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Abstract A micromechanical framework is proposed to predict effective elastic moduli of particle-reinforced
composites. First, the interacting eigenstrain is derived by making use of the exterior-point Eshelby tensor
and the equivalence principle associated with the pairwise particle interactions. Then, the near-field parti-
cle interactions are accounted for in the effective elastic moduli of spherical-particle-reinforced composites.
On the foundation of the proposed interacting solution, the consistent versus simplified micromechanical field
equations are systematically presented and discussed. Specifically, the focus is upon the effective elastic mod-
uli of two-phase composites containing randomly distributed isotropic spherical particles. To demonstrate the
predictive capability of the proposed micromechanical framework, comparisons between the theoretical pre-
dictions and the available experimental data on effective elastic moduli are rendered. In contrast to higher-order
formulations in the literature, the proposed micromechanical formulation can accommodate the anisotropy of
reinforcing particles and can be readily extended to multi-phase composites.

1 Introduction

Due to their higher structural efficiency and versatility, composite materials have been widely studied and
employed in diverse fields of science and engineering disciplines. In comparison with many conventional
materials (such as steel and aluminum), fiber- or particle-reinforced composites offer salient features, such as
low density, high strength-to-weight ratio, high stiffness, high toughness, improved creep resistance, enhanced
wear resistance, superior environmental durability, custom microstructure-morphology, and preferred direc-
tionality. The matrix material may consist of metal, ceramic, or polymer, for example. The inclusions encompass
unidirectionally aligned, bi-directional, or randomly dispersed particles/fibers in a matrix material. While the
continuous-fiber reinforced composites provide the most effective strengthening in a given direction, the parti-
cle-reinforced composites could be attractive due to their cost-effectiveness, feasible isotropic properties, and
the ability to be processed with similar manufacturing processes to monolithic materials.

For predicting the effective properties of composites, analytical models based on Eshelby’s approach [1]
are popular. This aims at the analysis of a representative volume element (RVE) or area element (RAE). The
major advantage of Eshelby’s approach is that it enables us to predict full multi-axial properties and responses
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of heterogeneous materials. Based on the pioneering work by Eshelby, the so-called effective medium theo-
ries (the Eshelby method, the Mori–Tanaka method, the self-consistent method, the differential scheme, the
generalized self-consistent method, and so on) are widely employed to predict effective properties of hetero-
geneous materials. Nevertheless, these effective medium theories are based on the single-inclusion problem;
only the average effects of all other inclusions (i.e., far-field interactions) are considered (cf. [2]). Accord-
ingly, in order to predict the deformation responses of composites with high volume fractions, the individual
or near-field inclusion interactions need to be adequately accounted for.

To tackle the near-field inclusion interaction problem, several approaches were proposed in the literature.
In the presence of near-field interactions, the eigenstrain may no longer be constant. Therefore, Moschovidis
and Mura [3] formulated the polynomial eigenstrain to account for the effects of interactions for the stress/strain
fields. In practice, it is almost impossible to find the eigenstrain in the presence of many inclusion interactions.
To overcome this issue, Ju and Chen [4–6] developed an approximate, yet accurate method to characterize the
inter-particle interaction effects in a two-phase composite. Specifically, the Ju–Chen’s higher-order (in terms
of particle-volume fraction) micromechanical formulation can be applied to modeling composites with higher
volume fractions. Further, Ju and Zhang [7,8] formulated the higher-order micromechanical formulation for
continuous-fiber reinforced composites on the foundation of Ju and Chen’s higher-order formulation. More
recently, Lin and Ju [9] extended the Ju–Chen’s pairwise interaction formulation to three-phase composites
containing many randomly dispersed, isotropic spherical particles.

The objective of the present paper is to extend Ju–Chen’s micromechanical framework [4–6] to predict
effective elastic moduli of spherical-particle-reinforced composites in conjunction with the near-field particle
interactions. The proposed approach is based on the probabilistic particle interaction solution within the mi-
cromechanical framework and homogenization. Namely, by making use of Eshelby’s equivalence principle,
effective elastic moduli of composites are analytically derived with the interacting eigenstrain caused by the
near-field particle interactions.

2 Effective elastic moduli of multi-phase composites

2.1 Pairwise particle interaction

Let us consider the interaction caused by the pair of particles as illustrated in Fig. 1. In the presence of direct
particle interactions, the following equation may no longer hold:

ε
′ = S : ε

∗∗ (1)

where

Si jkl =
1

15 (1 − ν0)

[

(5ν0 − 1) δi jδkl + (4 − 5ν0)
(

δikδ jl + δilδ jk

)]

. (2)

Here, ε
∗∗ is the eigenstrain, and S is the interior-point Eshelby tensor for a spherical inclusion [10,11]. More-

over, ν0 represents the Poisson’s ratio of the surrounding isotropic matrix material. In contrast to Eq. (1), the
perturbed strain in �I can be affected by the presence of an additional particle as follows (cf. Fig. 1):

ε
I ′

(x) = SI : ε
I ∗∗

+ G
II
(x) : ε

II∗∗

(3)

where G(x) represents the exterior-point Eshelby’s tensor (cf. [6,10,12–16]) for a spherical particle expressed

with the x coordinate system. The components of G can be expressed as [6]:

G(r) =
ρ3

30(1 − ν0)

[

(3ρ2 − 10ν0 + 5)(δikδ jl + δilδ jk) + (3ρ2 + 10ν0 − 5)δi jδkl

+ 15(1 − ρ2)δi j nknl + 15(1 − 2ν0 − ρ2)δklni n j + 15(7ρ2 − 5)ni n j nknl

+ 15(ν0 − ρ2)(δikn j nl + δiln j nk + δ jkni nl + δ jlni nk)
]

(4)

where ρ = a/r, a is the particle radius, r represents the center-to-center distance of particles, and δ signifies
the Kronecker delta. Furthermore, by making use of the spherical coordinate system, the components of the
unit outward normal vector n can be rendered as:

n1 = cos φ · cos θ, n2 = cos φ · sin θ, n3 = sin φ. (5)
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Fig. 1 The pairwise particle interactions

In some types of composite materials, there may exist residual stresses caused by the manufacturing process.
For instance, due to the high temperature manufacturing process, thermal residual stresses can be generated in
metal matrix composites. Such residual stresses can be effectively accommodated by introducing the thermal
eigenstrain ε

∗ [17–19]. Therefore, in the presence of thermal eigenstrain, the equivalence equation can be
written as:

C0 :
(

ε
0 + ε

′ − ε
∗∗
)

= CI :
(

ε
0 + ε

′ − ε
∗
)

. (6)

Here, C0 and CI are the fourth-order elastic stiffness of the matrix and the particle-I, respectively, and ε
0

signifies the far-field applied strain. In contrast to the formulation proposed by Moschovidis and Mura [3],
we consider the constant or volume-averaged total eigenstrain ε

∗∗ for the sake of simplicity. Hence, by using
Eqs. (3) and (6), the following equation can be obtained:

(

�CI • S + C0

)

: ε
I ∗∗

+ �CI • G
I I

(x) : ε
I I ∗∗

= −�CI
ε

0 + CI : ε
∗ (7)

where

�CI = CI − C0. (8)

In addition, by performing the volume-averaging in the �I domain with a Taylor expansion [3,5] at the origin
of the x coordinate (cf. Fig. 1), we obtain:

(

�CI • S + C0

)

: ε
I ∗∗

+
1

�I
�CI •

⎧

⎪

⎨

⎪

⎩

∫

�I

(

G
I I

[0] +
∂G

I I
[0]

∂xm

xm +
1

2

∂G
I I

[0]

∂xm∂xn

xm xn + · · ·

)

dV

⎫

⎪

⎬

⎪

⎭

: ε
I I ∗∗

= −�CI : ε
0 + CI : ε

∗. (9)

Hence, we can write:

(

�CI • S + C0

)

: ε
I ∗∗

+
1

�I
�CI •

⎧

⎪

⎨

⎪

⎩

G
I I

[0] �I +
∂G

I I
[0]

∂xm

∫

�I

xmdV +
1

2

∂G
I I

[0]

∂xm∂xn

∫

�I

xm xndV + · · ·

⎫

⎪

⎬

⎪

⎭

: ε
I I ∗∗

= −�CI : ε
0 + CI : ε

∗ (10)

where

∫

�I

xm dV = 0,

∫

�I

xm xn dV =
4a5

I π

15
δmn =

a2
I

5
�I δmn (11)

and aI represents the radius of the particle-I.
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By applying the Taylor expansion up to the second-order, one can obtain the following expression:
(

�CI • SI + C0

)

: ε
I ∗∗

+ �CI • Ĝ
I I

: ε
I I ∗

= −�CI : ε
0 + CI : ε

∗. (12)

In addition, by making use of the mean particle size (i.e., a I = a I I = a), Ĝ can be expressed as

Ĝ (r) = G
I I

[0] +
a2 · δmn

10

∂G
I I

[0]

∂xm∂xn

=
ρ3

30(1 − ν0)

[

(6ρ2 − 10ν0 + 5)(δikδ jl + δilδ jk) + (6ρ2 + 10ν0 − 5)δi jδkl

+ 15(1 − ρ2)δi j nknl + 15(1 − 2ν0 − ρ2)δklni n j + 15(14ρ2 − 5)ni n j nknl

+ 15(ν0 − 2ρ2)(δikn j nl + δiln j nk + δ jkni nl + δ jlni nk)
]

+ 0
(

ρ8
)

. (13)

It is noted that the ρ7-order terms become zero, the order of the leading error in Eq. (13) is ρ8.
Consequently, on the basis of Eq. (7), the equivalence equations for �I and �I I can be written as

AI : ε
I ∗∗

+ Ĝ : ε
I I ∗∗

= −ε
0 + BI : ε

I ∗

, (14)

Ĝ : ε
I ∗∗

+ AI I : ε
I I ∗∗

= −ε
0 + BI I : ε

I I ∗

, (15)

where

AI =

(

�CI
)−1

• C0 + S, BI =

(

�CI
)−1

• CI . (16)

After solving the above equations to find ε
I ∗∗

, one can obtain the following relation:
[

AI − Ĝ •

(

AI I
)−1

• Ĝ

]

: ε
I ∗∗

=

[

Ĝ •

(

AI I
)−1

− I

]

: ε
0 + BI : ε

I ∗

+ Ĝ •

(

AI I
)−1

• BI I : ε
I I ∗

.

(17)

Here, I represents the fourth-order identity tensor.

2.2 Pairwise particle interaction with conditional probability

Let us consider the probable location for the second particle (cf. Fig. 2). Therefore, Eq. (17) leads to the
following equation:

⎡

⎢

⎣
AI −

∫

V /∈�I

Ĝ •

(

AI I
)−1

• Ĝ · P(xI I
∣

∣

∣x
I )dV

⎤

⎥

⎦
: ε I ∗∗

=

⎡

⎢

⎣

∫

V /∈�I

Ĝ •

(

AI I
)−1

· P(xI I
∣

∣

∣x
I )dV − I

⎤

⎥

⎦
: ε

0 + BI : ε
I ∗

+

⎡

⎢

⎣

∫

V /∈�I

Ĝ •

(

AI I
)−1

• BI I · P(xI I
∣

∣

∣x
I )dV

⎤

⎥

⎦
: ε

I I ∗

. (18)

Here, P(xI I
∣

∣xI ) represents the conditional probability density function to find the second particle in the
presence of the first particle. After integrating Eq. (18) in the spherical coordinate system, we arrive at:

⎡

⎢

⎣
AI −

∫

V /∈�I

Ĝ •

(

AI I
)−1

• Ĝ · P(xI I
∣

∣

∣x
I )dV

⎤

⎥

⎦
: ε I ∗∗

= −ε
0 + BI : ε

I ∗∗

. (19)
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Fig. 2 The probabilistic pairwise particle interactions

It is noted that the fourth-order tensors G and Ĝ have the following properties:

∞
∫

2a

⎛

⎜

⎝

2π
∫

0

⎛

⎜

⎝

π/2
∫

−π/2

G cos φdφ

⎞

⎟

⎠
dθ

⎞

⎟

⎠
r2dr = 0, (20)

∞
∫

2a

⎛

⎜

⎝

2π
∫

0

⎛

⎜

⎝

π/2
∫

−π/2

Ĝ cos φdφ

⎞

⎟

⎠
dθ

⎞

⎟

⎠
r2dr = 0. (21)

The above results can be obtained by taking advantage of the following relations:

2π
∫

0

⎛

⎜

⎝

π/2
∫

−π/2

ni n j cos φdφ

⎞

⎟

⎠
dθ =

4π

3
δi j , (22)

2π
∫

0

⎛

⎜

⎝

π/2
∫

−π/2

ni n j nknl cos φdφ

⎞

⎟

⎠
dθ =

4π

15

(

δi jδkl + δikδ jl + δilδ jk

)

. (23)

In particular, the result of Eq. (20) can be easily reproduced by the Tanaka–Mori lemma [20,21]. In practice, in
the absence of actual manufacturing evidences, it is often assumed that the two-point conditional probability
function is statistically isotropic, uniform and obeys the following form (cf. [5]):

P(xI I
∣

∣

∣x
I ) =

{

N I I /V, if r > a

0, otherwise

}

. (24)

In Eq. (24), V is the volume of RV E, N/V signifies the number density of particles, and the following relation
holds:

N (r)

V
=

3φ(r)

4πa3
, (25)
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where φ(r) is the volume fraction of rth - phase particles. It is noted that Eq. (25) can serve as the simplest
approximation since it tends to underestimate the probabilistic existence of the second particle in the neigh-
borhood of xI ; particularly for the high particle-volume fractions. Therefore, Eq. (24) may be regarded as the
lower bound for the microstructure. On the other hand, if we assume statistical isotropy, then the two-point
conditional probability function depends on the radial distribution function g(r):

P(xI I
∣

∣

∣x
I ) =

N I I

V
g(r). (26)

Therefore, Eq. (19) can be rephrased as:

⎧

⎪

⎨

⎪

⎩

AI −
N I I

V

∫

V /∈�I

Ĝ •

(

AI I
)−1

• Ĝ · g(r) dV

⎫

⎪

⎬

⎪

⎭

: ε
I ∗∗

= −ε
0 + BI : ε

I ∗

. (27)

Finally, in the presence of several distinct properties of particles, we write the eigenstrain within each phase
of particle as follows:

(

A(1) −

N
∑

r=1

A
(r)

)

: ε
1∗∗

= −ε
0 + B(1) : ε

1∗

,

(

A(2) −

N
∑

r=1

A
(r)

)

: ε
2∗∗

= −ε
0 + B(2) : ε

2∗

,

·

· (28)
(

A(N ) −

N
∑

r=1

A
(r)

)

: ε
N∗∗

= −ε
0 + B(N ) : ε

N∗

,

where

A
(r)

=
N (r)

V

∫

V /∈�(r)

Ĝ •

(

A(r)
)−1

• Ĝ · g(r) dV . (29)

In the case of g(r) = 1, the components of the A
(r)

tensor can be obtained after lengthy but straightforward
derivations (cf. Appendix I).

2.3 Radial distribution function

In computational mechanics and statistical mechanics, a radial distribution function (RDF, g(r)) describes
how the density of the surrounding matter varies as a function of the distance from a particular point. Given
a potential energy function, the radial distribution function can be found via computer simulations, such as
the Monte Carlo method. It is also possible to use rigorous statistical mechanics to establish a suitable RDF.
The Percus–Yevick approximation is a well-known solution for the radial distribution function (RDF) of a
hard-sphere liquid. In the literature, a tractable form of solution is proposed by Trokhymchuk et al. [22]
(cf. Appendix II).

In Fig. 3, the predicted RDFs are compared with the data predicted from the Monte Carlo simulation. As
illustrated, reasonable fits are obtained for each volume fraction up to φ = 0.471. According to Fig. 3, it is
apparent that the assumption of the uniform radial distribution g(r) = 1 is a reasonable approximation only
for small volume fractions.
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Fig. 3 The comparisons of radial distributions. a The volume fraction φ = 0.105. b The volume fraction φ = 0.262. c The volume
fraction φ = 0.471
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2.4 Consistent and simplified perturbed strains in spherical particles

Once the interacting eigenstrain is obtained by Eq. (28), one needs to find the perturbed strains within the par-
ticles. For instance, in the absence of residual stress, the perturbed strains in the particles within the two-phase
composite can be obtained by using the equivalence equation consistently:

C0 :
(

ε
0 + ε

′ − ε
∗∗
)

= C(1) :
(

ε
0 + ε

′
)

. (30)

Therefore, by taking advantage of Eqs. (28) and (30), the consistent perturbed strain can be expressed as

ε
′ = H : ε0 (31)

where

H =

(

�C(1)
)−1

• C0•

(

A(1) − A
(1)
)−1

− I (32)

Since it is not a single-inclusion problem anymore, the interior-point Eshelby’s tensor is not directly employed
to find the perturbed strain in Eq. (31). Instead of using Eq. (31), the perturbed strain can also be approxi-
mated with the interior-point Eshelby tensor S (cf. Eq. (1)) for simplicity. Therefore, without resorting to the
equivalence equation, one can obtain the following simplified perturbed strain:

ε
′ = K : ε0 (33)

where

K = −S •

(

A(1) − A
(1)
)−1

. (34)

2.5 Effective elastic stiffness of two-phase composites

We now consider the volume-averaged strain:

ε = ε
0 +

Vm

V
ε

′
m +

1

V

N
∑

r=1

Vr ε
′
r

∼= ε
0 +

Vm

V

⎡

⎢

⎣

1

Vm

N
∑

r=1

⎛

⎜

⎝

∫

x/∈�r

∫

y∈�r

G(x − y) : ε
∗∗
r (y)dV (y)dV (x)

⎞

⎟

⎠

⎤

⎥

⎦
+

1

V

N
∑

r=1

Vrε
′
r

= ε
0 +

1

V

N
∑

r=1

Vrε
′
r

= ε
0 +

N
∑

r=1

φ(r)
ε

′
r . (35)

Here, G represents the Green’s function (cf. [2,10]), and the volume-averaged perturbed strains are considered.
In addition, the Tanaka–Mori lemma [20] is applied for a spherical RVE with a spherical particle to solve the
integration. The volume-averaged stress can be cast as (cf. [4]):

σ = C0 :

[

ε −

N
∑

r=1

φ(r)
ε

r∗∗

]

. (36)
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Fig. 4 The comparisons between the theoretical predictions and experimental data [27] for the effective Young’s modulus E∗.
a The range of volume fraction: 0 ≤ φ ≤ 0.5. b The range of volume fraction: 0 ≤ φ ≤ 1.0. Glass-Epoxy composite: E0 = 3.0

GPa, ν0 = 0.4, E1 = 76.0 GPa, ν1 = 0.23

Consequently, by using Eqs. (31), (33), (35), and (36), the effective elastic stiffness of two-phase composites
can be rendered as:

C∗ = C0 •

[

I + φ
(

A(1) − A
(1)
)−1

• (I + φ H)−1

]

, for consistent formulation (37)

C∗ = C0 •

[

I + φ

(

A(1) − A
(1)
)−1

• (I + φ K)−1

]

, for simplified formulation. (38)

A specific case is considered to illustrate the intriguing feature of the proposed micromechanical formulation.

By setting A = 0, one can show that:

H =

(

�C(1)
)−1

• C0•

(

A(1)
)−1

− I =

[

(

�C(1)
)−1

• C0 + S

]

•

[

(

�C(1)
)−1

• C0 + S

]−1

,
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Fig. 5 The comparisons between the consistent formulation and experimental data [27] for the effective Young’s modulus E∗.
a The range of volume fraction: 0 ≤ φ ≤ 0.5. b The range of volume fraction: 0 ≤ φ ≤ 1.0. Glass-Epoxy composite: E0 = 3.0

GPa, ν0 = 0.4, E1 = 76.0 GPa, ν1 = 0.23

−S •

[

(

�C(1)
)−1

• C0 + S

]−1

− I = −S •

[

(

�C(1)
)−1

• C0 + S

]−1

= K. (39)

Accordingly, in the case of A = 0, both Eqs. (37) and (38) lead to the following expression:

C∗ = C0•

{

I + φ
[

�C(1)• C0 + (1 − φ) S
]−1
}

. (40)

In essence, Eq. (40) is the effective elastic stiffness predicted by the Mori–Tanaka method [23,24] or the
Ju–Chen’s first-order formulation [4], in which only the far-field interactions are accounted for (cf. [2]).

Obviously, the A tensor in the proposed micromechanical formulation is directly related to the near-field

particle interactions.
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Fig. 6 The comparisons between the consistent formulation and experimental data [27] for the effective shear modulus µ∗. a The
range of volume fraction: 0 ≤ φ ≤ 0.5. b The range of volume fraction: 0 ≤ φ ≤ 1.0. Glass-Epoxy composite: E0 = 3.0 GPa,

nu0 = 0.4, E1 = 76.0 GPa, ν1 = 0.23

3 Numerical simulations and discussions

To demonstrate the predictive capability of the proposed micromechanical framework, comparisons are made
between the theoretical predictions and the experimental data for the effective elastic moduli of two-phase
composites. Further, for illustrative purposes, the predictions by the Hashin–Shtrikman bounds [25] and the
Mori–Tanaka method are also provided. The Hashin–Shtrikman bounds for bulk modulus κ∗ and shear modulus
µ∗ are exhibited as

κ0 +
φ

1
κ(1)−κ0

+
(1−φ)

3κ0+4µ0

≤ κ∗ ≤ κ(1) +
(1 − φ)

1
κ0−κ(1) +

φ

3κ(1)+4µ(1)

, (41)

µ0 +
φ

1
µ(1)−µ0

+
6(1−φ)(κ0+2µ0)

5µ0(3κ0+4µ0)

≤ µ∗ ≤ µ(1) +
(1 − φ)

1
µ0−µ(1) +

6φ(κ(1)+2µ(1))
5µ(1)(3κ(1)+4µ(1))

. (42)
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Fig. 7 The comparisons between the consistent formulation and experimental data [28] for the effective Young’s modulus E∗.
a The range of volume fraction: 0 ≤ φ ≤ 0.5. b The range of volume fraction: 0 ≤ φ ≤ 1.0. Glass-reinforced Polyester:

E0 = 1.689 GPa, ν0 = 0.444, E1 = 70.33 GPa, ν1 = 0.21

As illustrated in Fig. 4a, the simplified formulation can reproduce the experimental data with better accuracy
than the consistent formulation. Moreover, the introduction of the radial distribution function improves the pre-
dictive capability. Since the TNJH approximation cannot be used for φ > 0.5, the uniform radial distribution
(g(r) = 1) is adopted in Fig. 4b. Despite its good predictive capability in Fig. 4a, the simplified formulation
hits a singularity and predicts an infinite elastic modulus at very high particle concentration, thus violating the
mathematical upper bound. By contrast, the predictions with the consistent formulation are always bounded
within the mathematical bounds, reproducing the modulus of the particle at φ = 1.0. It is noted that the
Hashin–Shtrikman lower bound and the Mori–Tanaka method render identical predictions for the effective
moduli of composites (cf. [4,24,26]).

Once g(r) is involved, the integration of Eq. (29) becomes quite tedious, leading to a significant increase
in computation time. Nevertheless, the incorporation of g(r) can slightly improve the theoretical predictions,
in particular, for the consistent formulation. To overcome these difficulties, the simplest approach that we
propose is to approximate Eq. (29) by the following expression:
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Fig. 8 The comparisons between the consistent formulation and experimental data [29] for the effective Young’s modulus E∗.

Wc–Co composite: Eo = 206.9 GPa, v0 = 0.304, E (1) = 703.3 GPa, ν(1) = 0.22

A
(r)

=
N (r)

V

∫

V /∈�(r)

Ĝ •

(

A(r)
)−1

• Ĝ · g(r) dV ≈
N (r)

V
γ

∫

V /∈�(r)

Ĝ •

(

A(r)
)−1

• Ĝ dV . (43)

Here, it is assumed that a parameter γ represents the overall effect of g(r) within an RVE. In reality, γ is not a
constant, it should be a function of φ at least. It is noted that, due to the approximation, Eq. (43) may not truly
reflect the microstructural effects. However, we still consider the effects of particle locations with approxima-
tion in Eq. (43). Hence, the proposed formulation may be regarded as a mostly micromechanical formulation.
In what follows, to further investigate the proposed micromechanical framework, parametric studies on the
parameter γ are performed with the consistent formulation. By using Eq. (43) with γ = constant, it is shown
that we can reproduce various experimental data with good accuracy.

In Fig. 5, the effective Young’s moduli are predicted with different values of γ . As observed, when γ ∼= 3.5,
the predictions are in good agreement with the experimental data. However, when γ = 5, the consistent pre-
dictions overestimate the effective modulus, and violate the mathematical upper bound around φ ∼= 0.85.
Similar phenomena are observed in Figs. 6 and 7. In these figures, both the mathematical upper bounds and the
physical upper bounds (µ(1), E (1)) are violated when γ = 5. From these observations, it is clear that a large
value for γ cannot be employed in the proposed micromechanical formulation. Moreover, according to our
rough estimation, Ju and Chen’s lower and upper bounds [5] correspond to γ ≈ 3.5 and γ ≈ 4.5, respectively.

Figure 8 exhibits the predictions on the effective Young’s modulus. Interestingly, variations in γ do not
lead to significant changes in the predictions. Instead, they are well within the narrow band of mathematical
bounds. The results from Fig. 8 do not suggest that the near-field interactions are not important. Alternatively,
it exemplifies that unique combinations of matrix and reinforcing-phase properties result in the unique inten-
sities of near-field interactions. Finally, Fig. 9 displays the effective bulk modulus of porous media (glass).
In comparison with the Mori–Tanaka method, the consistent formulation with the parameter γ can reproduce
the experimental data with better accuracy.

In reality, the size of particles has a characteristic size distribution. In addition, the interactions are among
many particles instead of pairwise. Therefore, an appropriate particle-size distribution function and an approx-
imate yet reasonable multi-particle interaction solution may enhance the predictive capability of the proposed
micromechanical framework without resorting to the parameter γ .

4 Conclusions

By taking advantage of the probabilistic particle interacting solution within the micromechanical framework,
the higher-order (in terms of φ) micromechanical formulation is proposed to predict the effective elastic moduli
of multi-phase composites containing randomly dispersed spherical particles. As a special case, the effective
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Fig. 9 The comparisons between the consistent formulation and experimental data [30] for the effective bulk modulus κ∗ of
porous media. a The range of volume fraction: 0 ≤ φ ≤ 0.5. b The range of volume fraction: 0 ≤ φ ≤ 1.0. E0 = 75 GPa,
ν0 = 0.23

elastic moduli of two-phase composites containing the isotropic spherical particles are predicted. By using
the parameter γ , the micromechanical predictions can reproduce available experimental data with good accu-
racy under reasonable γ values. The proposed analytical framework can be readily extended to accommodate
anisotropic particles and to account for particles of different sizes or shapes with added effort and complexity.

Acknowledgments This work is in part sponsored by the Faculty Research Grant of the Academic Senate of UCLA (Fund
Number 4-592565-19914) and in part by the Bellagio Engineering.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are
credited.

Appendix I

Let us define the following equation:
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(r)

=
N (r)
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Ĝ •
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A(r)
)−1
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V
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Ĝ • L(r) • ĜdV . (44)

The tensorial components of Eq. (44) take the forms:
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where ν0 is Poisson’s ratio of the matrix material.

Appendix II

In the TNJH approximation [22], the RDF is written as:

g(r) =

{

gdep(r), for 2a ≤ r ≤ r∗

gstr (r), for r∗ ≤ r ≤ ∞
(57)

where the “depletion” (d) and “structural” (s) parts have the following forms:

gdep(r) =
A

r
eµ(r−2a) +

B

r
cos (β [r − 2a] + γ ) · eα(r−2a), (58)

gstr (r) = 1 +
C

r
cos (ωr + δ) · e−κr . (59)

It is noted that r∗ is the position for the first minimum of g(r), which reads:

r∗ = 2a
(

2.0116 − 1.0647φ + 0.0538φ2
)

. (60)

Moreover, the following equations need to be satisfied at r = r∗:

gdep(r∗) = gstr (r∗), (61)
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The coefficients in Eqs. (58) and (59) are given as:

A = 2a · g
expt
σ − B cos γ, (63)
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· eµ(r∗−2a)

cos (β [r∗ − 2a] + γ ) · eα(r∗−2a) − cos γ · eµ(r∗−2a)
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, (65)

δ = −ωr∗ − arctan
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where
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Finally, on the basis of Eq. (62), the unknown coefficient γ can be found by solving the following equation:

f1 + f2 = 0 (75)

where

f1 =
A · eµ(r∗−2a)
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·
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