter case. A close exam-

ination of the finite elements in Fig. 7 reveals that a much finer grid is needed to

study the effect of the interface at a high volume fraction of the filler.  The mod-

ulus of elasticity assigned to the elements at the interface was 1000 psi which is

very  sma 11 compared  to  that  of the matrix  (E  =  11.8  x   1 0 6  psi)  or  the  filler   (E  =

60.4 x 106 psi). This represents the case of a very weak interface.

The weak interface as described above completely changes the stress dis-

tribution around the interface. The stresses in the elements (in the matrix)

adiacent to the interface have been plotted in Figs. 21 and 22. A very small

magnitude of radial stress around the interface indicates a free boundary.   The

curves for tangential stresses with finite interface are very similar to the ones

obtained for stresses around the cavity as shown in Figs. 9 and 10.  Due to very

low modulus, the interface is not able to transfer any stress from the matrix to the

hard inclusions and therefore represents a case of the filler particles completely

debonded  fr6m the matrix.    The  hard inc lusions  wi th weak interface carry  very

low stresses and hence do not contribute to the enhancement of the modulus of

the  composi te.    This is similar to what Stett and Fulrath have  descri bed  as(11)
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pseudoporosi ty which results  in the weakening  of the composi te. The modulus  of

elasticity  of the composi te decreases with higher filler contents as indicated  in

Table 3.

Table 3. Effect of Interface on Modulus of Elasticity of Composite

Volume Fraction Composite Modulus (psi)
Filler Without Interface With Interface

3.04 12.3 x 106 11.05  x   106

24.30 16.7 x 106 6.97 x 106

43.83 2 2.4  x 1 0 6 3.84 x 106



111. THREE DIMENSIONAL ANALYSIS OF PARTICULATE COMPOSITES

I ntroduction

It was pointed out in Section 11 that axisymmetric representation of the

composite only approximates its real packing and structure. The axisymmetric

cells are not an actual repetitive unit but are related in their dimensions to the

interparticle spacings.  They do not account for the total volume of the composite

as shown in Fig. 8. The volume fractions of filler are calculated by assuming an

appropriate packing  of the axisymmetric cells and each arrangement gives a dif-

ferent number as indicated in Table 1. A computer program which analyzes three

dimensional solids without restrictions enables one to overcome the apparent maior

limitation on the use of an axisymmetric analysis of the composite materials.

The  program,  SAFE -3D(19),  for  the three-dimensional elastic analysis  of

heterogeneous composite structures wasused  in the analysis discussed  in this Section.

This program uses the following types of finite elements:

1) tetrahedral e|ements to represent the continuum

2) triangular plane stress membrane elements to represent inner liner or

outer case, and

3) uniaxial tension-compression elements to represent internal reinforce-

ment as shown in Fig. 23.

The  structure  can  be  of arbi trary geometry and  can  have any desired distributions

of material properties, temperatures, surface loadings, and boundary conditions.

The generality of the SAFE-3D program puts a limitation on its use from an econom-

ical standpoint.

To simplify the geometric subdivision of the solids, the tetrahedral elements

are placed into groups of three, which together form an octahedron (eight-sided

figure).     In a uniform  mesh the octahedron  may  look  like a triangu tar prism,  as

37
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shown in Fig. 24(a). The octahedron becomes the input element, and it is internally

subdivided by the program into three tetra,hedra, as shown in Fig. 24(a). At irreg-

ular regions in the solids, the ockihedral elements may degenerate to elements of

one or two tetrahedra as shown in Fig. 24(b) and (c).

Boundary Condi tions

Stresses in three-dimensions were calculated around spherical inclusions for

various interparticle spacings. Spherical inclusions were assumed packed in a

cubic array as shown in Fig. 25.  As in the case of the axisymmetric analysis, the

stress-strain relations  of the martix  and  the  fi I ler were assumed elastic  and  a Iso

perfect bonding was assumed between the filler and matrix.

Due  to the symmetry of the problem, one needs  to ana lyze only one eighth

of the sphere embedded  in a  cube as shown  in  Fig. 26. Three-dimensional meshes

(subdivisions) of the solid -for the cases r2/rl = 0·357, 0.714, 0.870 and 0.952

(where rl and r2
are shown in Fig. 26) are shown in Figs. 27-30. It was assumed

that the composi te is strained   in the z-direction and  that no tractions   are

applied  in  the  x  or y direction. The following boundary condi tions  for the typical

region (Fig.  26)  have to be satisfied.

By symmetry, the shear stresses on all the faces of the cube ABCDEFGH are:

T=T = T' =0
xy    yz    zx

The faces ABFE, EFGH and BCGF of the cube remain parallel to their original

positions after they are displaced by the force in the z-direction whereas the

normal displacement  of the faces  ABCD,  ADHE  and  DCGH  is  zero. The norma 1

forces on the faces ABFE and BCGF must be zero so that:

 adA=O on x =rl
A.' x

 adA=O on Y = rl
A·' Y
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where the integral is replaced by a summation  in the finite element method. These

boundary conditions are equivalent to the ones used previously for an axisymmetric

representation of the composite material.

The above boundary conditions were satisfied  by a superposi tion method.

This  superposi tion method and subsequent calculation of composi te modulus   of

elasticity and Poisson's ratio are discussed in Appendix    .

I nterna I  Stresses

The internal triaxial stresses were calculated throughout the volume of re-

presentative filled ceramics with filler contents up to 45.23 percent (minimum

interparticle spacing = 0.096
r2' where r 

= radius of spherical particles).

The following component properties were assumed:

Glass matrix E   =    1 1.8 x  1 0 6 psi

v = 0.197

Alumina filler E  =  60.4 x 106 psi

v = 0.257

These properties are the same as used in Section 11 and equiva|ent to the

experimental values reported by Hassel,han and Fulrath(14),

The stresses around the spherical inclusions are shown in Figs. 31-34 for

four different interparticle spacings 4 = 0.357, 0.714, 0.870 and 0.952).  The

stresses are represented as a ratio 0/dz where 6-z  is
the average stress applied to

the  composi te.    Thus, the ratio represents the stress concentration around  the

cavity. The stresses are in the elements adjacent to the inclusions and are assumed

to act at the center of each of the elements.

The radial and tangential stresses obtained in the axisymmetric analysis of

fi I led ceramics  have been compared  with the results of the three-dimensional

analysis for three different interparticle spacings  (    2      =  0.357,  0.714 and  0.870).
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Figs. 31-33 show that the two analyses give almost identical stress distributions.

Minor differences at some places may be attributed to the shape and size of the

r2
finite elements. The stresses for the case - = 0.952 (Fig. 34) show the same

rl

genera 1   trend   of the stresses around  the inc lusion,   and   as   wou Id be expected

the radial stress  at    e  =  900  is much higher com pared  to  that  for the other three

cases.

The  variation of stresses at the  pole  (e= 905  and the equator (e=  05  of

spherical particles are shown in Fig. 35 as a function of r/rl (which represents

a definite interparticle spacing). The curves were extrapolated to ry/rl = 0

which corresponds to a single inclusion in an infinite matrix. Theoretical results

(1)of Good,er appl,cable for r2/41 = 0, agree quite well with the predicted values.

Also shown in Fig. 35 are the stresses obtained by the axisymmetric analysis.  The

results of the two analyses are quite comparable in all cases except for tangential

stresses at 0 = 0'.   In the axisymmetric analysis, at e = 00 the stresses are in-

dependent  of  posi tion around the equator.    This  is  not  true  for the three-dimensional

analysis.   Thus, the averaging effect is probably the reason for the discrepancy  in

the  tangentia I  stresses.

E lastic Constants

The predicted moduli of elasticity are shown in Fig. 36 and Table 4 as a

function  of the ratio  r2/41.    The  modulus of
e lastici ty increases  as  the  fi I ler

content increases. The moduli of elasticity values predicted by axisymmetric

analysis have also been plotted in Fig. 36.  It is seen, once again, that the

results of the two analyses are quite close when plotted as a function of inter-

particle spacing.
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Table 4. Predicted Modulus of Elasticity of Alumina Filled Glass

r  1                                                                                                   (106   psi)

Modulus of E lasticity

0.357 12.30

0.714 16.06

0.870 20.57

0.952 24.96

The predicted values of moduli of elasticity have been plotted as a function

of volume fraction .of A|203 in Fig. 37.  For the three-dimensional analysis, the

volume fractions have been calculated from cubic packing of the spheres as shown

in.Fig.  25.   In  the  case of the axisymmetric analysis, the volume  fractions can be

calculated by assuming a sphere inside a cylinder, hexabonal packing or a cubic

packing of the spheres as shown in Fig.  8 and Table  1. At lower va lues of the

ratio of r2/41 the volume fractions calculated by assuming three different packings

do not differ apprec iably  but at  r2/41  -  0·87, the volume fraction  may be assumed

tobe 34.43 or 43.83 depending upon the assumed packing. The values of modulus

of elasticity predicted by the axisymmetric analysis have been plotted against the

three volume fractions in Fig. 37. At lower volume fractions all the values compare

satisfactori ly wi th the three-dimensional stress analysis. However, at higher

r2 /rl ratio
the values plotted against volume fractions calculated by assuming a

hexagonal packing agree very well with the results of the three-dimensional anal-

ysis,  which  lie in between the other two cases.
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The  present resu Its strong ly suggest  that the interparticle spacing  is a  more

Significant parameter than volume fraction for presenting the internal stress dis-

tributions in a composite material. An average volume fraction of the filler is

usual ly a more  fami liar term  to the investigators. The interparticle spacing and

the volume fraction  can  be  easi ly related  to each other  in a composi te  with  the

uniform distribution 6f filler particles. However,  the real composi te always  has

some  non-uniformity.    Thus,  in a region  of the composi te, where the concentration

of the  fi Iler is higher  than the average fi Iler concentration, the interna I  stresses

may. be significantly higher than would be expected on the basis of a uniform

distribution of filler particles.

The  results  of the axisymmetric analysis  and the three -dimensional analysis

agree  very we I I when presented as a function of interparticle spacing (which  is

uniquely determined by the ratio r2/rl). The axisymmetric analysis may be used

without much loss of accuracy in place of a relatively complicated and much more

costly three-dimensional analysis of composi te materials.     It  may be mentioned

here that the cost of obtaining information from the SAFE-3D program   i s  abou t
(19)

20 times that of obtaining the same information from Wilson s program for the. (13)

analysis of axisymmetric solids.



IV. ELASTIC ANALYSIS OF THREE PHASE Fl BROUS COMPOSITES

Introduction

The many outstanding features of high performance fibrous composites have

made them attractive structural materials. Oriented fiber reinforcement offers a

strengthened and stiffened material having a high strength-to-weight ratio.

Additional advantages of fibrous composi tes include improved behavior at  high

temperatures, the production of structural forms otherwise inconvenient or im-

possible and controlled anisotropy in physical properties.

In  a unidirectional fiber reinforced composi te the matrix serves two purposes,

name|y, to transfer  the  load  to the fibers  and  to  bind the fibers together.    In  the

case of continuous fiber reinforcement, the effect of fiber ends, where the load is

transferred by the matrix, is insignificant. The stress is assumed to be constant

over the whole length of the fibers. The principal purpose of the matrix is to bind

the fibers together. The strength of the composi te  is then dependent upon  the

strength of the fibers. However, in studying the fracture of continuous fiber com-

posi tes  it  has been found that individual fibers  fail well before the entire composi te

fractures.  In this ccise loqd transferred to the broken fibers by the matrix and the

interfacial conditions  may thus influence composi te fracture particu larly  as  the

number of broken fibers increases.

In the discontinuous fiber-reinforced composi te, the attainment  of  high

strength  in the composi te will depend upon efficient load transfer from the matrix

to the fibers. Therefore, it is of considerable interest to understand how stress

builds up in each individual fiber. A study of the length required for effective

reinforcement and the factors influencing this length such as the properties of the

material at the interface and the fiber end condition, should thus be helpful in

guiding the development of composites.

58
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It is well known that in discontinuous fiber reinforced systems with all fiber

axes para| |e|  to the direction of loading, the mechanism  of load transfer from

matrix to the fiber is an interfacial shear stress. A number of analytical studies

concerning this shear stress transfer have been carried out using simplified models.

(20) (21)
Fiber-matrix interaction has been studied for elastic matrices by Cox    ., Dow

(22)
and Rosen .  They give expressions for axial fiber stress and for the shear stress

at the fiber matrix interface as a function of position along the fiber length. These

expressions are quite simi lar  to each other, although di fferen t assumptions were made

(23) (24)
in deriving them. Tyson and Davies , and Schuster and Scala measured

interfacial shear stress between a metal fiber and epoxy resin by using photoelastic

techniques. Studies of Fujiwara(25) for resin-fiber load transfer in a single fiber-

resin composite indicate that the stress distribution depends upon glass fiber finishes,

(26)
especially under wet conditions. Carrara and McGarry studied the effect of

fiber end geometry  on the stresses  near  the  end  of an e lastic fiber embedded  in  an

elastic matrix. They found that the stresses depend strongly on the geometry of

the fiber tip. More recently, MacLaughlin and Barker investigated the effect(27) .

of modulus ratio on stress near a discontinuous fiber. They analyzed a two-

dimensional plane stress composite configuration using moire strain analysis and

finite element analysis.

One of the most important factors' influencing the transfer of load from the

matrix  to the fibers  is the interface condition. This factor has been  thus far largely

ignored by investigators.  It was pointed out in Section 11 that a weak interface

completely changes the stress distribution and results in low modulus of elastici ty

of the composi te. A strong interfaceallows anefficient transfer  of load tothe

fibers and would produce a composi te  with high tensile strength  and high modulus

of elasticity, therefore a low ultimate elongation.  The low ultimate elongation

indicates a lower energy absorption  of the composi te. Some intermediate properties
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of the interface may produce a composi te which would  have a higher impact strength

without much  loss of tensi le strength. However, a very detai led study assigning

different property values to the material at the interface is needed to understand

the·actual role of an interface on the load carrying capacity of the composite

material. Suchastudy should be helpful both in predicting the behavior of a

composite in which the interfacial conditions can be varied and in developing.a

composite  to meet the requirements regarding  the  fina I property values. The

present investigations were undertaken with this idea and interfaces with properties

varying over a wide range were studied. This study, once again, was carried out

using the axisymmetric analysis of composi te materials  with the computer program

(13)
written by Wi Ison

Representative Area

Unidirectional discontinuous fibers were assumed to be packed in a regular

array as shown in Fig. 38. Although this does not represent an actual packing of

the  fibers  in the composi te, this idealization is necessary  for an axisymmetric  an61-

ysis. The relation  of the model  to the actual composi te  will be discussed further  in

the next section.

I t was assumed that the fibrous composite could be approximated by a cell

(Fig. 39) which, when rotated 360' around axis AD produces a cylinder embedded

within a cylinder. The interfiber spacing is equal to 2 (rl - r2) in both directions

as shown in Fig. 39. The finite elements used for the case . 2 = 0.67, are shown
'1

in Fig. 40(A). Based on a cylinder within a cylinder, this corresponds to a fiber

volume fraction equal to 42.4 percent. The fiber aspect ratio used (ratio of fiber

length to fiber diameter, 1/d) is 10.375. The elements adiacent to the fiber (shaded

elements  in Fig.  40(8) )  have been assumed to represent the finite thickness of the

interface. The property values (mainly the modulus of elasticity and Poisson's
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ratio in the present case) assigned to these elements are changed to simulate a

change in the· interface c6nditions.  A high modulus of elasticity of the interface

represents a strong interface capable of transferring more load whereas a low

modulus represents a weak interface. The shaded elements account for 7.76

percent of the total volume.   In some cases the thickness of the interface was

reduced by a half to study the effect of this change. The elements adiacent to

the fiber end may be assigned property values different from those for the interface.

This enables 6ne to study the effect of fiber end condition on the stress distribution.

For  example,  a  very low modulus of e lastici ty for these e lements may be assumed

to represent a debonded end because a negligible  load wi 11 be transferred through

the fiber end in this case.

Boundary Condi tions and Component Properties

Stresses in three dimensions were calculated in all the elements shown in

Fig.  40 for various interface condi tions.    As  in  the  case  of the particulate  com-

posi tes, the stress-strain relations  of the matrix  and the fibers were assumed elastic.

The stress-strain relations for the materia Is at the interface  and the fiber end  were

a Iso assumed elastic.     It  was also assumed  that the composite is loaded  by a force

in  the z direction and  that no tractions are applied  in  the r direction. These

assumptions lead to the boundary conditions identical to those for the particulate

composite described in Section 11. Therefore, the procedure to satisfy these bound-

ary  conditions  and the subsequent calculation  of the composite modulus and Poisson's

ratio was also the same as described in the Appendix.

The following component properties were assumed:

Matrix E  =  0.4 x 106 psi

v = 0.35

Fibers E   =    1 1.8 x  1 0 6  psi

v = 0.197

1
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These properties represent a typica I glass fiber reinforced polymeric material.

Properties  of the interface were varied  over a wide range. Investigations

were carried out using eleven different combinations of property values as shown

in Table 5.

Table 5. Properties of the Interface

S. No. E (psi) v             Vol. Percent E at the fiber end

6                                             6
1         8 x.10 0.2 7.76 8  x 10

6                                             6
2           8   x 10 0.35 7.76 8  x 10

6                                             6
3        8  x 10 0.45 7.76 8  x 10

4        8  x 10 0.2 3.79 100
6

6
5        8  x 10 0.2 7.76 100

6                                             6
6               0.8 x 10 0.2 7.76 0.8 x 10

6                                             6
7         0.4 x 10 0.2 3.79 0.4 x 10

6                                                          '             6
8           0.1 x 10 0.2 3.79 0.1 x 10

9 10,000 0.2 3.79 10,000

10 1,000 0.2 7.76 1,000

11 100 0.2 7.76 100

Modulus of elasticity of the interface has been varied from a very high value

of 8 x 106 psi which is close to that of the fibers to a very low value of only 100

psi  which may be considered to represent debonding of the fibers from the matrix.

The first three sets of properties have been selected to study the effect of varying

Poisson's ratio of the interface. Modulus of elasticity of the elements adiacent to

the fiber end is the same as that of the interface for all cases except for 4 and 5.

For  these two cases  i t  has  a  very   low  va lue  (100 psi) compared  to  that  of the inter-

face. This represents  a  case of strong interface  wi th debonded fiber  end.     The



66

only difference in the case 4 and the case 5 is the thickness of the interface which

would change the volume percent  of the interface.

S fresses

The  stresses ina two-phase fibrous composi te  (i.e.,  with the elements al  the

interface having  the same properties  as the matrix)  have been shown  in  Figs.  41-

44. The stresses  have been norma lized with respect  to the applied stress  on  the

composite ( c)·  In the figures Z is the distance from the fiber end and d is the

fiber diameter. Variation of  the axia I  stress  in the fiber and the interfacial shear

stress along the fiber is shown in Fig. 41. The fiber axial stress attains its maxi-

mum  value  in  less  than two fiber diameters  from the fiber  end. In about  the  same

distance the interfacial shear stress drops down to zero. The axial stress at the

fiber end is about 1.5 0 which indicates  that  the load transfer  from the fiber end
C

is significant.  This can also be seen from Fig. 42 in which the variation in the

radial direction of the matrix axial stress (in the elements adiacent to the fiber

end) has been shown.  The axial stress in the elements with r/r2 less than one

(where r2  is
the radius of the fiber) is nearly

1.3 a c.
This significant load transfer

from the fiber end leads  to a  smal I  ineffecti ve fiber length over which the fiber

does not carry the maximum stress.

The maximum fiber stress (g) in case of unidirectional long fibers can be

calculated(28) by assuming sharing of load between the fiber and the matrix as

follows:

C A =C A+C A                             (1)C C f f m m

where A represents  the area. Since there is perfect bonding between the fiber

and the matrix, the strain experienced  by the composi te is equa|  to the fiber strain

and also the matrix strain

€ = €m = ef                             (2)C
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am of
Therefore -E - = 1- -                            (3)

Combining e4uations (1) and  (3)

9 =      1

ac        Af                                                    (4)
C T    ,    .>1-   43- ,

C C    T

A                    A                         E
For the present case  -*  =    4,  7(-m-  =  -8- . and   E   =  T * - ' thus

C

C
f

---    2.15C
C

This ratio of fiber stress to the composite stress is very close to the one obtained

Cf

by finite element analysis  (   = 2.17) and shown in Fig. 41.

Variation of the matrix axial streds and the matrix radial stress at the inter-

face along the fi6er length are shown in Figs. 43 and 44.  In both cases the stresses

increase sharply near the fiber end. Figs. 43 and 44 also show discontinuities in the

stresses upon passing the fiber end.   This  is not unexpected because of the discon-

tinuity  in the material properties at this point.

Effect of Interface

The stress distributions for three phase composi tes were obtained  for  all   the

cases indicated in Table 5.  In the first three cases, the Poisson's ratio of the inter-

face was assigned three different values of 0.2,0.35 and 0.45 while keeping all

other properties unchanged. The stresses thus obtained  in the three cases were      

almost identical to each other and hence they have not been plotted separately.

These stresses have been shown along with the other stress distributions for different

interface elastic moduli.
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Distributions of fiber axial stress along the length are shown in Fig. 45 for

interface moduli varying from 8 x 106 psi to 100 psi.  When the interface modulus

is near the matrix modulus or higher, the fiber axial stress attains a maximum value

within two fiber diameters from the fiber end. The stress distributions for the three

case of interface moduli (E = 0. t x 106, 0.8 x 106 and 8 x 106) are very similar

toeach other. As the interface modulus decreases to 10,000 psi, the fiber axial

stress attains its maximum value in about four fiber diameter from the fiber end.

But as the interface  modu lus further decreases  to  1,000  psi  or 100 psi, the fiber

axial stress does not reach a constant value with the present fiber length of ten

fiber diameters.    Due  to  the low interface  modu lus, the interface  does not transfer

load from matrix to the fiber efficiently.  In fact the modulus of 100 psi is so low

that it represents the case of complete debonding of the fiber from the matrix as

will be shown later.

Interfacial shear stress distributions for  all the above cases, except for inter-

face  modulus  of  0.8 x 1 0 6 psi,  have been shown  in  Fig.  46. The stress distribution

for the interface modulus of 0.8 x 106 psi is very close to the one for the interface

modulus of 0.1 x 106 psi. .The stressdistributions in Fig. 45 are related to those

in Fig. 46 because fiber stress build  up is related  to the shear stress at the interface.

The relation between the fiber axial stress and the interfacial shear stress can be

obtained by considering equilibrium of an infinitesimal fiber length dz (Fig. 47)

as fol lows:

22
(af + daf) TT r   = of  Trr  +  7 217rd Z                   (5)

2

.:     d o f=     -   T  d Z                                                                                   (6)r

Integrating (6),
A_

c    =   0    +   -       Td Z                                                                               (7)
2

f o r Jo
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where  00  is
the stress at the fiber end  and the exact  form  of  ·r  wi I l  depend  upon

re lative properties of the fiber, interface and the matrix. Equation (7) shows that

the area under the plot of shear stress versus the length of the fiber represents the

change in fiber stress or in other words (from Eq. 6) the slope of curve for fiber

stress is given by the magnitude of shear stress at the interface at that point.  It

can be seen that the stress distributions in Fig. 45 are consistent with those in Fig.

46. The shear stresses at the fiber end for interface moduli of 0.1 x 106 and

8 x.106 psi are high and they drop down to zero in about two fiber diameters.  Due

to  the high interfadia I shear stress, the fiber ax ial stress increases rapidly and reaches

a constant va lue as the shear stress drops to zero.   For the interface modulus of

10,000  psi the shear stress does  not  drop  to  zero as quick ly as  in the previous cases

and thus leads to a higher maximum stress in the fiber. Normalized shear stress at

the fiber end for interface modulus of 1000 psi is less than half of those in the

previous cases. However, this does not decrease very fast away from the fiber end

and  hence  the axia I  stress  in the fiber bui Ids up to about twice the stress  on  the

composite .    I t may be expected  that  in  this  case the fiber stress  cou Id reach  a

constant value if the fiber was long enough. Interfacial shear stress in the case of

interface modulus of 100 psi is very small and therefore very little load transfer is

possible from the matrix to the fiber.

Fiber axial stress at the end has been plotted as function of log of interface

modulus in Fig. 48. This stress gives an idea of the load transfer through the fiber

end.  At very low interface modulus the stress at the. fiber end is very small indi-

cating that no signi ficant load transfer takes place through the fiber end. The stress

at the fiber end increases with the increase of interface modulus.  When the inter-

face modulus is close to or higher than the matrix modulus, the fiber end stress is

quite high indicating substantial load transfer through the end.   As the interface

modulus varies from 105 psi to 8 x 106.psi there is not much change in the fiber end

stress.
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Variation in the radial direction of the matrix axial stress (in the elements

adiacent to the fiber end, refer Fig. 42) has been shown in Fig. 49 for interface

moduli of 100, 1,000, 10,000 and 100,000 psi. For interface moduli higher than

105 psi, the variations are almost identical to the one for modulus of 105 psi.  All

the curves in Fig. 49 show a discontinuity at -     = 1.0 because of the disconti-
2

nuity in the material properties at this point.  In the case of interface modulus of

105 psi,. the matrix axial stress is about l .5 ac
for r/r2 less than one and it sharply

drops away from the fiber end.   This is because the fiber carries more  load  than the

matrix.  For the interface modulus of 10,000 psi, the matrix axial stress does not

change appreciably as r/r2 varies from zero to 1.5.  In the cases of interface

moduli of 100 and 1,000 psi, the matrix axial stress for
r/r2 less than one is very

small but increases very sharply away from the fiber end. In these two cases the

load transfer from the matrix to the fiber is very small because of the weak inter-

face.   Therefore most of the  load is carried by the matrix.

Distribution of matrix axial stresses along the fiber length are shown in Fig.

50 for the interface moduli of 100,1,000, 10,000 and 105 psi.  Ih all the cases the

stresses increase sharply near the fiber end.  They also show discontinuities in the

stresses upon passing the fiber end because of the physical discontinuity at this

point.  In the cases of interface moduli of 104 and 105 psi, the stresses away from

the fiber end drop to a very low value indicating that most of the load has been

transferred to the fibers. However, low modulus of the interface (100 or 1,000 psi)

does not help in the transfer of load from matrix to the'fibers and therefore the

axia| stresses in the matrix away from the fiber end are considerably higher than the

applied composi te stress in these cases.

Radial stresses in the matrix have been plotted along the fiber length in

\

Fig. 51 forinterface moduli of 100, 1,000 and 10,000 psi. The stresses increase

sharply near the fiber end. The stresses away from the fiber end are compressive
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in  case  of the interface moduli    of 1,000 and 10,000  psi.     For the interface  modu lus

of 100 psi, the radial stresses in the matrix are zero.  It was shown in Fig. 49 that

the axial stresses in the matrix adiacent to the fiber end are nearly zero for inter-

face  modu lus  of  100  psi .    Sma I I  magnitude  of the stress s  may be attributed  to  the

size of the finite elements.  Thus the normal stresses in the matrix adiacent to the

fiber are zero indicating a free boundary. Therefore this represents a case of com-

plete debonding of fibers from the matrix. This effect is the same as obtained in

the case of particulate composites(Sectionll).

Composite modulus has been plotted as a function of log interface modulus

in Fig. 52.  At very low interface modulus the fibers do not contribute to the

stiffness  of the composi te. As explained earlier,  this  is  due  to  the  fact  that  the

weak interface does not permit any load transfer from the matrix to the fiber.

Therefore, the composite behaves as if these were voids of the size of the fiber

and She interface.    As the interface modulus increases,  the load transfer takes

place from the matrix to. the fiber and consequently the composite modulus in-

creases as shown in Fig. 52. The Halpin and Tsai equation may  a Iso  6e  used
( 29)

to ca|culate the modulus of the· two phase composite with discontinuous fiber rein-

forcement.  For the modulus in the longitudinal direction, the equation can be

wri tten  as

E            1  +  -2   .Vf  '11 L                                                   (8)
L_

1 - Vf ' NL

where
(EA  ) -1

r   - m                                                                                                                                                        (9)
N L  =     (Ep/Em)  +  24/d

and E    Ef and EL are
the matrix, fiber and the composite moduli respectively.

m'
E
f   11.8 1 = 0.4 x 106 psi

For the
present case Em =  --03  ' 3= 10.375, Vf= 0.424 and Em
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thus

EL  =  3.15 x 106 psi

This value of the composite modulus compares favorably with the value of

3.58 x  106 Psi obtained  for  the two phase composite  by the finite element method.

The onset of failure  may be predicted  from the knowledge  of the stress dis-

tributions  in the composi te.    To  this end, distortion energy given os follows:

U  =  +[(01- 02)2  +  (02 - 03)2  +  (9 - 01)2] (10)

(where 01, 02 and 03
are principal stresses) was calculated for all the elements

(Fig.  40) for different interface moduli (normalized stresses were used for this

calcu lation). Maximum distortion energy  in  any e lement  of the matrix  has  been

plotted as a function of interface modulus in Fig. 53. Maximum distortion energy

always occurs  in  an e lement  near the fiber end. Strength  of the composi te based

on von Mises failure criterion (i.e., the initiation of composite failure occurs as

soon as the distortion energy in any element of the matrix reaches a limiting value)

is shown qualitatively in Fig. 54. The actual strength values will depend upon the

matrix strength.  For very low interface modulus the strength of the composite is

low due to high stress concentrations at the discontinuity. Strength of the com-

posite increases as the interface modulus increases.  But as the interface modulus

changes  from   104  psi   to  8 x   106  psi, the composi te strength remains almost constant.

However,  Fig. 52 shows a significant change  in the composi te modulus  over  this

range of interface modulus.  Thus, the ultimate elongation of the composite can be

controlled without affecting the failure stress by suitably controlling the interface

modulus (using a surface treatment on the fibers during manufacturing).    This also

shows  that  a good combi nation  of the tensile strength and toughness  (or the impact

strength)  may be obtained by suitably selecting the interface properties.
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Effect of Fiber End Condition

It has now been shown  that a very low modulus of the interface does not allow

for load transfer across the interface.   This fact has been made  use of in studying

the stress distribution  in a composi te with strong interface  but  with the fiber  end

debonded  from the matrix. E lements  of the interface ad iacent  to the fiber  end

were assigned a modulus of 100 psi while the rest of the interface had a modulus of

8 x  106  psi.    Studies  with the debonded fiber end  have been carried  out  for  two

thicknesses of the interface i.e. with interface volume of 3.79 and 7.76 percent.

Resulting stress distributions are shown in Figs. 55-58.

Axial stress distribution in the fiber (Fig. 55) shows that the stress at the

fiber end is significantly reduced due to debonding of the end. The stresses in-

crease very rapidly  away  from  the  end.    This is because very.high shear stress  is

developed  in the interface  near the  end  (Fig.  56).    The high shear stress is produced

due to the discontinuity at the end. The strong interface allows an efficient transfer

of load from  the rno trix to the fi6ers. The fiber axial stress reaches a constant value

in less than two fiber diameters from the end and the shear stress drops to zero in

the same distance. These results are in agreement with the observations of Chen

and Lavengood that debonding at the fiber ends tends to increase the maximum(30)

interfacial shear but has relatively little effect on the maximum fiber stress.    Figs.

55 and 56 also show that the change in interface thickness has very little effect on

the stress distributions.

Variation in the radial direction of matrix axial stress (in the elements ad-

iacent to the fiber end, refer Fig. 42) shows (Fig. 57) that the axial stress vanishes

for  1-   less than one.   This is to be expected because it acts as a free boundary

r2

due to debonding of the fiber end. The axial stress increases very sharply near

r _- -1.   The variation of matrix axial stress along the fiber length is shown  in
r
2
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Fig. 58. This shows the stress increases very sharply near the fiber end and the

discontinuity in the stress at this point is much severe than the one with the bonded

fi6er end.

Some Comments on the Results

Results of the elastic analysis of three phase fibrous composites have been

presented in this section. Various stress distributions should give an insight for

their relative importance and their application. A close examination of Fig. 46

shows that the maximum shear stress at the interface is about 0.4 times the applied

stress and Fig. 45 shows that the maximum shear stress in the fiber is 2.5 times the

applied stress  i .e. the shear stress is approximate ly one sixth  of the fiber stress.

For  a  typica I  fi ber strength  of  1 50,000  psi, the shear stress produced  in the matrix

will be 25,000 psi. If noyielding isallowed, the interface would fail atthis high

shear stress and hence  may be the controlling factor  for the composite strength.

The shear stresses  in  case of debonded fiber ends are extremely  high  (Fig.  56).

These stresses are high enough to cause the complete debonding of the fiber from

the matrix. Debonded fiber end represents a  case  of very practical importance  be-

cause the fiber end may be debonded due to high stresses at the interface or one

broken fiber  wou Id produce two debonded fiber  ends. A fiber once debonded  from

the matrix does not usually carry any load and its load has to be shared by other

fibers. This results in an increase inthe stress in other fibers and therefore may

trigger the failure of other fibers and ultimately the composi te. However,  some-

times compressi ve residua I  stresses are present  in the matrix which are produced

during manufacturi ng  of the composite. The radial compressive stresses at  the

interface  wou Id cause a mechanical friction between the fiber and the matrix.

Under these conditions, a fiber which  has been chemica Ily debonded  from  the

matrix  may  sti 11 carry some  load. The present analysis does not take into account
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the residual therma I  stresses  of the composi te. A separate analysis  has  to be carried

out whenever these stresses are deemed significant. Another |imitation  to  the

present analysis  is the assumption  of e lastic behavior of the matrix. This assumption

is valid in the case of some polymer matrices such as the epoxy resins.  In case of

metal lic matrices, where the plastic flow may be quite significant, the elastic anal-

ysis has a very limited application. Behavior of the composites with the yielding

matrices can be understood only by an elastic-plastic analysis.   This has been  the

subiect of investigations in the next section.



V.    ELASTIC-PLASTIC ANA LYSIS  OF Fl BROUS COMPOSITES

I ntroduction

The  behavior  of a composi te material  can be divided into three regimes:

(1) linear elastic response up to the elastic limit of the matrix material, (2) in-

elastic behavior beyond the elastic limit and up to that loading at which first

failure occurs locally,  and (3) subsequent crack propagation and total composi te

failure.

So  far  in the thesis, behavior  of the composi te materials  has been investi-

gated only in the first regime (i.e. with linearlyelastic matrix) which has received

greater attention of other investigators  than the other two regimes.    But  due  to  the

assumption of a linearly elastic matrix materia 1, these studies are applicable  in

predicting the behavior of the composite material with very special matrix material

for example the epoxies or a ceramic or in predicting the initial (elastic or Young's)

modulus  of the c6mposite and elastic stress concentrations.

However, a number of materials, f6r example metals and polymers, selected

as the matrix materials  for the composi tes exhibit high strain capability  i.e.,  high

ductility oryielding. This ductility permits large local strains tooccur inmatrix

near fiber discontinuities and·in regions between closely spaced fibers. But since

elastic analyses do not permit this local yielding they are only valid up to the

applied composi te stress at which  the most stressed material region reaches the

elastic limit value.  And this applied stress level is typically only a fraction of

that at which composi te failure occurs.

The consideration of nonlinear material response represents a somewhat more

formidable undertaking.  As a result, not much work in the general area of micro-

mechanical behavior of composite materials, i.e., consideration of local states of

stress as affecting gross or composi te properties,  has been done. Doughty and

94
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McGarry studiedasingle fibermodel of a discontinuous fiber reinforced com-(31)

posi te material  with an elastic-plastic and viscoe lastic matrix.  They  show  that  even

at the composite stress lower than the yield stress of the matrix stress conc6ntration

at the fiber end causes some  loca I  yielding  in the matrix, the extent of which

depends on the shape of the fiber end. This yielding has a profound effect on the

stress in the fiber end. Adams carried out an inelastic analysis of a unidirec-(32)

tional composite subiected to transverse normal loading. His results indicate that

extensive local yielding and redistribution of stresses can occur in a composite with

very little indication  of such behavior being apparent by observation  of  the  tota I

stress-strain response  of the composite  a lone. These studies  show the importance

of elastic-plastic analyses to the understanding of composite material behavior.

H6wever, much work has to be done before the design criteria and theories of

fai lure could be established and interpreted  in the light of elastic-plastic analyses

of the composi te material. The present e lastic-plastic analysis of fibrous composite

subiected to longitudinal (axial) loading is a step in that direction.

Analysis of the Models

Packing of the fibers in the composites was assumed t6 be the same as in

Section IV (Fig. 38).  It was pointed out that this idealization of the composite

has a definite limitation since in the region between the two rows of fibers the

total load is supported by the matrix.  Such a section would, therefore, be the

weakest and hence the controlling one  for the strength  of the composite.   An

elastic-plastic analysis would show that this section would be the first to yield

and the stresses in this section can not build up beyond a certain value although

the strains may be very large.   Thus, the applied stress on the composite studied

by this model  (Fig.   38) is limited  by the section between  the  two rows of fibers.
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boundary conditions  for e lastic analysis,  can no longer be  used  due  to the elastic-

plastic matrix. The following procedure was  used to satisfy the boundary conditions:

The stress and displacement distribution is found (with reference to Fig. 39)

such that

(U.)       = Kl (Specified displacement in z-direction),
. AB

/

(U9) = 0 (Symmetry),
- DC

(U-) -  K2 (Specified displacement in r-direction),
'

BC

(U ). = 0 (Symmetry),
r AD

T -T =   0   (on ABCD).
rz zr

From these boundary conditions,  ar and  az  in all  elements
and displacements

U  and Uz at all nodal circles are determined.  Kl
is selected to obtain the desired

r

value of strain in z-direction. The
value of K2 has to

be picked such that the net

force in the r-direction along BC is zero.  Thus

(Fr)          =   f     .   0-  dz   =     1 BC  1  3,   =    O                                                           (1)
BC 1 BC     r

Several values  of  K2 may  have  to be tried to satisfy equation (1). Experience

shows that it usoally takes three attempts to get the correct value to
K2

which will

satisfy equation  (1).   With this
value  of .K2'

the solution obtained  is the desired one

which satisfies  all the boundary condi tions  and is equivalent  to the superimposed

solution in the case of elastic analysis.

It.was pointed out  that with the fiber packing shown in Fig. 38, the stressin a

single fiber bui Ids up due  only to the transfer of  load from the matrix. The above

imposed boundary condition  that
Trz

vanishes  on  BC  does  not  a Ilow any stress transfer

from one fiber to the other and hence is invalid for the fiber packing of Fig. 59.
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The distribution of  'r     is not known. A close approximation of the actual situation
rz

wou Id  be to assume  that the axial strain  at each point of the outer boundary  (BC)

of the representative cell (Fig. 39) is the same as the average composite axial

strain. This means that instead of shear stresses, the tangential displacements

are  prescribed  on  BC. The stress and displacement distribution is found  (with

reference to Fig. 39) which satisfies the following boundary conditions:

(U-) kl
(Specified displacement in z-direction),

 AB

(U-) 0 (Symmetry),
o DC

(U-) k2
(Specified displacement in r-direction),

' BC

(U,) 0 (Symmetry),'
AD

T   =  T   = 0   on AB, DC and AD
rz zr

(U9) =      U(z). (Specified tangential displacement  at  all  noda I
4 BC

circles  on  BC).

U(z) for each nodal circle on BC is prescribed such that the axial strain

along  BC is constant and is equal  to  the one produced by displacement k 1  on AB.

It can be easily seen that U(z) at a nodal circle on BC is given by

kl.Z
U(z) =

IBCI

where z is the distance of the nodal circle from DC whose normal displacement is

zero.    Values of k 1  a.nd k2
are picked  in the manner discussed earlier. The stresses

and  displacments thus obtained represent the state of stress  in a composi te  with  the

fiber packing shown in Fig. 59.
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Stresses With Axial Strains Imposed on One Boundary of the Representative Cell

To  calculate the stresses,  the fol lowing component properties were assumed:

Fibers ,
E   .=    11.8 x  1 0 6  psi

v = 0.197

Matrix E  =  0.4 x 106 psi

v = 0.35

Yield Stresses =  8,000 and 20,000 psi

Yield Strains* =  2.0 and 5.0 percent

Post  Yie Id  E      =     100  psi

The stress distributions for the composite with the fiber packing shown in

Fig.  38 are discussed  in this section. The stress distributions for the second fiber

packing  will be discussed  in  the next section.

The stress distributions for r rl = 0·67 and matrix yield stress of 8,000 psi

are shown in Figs. 61-64 for four composite strain levels namely 0.2,0.5,1.0

and 2.0 percent. The average composite stresses are given in Table 6. Variqtion

of the axial stress in the fiber is shown in Fig. 61. General nature of the curves

is the same as shown in Fig. 41 for elastic analysis. Fiber stress attains a mm imum

value in about two fiber diameters from the fiber end.  As the composite strain in-

creases the maximum fiber stress increases.    When the composi te strain increases

from 1.0 to 2.0 percent, the increase in maximum fiber stress is very small.

*  I n  case of triaxia I  stresses,  the von Mises criterion  for yie Iding  has  been  used.

An effective strain ge is determined according to the formula:

e     =        1  I (cl  -  9)2   +   (e2  -  €92 +  (93  -el)2]e

(where   €1,   c2 and   c3 are
principal strains) for every element.    If  ee  for  an

element is greater than the yield strain of the material then that element is
considered yielded.
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1

r2
Table 6. Average Composi te

Stresses  for    -  =  0.67 and  (0  =  8,000  psi

Composite Axial Matrix  Yie Id Matrix  Yie Id Average Composi te
Strain Strain S tress Stress

0.2 percent 2.0 percent 8,000 psi 7,160 psi

0.5 percent 2.0 percent 8,000 psi 13,340 psi

1.0 percent 2.0 percent 8,000 psi 16,360 psi

2.Opercent 2.0 percent 8,000 psi 16,820 psi

This is because the matrix between  the two fiber  rows  (Fig.   38)  has  yie Ided  and

the  composi te stress  does not increase significantly due  to this change in composite

St ain. Yielding of the matrix is shown in Fig. 65 where the shaded elements re-

present the yielded region. There are no regions of yielded matrix  at 0.2 percent

strain. Some elements of matrix have yielded at 0.5 percent strain. More elements

yield at 1.Opercent strain. But asthe composi testrain is  increased  from   1·.0  to

*                2.0 percent, the region in which the matrix has yielded does not increase because

the weak section of the composite with matrix alone has already yielded.  Fig. 61

a Iso shows  that the fiber stress increases linearly  near the fiber  end for composite

strains of 0.5,1.0 and 2.0 percent.   This is, once again, due to the yielding of

matrix at the interface near the fiber end. Shear stresses near the fiber end are

high and of nearly the same magnitude for composite strains of 0.5,1.0 and 2.0

percent (Fig. 62). The initial straight line for fiber stress should be expected as

a result of equation (7) in Section IV.

The shear stresses at the interface are shown varying along the fiber length

in Fig. 62. Shear stresses for the composite strains of 0.5, 1.0 and 2.0 percent

are high near the fiber end qnd remain constant for some length and then very

A.
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quickly drop to zero. The matrix axial stresses at the interface are plotted as a

function of distance from the fiber end in Fig. 63. The stresses increase very

sharply near the fiber end due  to the discontinuity. Variation  in the radial  di-

rection of matrix axial stress (in the elements adiacent to the fiber end, refer Fig.

42) is shown in Fig. 64. The curve for 0.2 percent composite strain is similar to

one in Fig. 42 in the case 6f the elastic analysis.  This is because at 0.2 percent

composite strain even the highest stressed element of the matrix is elastic.  How-

ever, at the composite strain of 0.5,1.0 and 2.0 percent the matrix near the fiber

end has yielded and hence the stresses do  not show much variation.

The stress distributions for r2/rl - 0.67 and the matrix yield stress of 20,000

psi are shown in Figs. 66-69. The growth of yield zone for this case is shown in

Fig. 70. The average composite stresses are given in Table 7.

rl

Table 7. Average Composite
Stresses for  -r   = 0.67 and (0 )

= 20,000 psi
Ym

Composite Axial Matrix Yield Matrix Yield Average Composite
Strain Strain Stress Stress

0.5 percent 5.Opercent 20,000 psi 17,730 psi

1.0 percent 5.0 percent 20,000 psi 31,810 psi

2.0 percent 5.0 percent 20,000 psi 40,420 psi

4.0 percent 5.0 percent 20,000 psi 41,830 psi

Due to higher yield stress, higher strain levels of 0.5,1.0,2.0 and 4.0

percent were selected for the analysis. A comparison of Figs. 66-69 with the

corresponding Figs. 61-64 shows that the stress distributions are very similar for

the two cases of yield stress. The explanation of results for stress distributions
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given previously for the matrix yield stress of 8,000 psi apply also for the yield

stress of 20,000 psi. Comparison of Fig. 70 with Fig. 65 shows that the growth of

yield zone is also identical with that in the case of matrix yield stress of 8,000 psi.

The stress distributions for r2/41 - 0·25 and the matrix yield stress of 8,000

psi are shown in Figs. 71-74. Yielding of the matrix at different strain levels is

shown  in  Fig.   75. The average composi te stresses are given in Table  8.

Table 8. Average Composite Stresses for r2/41 - 0.25 and (c )   = 8,000 psi
Ym

Composi te Axial Matrix  Yie Id Matrix  Yie Id Average Composite
Strain Strain Stress Stress

0.5 percent 2.0  percen t 8,000 psi 4,410 psi

1.0 percent 2.0 percent 8,000 psi 8,350 psi

2.0 percent 2.0 percent 8,000 psi 12,670 psi

3.0 percent 2.0 percent 8,000 psi
13,930 psi

Axial stresses in the fiber (Fig. 71) attain the maximum value in less than

thirteen fiber diameters from the fiber end. The.maximum stress in the fiber in-

creases with the composite strain. The change in maximum fiber stress as the

composite strain· is increased from 2.0 to 3.0 percent is small because of the

extensi ve yielding  of the matrix at these strain levels  (Fig.   75). A linear increase

in the fiber stress  near  the  end  is  due  to  the yie Iding  of  the matrix  at the interface.

Shear stresses at the interface are shown varying along the fiber length in

Fig..72. Shear stresses  near the fiber  end  are  high.     For the composi te strain  of

0.5  percent, the shear stress drops very rapidly and becomes  zero  in ten fiber

diameters away from  the end. For composite strain of 1.0 percent the shear stress

remains constant for some distance, which is even longer for strains of 2.0 and
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3.0 perdent, and then drops rapdily. The stress in all the cases reduces to zero

within thirteen fiber diameters which is consistent with the observations based on

Fig.  71. The matrix  axia I  stresses  at the interface are plotted  as a function  of

distance from the fiber end in Fig. 73. Variation in the radial direction of the

matrix axtai stress (in the elements adiacent to the fiber end, refer Fig. 42) is

shown in Fig. 74. Both Fig. 73 and 74 show discontinuity in the matrix stress

near the physical discontinuity at the fiber end. Yielding of the matrix is shown

in Fig. 75.  At 0.5 percent composite strain only a few elements of the matrix

have yielded  near the fiber  end.    As the composi testrain israised to 1.Opercent

more matrix yields near the fiber end and a Iso along the interface. There  is an

extensive yielding of the matrix at the composite strains of 2.0 and 3.0 percent.

Stress-Strain Curves With Axial Strains Imposed on One Boundary of the Repre-

sentative Cell

Predicted stress-strain curves for the composite with the fiber packing of

Fig. 38 are shown in Figs. 76 and 77. Effect of change in fiber contents is shown

in  Fig. 76. Initial modulus of elasticity·of the composi te  with 5.62 percent fibers

is 0.88 x 106 psi compared to 3.58 x 106 psi for the composite with 42.4 percent

(29)fibers.  It was pointed out in Section IV that the Halpin and Tsai equation

may also be used to calculate the modulus of the composite with discontinuous

fiber reinforcement. In Section IV, the elastic modulus calculated by this equa-

tion  for 42.4 percent. fiber contents compared favorably  with the present predictions.

The Halpin and Tsai equation predicts an elastic modulus of 0.83 x 106 ps,' for

5.62 percent fiber contents and a fiber aspect ratio of 27 (i.e.  for the present

fiber geometry ). This value is also quite c6mparable with the prediction of

the present study. Fig. 76  shows  that the composi te  with 5.62 percent fibers

has low initial modulus (0.88 x 106 psi), butitshows the effect of local yielding
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of matrix after 1.Opercent composite strain. Initial modulus of the composite

with 42.4 percent fibers is quite high (3.58 x 106 psi) but this composite shows

yielding even at 0.5 percent composite strain. The effect of a change in the

matrix yield stress is shown in Fig. 77.  It is quite clear that the matrix yield

stress does not influence the initial modulus of the composite. Yield stress of

the composite increases in about the same proportion as the yield stress of the
,.

matrix. However, in both cases the composite yield strain is much smaller than

the matrix yield strain.   This is because the fiber end produces high strain con-

centrations in the matrix in its vicinity which cause yielding of the matrix between

the two rows of fibers. The stresses do not bui Id up beyond a certain value al-

though the strains are large.    I t was pointed  out  in an earlier section  that  the

boundary conditions  may be imposed  in  such  a  way  that the average composi te

stress  is not completely controlled by a weak section. Results of tfe analysis

with such boundary condi tions are presented  in  the next section.

Stresses and Stress-Strain Curve with Axial Strains Imposed on Entire Outer
Boundary of the Representative Cel I

Results of the analysis of the composites with the fiber packing sh6wn in

Fig. 59 are discussed in this section.  The two geometries of the fibers (Fig. 60)

used  were  the  same  as  in the previous  ca se. The component properties  were also

assumed to be the same as in the preceding section of this chapter. However, the

ana lysis  was not carried  out  for the matrix yield stress of 20,000 psi because  of  the

similarity of results with the yield stress of 8,000 psi.

The stress distributions forr2 /rl = 0·67 are shown in Figs. 78-81. Yielding

of the matrix at different strain levels is shown  in  Fig.   82. The average composi te

stresses given in Table 9 were calculated by taking an average of the axial stresses

over the entire volume  of the composi t e.I n the previous  case the average  over  the
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entire volume was not necessary because the average stress on any cross-section was

the same since the shear stress  on the outer boundary  of the representative  ce 11

(Fig.   39) was prescribed  to  be  zero.     But  wi th the present boundary conditions shear

stresses exist on the outer boundary of the representati ve  cell and hence the average

axial stresses on different cross-sections are different.

r2
Table 9. Average Composite Stresses for -- =  0.67 and (cj   = 8,000 psi

1m

Composite Axial Matrix Yield Matrix Yield Average Composi te
Strain Strai n Stress Stress

0.5 percent 2.0 percent 8,000 psi 19,670 psi

1.0 percent 2.0 percent 8,000 psi 31,440 psi

2.0 percent 2.0 percent 8,000 psi 35,500   psi

The axial stresses in fibers are shown  in  Fig.   78 for the composi te strain  of

0.5,1.0 and 2.0 percent. The stresses near the fiber end are low but increase

away  from  the  end   in all cases.    At 0.5 percent composi te strain the fiber stress

reaches a constant value within five fiber diameters from the end. However, unlike

the previous case (Fig. 61), the fiber stresses at the composite strains of 1.0 and

2.0 percent do not attain a constant value in the assumed fiber length (i.e., 10.375

fiber diameters).    This is because the redistribution  of load along the fiber length

a Ilows higher stresses  to be carried  by the fibers at higher composi te strains. Longer

fibers are needed to transfer this higher stress. The transfer of load is aided by the

yielding of the matrix along the fiber-matrix interface as shown in Fig. 82.  A

linear increa$e in the fiber axial stress at 2.0 percent composite strain is, once

again,  due  to the yielding of the matrix  at the interface.
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The shear stresses at the interface are shown varying along the fiber length

in  Fig.  79. The stresses are  high  near the fiber end at all the composite strains

(0.5,1.0 and 2.0 percent).  At 0.5 percent composite strain, the interfacial shear

stress starts decreasing rapidly very near the fiber end, whereas due to yielding of

the matrix it remains nearly constant for more than two fiber diameters at 1.0 per-

cent composite strain  and  for  more  than four fiber diameters  at 2.0 percent composi te

strain. The stress distributions in Fig. 78 areconsistent with theones in Fig. 79

according to equation (7) in Section IV. The matrix axial stresses at the interface

are  plotted as a function of distance from the fiber end  in Fig.  80. The stresses  in-

crease sharply near the fiber end and show a discontinuity due to the discontinuity

in the material properties at this point. Variation in the radial direction of the

matrix axial stresses (in the elements adiacent to the fiber end, refer Fig.  42) is

shown in Fig.  81. The variation in the stresses is not very large due to the yielding

of the matrix  near  the  end.     Fig. 82 shows  that  on ly  few e lements  of the matrix  near

the  fiber  end hqve yielded  at 0.5 percent composi te strain. The yielded region  of

the matrix enlarges as the composite strain increases. There is extensive yielding

of the matrix at 2.0 percent compesite strain.

The predicted stress-strain curve for the composite with the fiber p6cking of

Fig. 59 is shown in Fig. 83. The stress-strain curve in Fig. 83 shows much higher

values of stresses compared to the corresponding curve  in Fig. 77.  This is not

unexpected because the higher stresses are expected due to the load redistribution

between the fibers. There are no experimental data in the |iterature to the author's

knowledge which  cou Id be directly compared  with the present predictions. Studies

of  Ke I ly and Tyson concerning the tensi le properties of fiber-reinforced metals(33)

show that in the case of discontinuous molybdenum fibers in copper matrix (with

yield stress w 10,000 psi) the composite with 42 percent fibers has a yield stress
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of about 40,000 psi. Studies of Weeton and Signorelli Indicate that the com-(34) .

posi te reinforced with continuous  5 mil diameter tungsten  wire  (v   = 53.6 percent)

has a yield stress of about 150,000 psi compared to 10,000 psi yield stress of the

copper matrix.  In the light of these studies, the stress-strain curve shown in Fig.

83 seems closer to the reality. Definite conclusions can be drawn only after more

experimental data are accumulated and the analyses are carried out by varying

other parameters such as volume fraction of fibers and fiber aspect ratio.

For the r2/61 = 0·25
and fiber aspect ratio of 27, the stress distributions

were  obtained  for the composi te strains of  1.0  and 2.0 percent. The results  are

shown in Figs. 84-87. Yielding of the matrix at the two stmin levels is shown in

Fig. 88. These resu|ts are quite simi|ar to the ones obtained for the closer fiber

packing (rY41 = 0·67).  It may be noted that at the low volume fraction of fibers

(i.e., 5.62 percent) the fiber aspect ratio of even 27 is not enough for the fiber

axial stress to reach a constant value. It suggests that the analyses with higher

fiber aspect ratios would be of considerable interest.

The present studies indicate  that· the behaviour of a composite  can be simu-

lated very closely by carefully imposing the boundary conditions on a representative

cell. The studies show the effect of yielding of the matrix on the internal stresses

and predict the stress-strain relation of the composite. The influence of changing

the matrix yield stress  has also been studied. However, the studies are not extensive

enough  in some areas of the composite materia Is. Studies  have been carried out

with only two volume fractions of the fibers (5.62 and 42.4 percent) and at each

volume fraction only one fiber aspect ratio has been studied. The effect of relative

elastic properties of the fiber and the matrix  has not been investigated.    For  the

better understanding of the behavior of the composite materials further investigations

should be carried out in these areas. More attention should be devoted to the

(
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selection of the model and the associated boundary conditions. Finally, to gain

confidence regarding the usefu Iness  of the ana lyses, experiments shou Id  be  per-

formed  and  the data compared.



VI. CONC LUSIONS

Finite element methods have been used to calculate internal stresses within

a spherical particle or discontinuous fiber composi te. The internal stresses  have

been analyzed as a function of interparticle spacing and the elastic constants

have been calcu lated  from a knowledge of these stresses. The effect of altering

the interface properties  has  been simu lated by assigning different properties  to

the finite elements forming the interface.  For the case of composites with elastic-

plastic matrices the boundary conditions employed had to be altered in order to

simulate the behavior of a real composite.

In  the  case of spherical partic le composites, a comparison  has  been  made

between an axisymmetric analysis and a three-dimensional analysis to represent

the geometrical arrangement of the particles. Although the axisymmetric analysis

is easy to use and the computer running time is nominal, the axisymmetric cell

used to represent the composite does not actually fill the entire space.  Thus a

three-dimensional ana lysis was performed assuming the spheres were placed  on

the  corners  of a  cube, to represent a simple cubic packing.    For  this  case,  the

interparticle spacing cqn be directly related to the volume fraction of spherical

particles in the composite.   It is seen that the results of  the two analyses are in

good agreement.  At low volume fractions or at great interparticle spacings the

results are in agreement with the predictions of the Goodier theory for stresses

around a spherical inclusion. Predictions  of the elastic constants  of the composi te

are in good agreement with the experimental data available in the literature.  The

influence  of a weak .interface  has  a Iso been studied.    The weak interface  has  the

effect of debonding  the  fi Iler partic les  from the matrix.

For the analysis of aligned discontinuous fiber composi tes an axisymmetric

analysis was utilized since for spherical composites the results were in close

139
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agreement with the three-dimensional representation. An elastic analysis of a

three phase (matrix, fiber and interface) fibrous composite was carried out to

study in detail the  rble of an interface  on  the load carrying capacity of the com-

posite . The relative importance of the various stress distributions and their

influence  on the strength  of the composi te  has been discussed.    I t  has been shown

that by weakening  the   interface  both the modulus  of the composi te  and the strength

of the composite can be independently altered.  Thus it is possible to select an

interface modulus to optimize the impact strength or energy absorption capability

of the composi te. The influence  of an elastic-plastic matrix on internal stresses

and  composi te properties  was  a Iso studied. Here, different types of boundary  con-

ditions were applied to the axisymmetric cell representing the composite.  It has

been found that the behavior of a composite can be simulated very closely by

carefu I ly imposi ng the boundary conditions  on the representati ve  cel I.    The  com-

p6si te sttress-strain behavior  has been predicted  and a comparison  has  been  made

with avai lable experimental  data.

The present studies are an attempt to predict the behavior of complex com-

posi te materials using simplified micromechanics analyses. The powerful  tool  of

finite element methods makes it possible to analyze complex problems with great

ease. Limitations concerning the applidability of the results have been pointed

out at the appropriate places  in the thesis. Suggestions  have  been  made  for

resear6h work which  wou Id further enhance the understanding  of the behavior  of

composi te materia Is and would increase the confidence  in the application  of

analyses such as  the one presented  here.
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APPENDIX

In case of elasti6 analysis it is possible to superpose specific individual

boundary-value problems in order to obtain the solution for a given set of boundary

conditions .     Superposi tion  of two boundary value problems is needed  for(35,36)

the axisymmetric analysis and three for the three-dimensional analysis.

Axisymmetric Analysis

To satisfy the boundary conditions stated in Section  li, the following stress

and displacement distributions (with reference  to Fig.  1) were obtained and  pro-

perly superposed:

(1)  The stress and displacement distribution (No. 1) is found such that

(Uzl)                   =     1     (Arbitrarily  specified  unit  displacement),
AB

(Uzl)    = 0 (Symmetry),
DC

(Uri 
=  0 (Specified displacement condition),

BC

(Url)
= 0 (Symmetry),

AD

Trz  -  Tzr        =   0   Con ABCD).

From these boundary conditions, crl and azl in
all elements and displacements

1

Url'Uzl atall nodal circles are determined.

(2)  The stress and displacement distribution (No. 2) is found such that

CUZ
) = 0 (Specified displacement condition),

2 AB

CUZ
) - 0 (Symmetry),
2 DC

(Ur2)
=       1 (Arbi trari ly specified unit displacement),

BC

(UL) = 0 (Symmetry),
AD

T =T =   0   (on ABCD).
rz    zr
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(3) These stress and displacement distributions are superimposed to obtain

  = =1 + kc2

U =Ul + kU2

where k is determined such that the net force in the r direction along BC is zero.

Thus

(Fr BC  =    (01  +  kc;2) dz  =.  IBC|(8,1  +  k€9     =  0' BC
BC

(where Er represents the average stress) so that

/arl 

k = - \ID
\ . /BC

The average stress on AB is thus

/8,/\
(d-)   = (ozl)    -  1-1  (Ez2)

-AB AB
\8,2*C

AB

and the displacement is

<0-r  
(U.)      =  (Uzl)     - 8 -1   (Uz2)      =  (Uzl)Z

AB AB  1 8 s AB AB

  4/BC ri

since (Uz2)    = 0·
AB

To  calculate the stiffness or modult,s of elasticity  of the composi te,  the

average stress on the boundary AB is calculated:

- fAS''IA        , -
C = = (C )

Z            A               Z.AB

where A is the area of the top of the cylinder in the finite element analysis and

the  integral is replaced  as a summation as follows:

rl

 a dA = 2TT   a rdr = 2TT i 1 # (ri2 - ri-12) 0
J Z A Z         Z

0
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where ri and ri-1 are the radii to the nodal circles that define the elements on the

top 6f the cylinder, n is the number of such circles, and az is the corresponding

norm61 stress  in  each e lement.

The  modulus  is  defi ned  as

E = -Ez
EZ

where the strain used is calculated  from  the specified boundary displacement,

(U_)

iz-
 AB

IBC I

(U-)        is  the net displacement of boundary as follows:
  AB

(U.)     =  (U-1)    + k (U.2)&
AS

*
AB   AB

but,
(UZ2) .= 0,AB

thus (U_) = (Uzl) 
AB AB

The displacement of the boundary BC is obtained in the same way as

(U,)   =.k (U,2)
BC         BC

The net displacements of the boundaries AB and BC are used to calculate the

Poisson's ratio which  can  be  wri tten as follows:

  CU BC 1/  AB    _        k  (Ur2)BC   BC V

=      (U-)     1/1 BC I (U-1)       I A B  14
AB AB

and since (Un)    = (U- 1)   and IBC   =  AB rZ
BC   AB

v   =   I k i     |B C I    =    I k l
 AB|

Ll
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It may be observed  that the modulus of elasticity and Poisson's ratio are

calculated in the process of combining solutions.

Three-Dimensional Analysis

I n the three-dimensional ana lysis, three solutions are needed  to be super-

posed to get the desired boundary conditions as stated in the text. Otherwise,

the procedure is quite similar to that for the axisymmetric analysis. The following

steps are used with reference to Fig. 26

(1)  The stress and displacement distribution (No. 1) is found such that:

(U-l)
=    1 (Arbi trarily  specified  unit  displacement),

ABFE

(U.-1) = 0 (Symmetry),
  DCGH

(U ,) = 0 (Specified displacement condition)
Y'  BCGF

(U ,) = 0 (Symmetry),
Y'  ADHE

(U-1, =    0     (Specified displacement condi tion),
  EFGH

CUZ2)
- 0 (Symmeky)

ABCD

and T = T =    T          =    0 (onall faces  of  the  cube).
xy     yz    zx

From these boundary conditions, stresses  cxl'  cyl  and  07-1  in  all the elements

and displacements  Uxl,  Uyl  and  Uzl  at all  the  nodal  points are determined.

(2)  The stress and displacement distribution (No. 2) is found such that:

(U"2)
= 0 (Specified displacement condition)

- ABFE

(U-2) = 0 (Symmetry)
- DCGH

(Uy2)BCGF
=    1 (Arbitrarily speci fied unitdisplacement)
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(U ,)    . 0 (Symmetry)
Y* ADHE

(Uz2)
= 0 (Specified displacement conditioh)

EFGH

(UZ2) = 0 (Symmetry)
ABCD

and T =T = T =  0 (on all faces of the cube).
xy   yz    zx

(3)  The stress..and displacement distribution (No. 3) is found such that:

(U.3) 4.      =
0 (Specified displacement condition)

ABFE

(U-3) = 0 (Symmetry)
  DCGH

(U e) =  0 (Specified displacement condition)

Y" BCGF

(U 1, = 0 (Symmetry)
tADHE

(073)
=  1 (Arbitrarily specified unit displacement)

EFGH

(U-3) =  0  (Symmetry)
* ABCD

and T    =  T    =  Tzx -  0  Con all faces of the cube).
xy    yz

(4) These stress and displacement distributions are superimposed to obtain:

0=kl   al   +    k2  02   +    0 3 1

U=k l u ' +k U+U1 22 3

where kl and k2
are determined such that net normal forces on the faces ABFE and

BC GF  are  zero.     T hus

(F  )       =          (kl axI+k20, 2+ 6,<3)dA=A(klil+k28,:2+ 0-x3)=0
x ABFE  ABFE

where A i s the area of face of the cube. Therefore kldxl + k.5 - +8   =0.z xz   x3
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Summation of the force in y-direction on the face BCGF leads to another

equation:

kt 'yl  +  "2 Ey2        y3+ 5  = 0

Solution of these equations gives

6*2 5'3  -  8„2 6y3
kl=-

6-xl 6-y2 - tyl 6*2

and

6*1 8-93 - 6-yl 8*3
k

2 =  - Exl Ey2  -  Oyl 5,2

The average normal stress on face EFGH is thus

C 8-)                = (8*3) + kl (6zl) +  k2(8-*2)*
EFGH EFGH EFGH EFGH

Average stress,  Ez, for
a stress distribution is calculated as:

F

-    _      A  az dA
0- ,AZ

where the integral is replaced by a summation as follows:

F
n

. C dA= T c Ai  I
A z

;4  z .'    11

1
1

where az is
the stress in an element and Ai the area of the element on the face

under consideration and n is the total number of such elements.

Th6 modulus of elasticity is calculated from the average stress

-

C_,

E= -..*.-.*
E
Z

where the strain used is calculated from the specified boundary displacement

-
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(Uq)

Ez
-

IAEI

  EFGH

(U_) is the net normal displacement of the boundary as follows:
  EFGH

(U-) = k 1 (U-1) + k2 (U-2) + (U.3)o
EFGH

-
EFGH

+
EFGH - EFGH

but (U-1)
=

(U-2) =0
  EFGH  4 EFGH

thus
(U-)      F (U-3) 

EFGH   EFGH

The normal displacement of the faces AB FE  and BCGF are found to be:

(U-1, ki (U-1)-
ABFE - ABFE

(U ) = ki (U 9)
Y  BC GE Y- BCGE

Poisson's ratios v    and v gre calculated from these displacements:
ZX ZY

 (U..)  / AD 1 k l'    (Ux l)  AE -
ABFE =                 ABFEV =

zx   1 (u-)  / AE  (Uz3)             AD I»
EFGH EFGH

since (U-1)   ·  = (U-3) and    AEJ   =    AD I 
ABFE   EFGH

v =k
ZX     1

Similarly

v =k
zy    2

Due  to the symmetry  of the problem  v        and v should  be  the  same.    How-
zx     zy

ever,  the  size  and the orientation  of  the e lements  near the surface may cause  some

difference in the values of k 1 and k2.  Here also
the modulus of elasticity and

Poisson's ratio are calculated  in the process of combining the solutions.
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