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[1] In the upper crust, the chemical influence of pore water promotes time dependent
brittle deformation through sub-critical crack growth. Sub-critical crack growth allows
rocks to deform and fail at stresses well below their short-term failure strength, and even at
constant applied stress (“brittle creep”). Here we provide a micromechanical model
describing time dependent brittle creep of water-saturated rocks under triaxial stress
conditions. Macroscopic brittle creep is modeled on the basis of microcrack extension
under compressive stresses due to sub-critical crack growth. The incremental strains due to
the growth of cracks in compression are derived from the sliding wing crack model of
Ashby and Sammis (1990), and the crack length evolution is computed from Charles’ law.
The macroscopic strains and strain rates computed from the model are non linear, and
compare well with experimental results obtained on granite, low porosity sandstone and
basalt rock samples. Primary creep (decelerating strain) corresponds to decelerating
crack growth, due to an initial decrease in stress intensity factor with increasing crack
length in compression. Tertiary creep (accelerating strain as failure is approached)
corresponds to an increase in crack growth rate due to crack interactions. Secondary
creep with apparently constant strain rate arises as an inflexion between those two
end-member phases. The minimum strain rate at the inflexion point can be estimated
analytically as a function of model parameters, effective confining pressure and
temperature, which provides an approximate creep law for the process. The creep law is
used to infer the long term strain rate as a function of depth in the upper crust due to
the action of the applied stresses: in this way, sub-critical cracking reduces the failure
stress in a manner equivalent to a decrease in cohesion. We also investigate the
competition with pressure solution in porous rocks, and show that the transition from
sub-critical cracking to pressure solution dominated creep occurs with increasing depth
and decreasing strain rates.
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1. Introduction

[2] The deformation of rocks in the brittle field (at modest
pressures and temperatures, typical of shallow crustal con-
ditions) is predominantly governed by the growth and coa-
lescence of a crack network, and macroscopic brittle failure
is characterized by the formation of a fault in the rock mass
[e.g., Scholz, 2002; Paterson and Wong, 2005]. In a chem-
ically inert environment, the growth of cracks is well
described by linear elastic fracture mechanics, and the
appropriate criterion for crack growth is that the stress

intensity factor at the crack tips reaches a critical value,
which is an intrinsic material property, known as the fracture
toughness. The faulting process is then purely controlled by
the stress acting on the rock. Indeed, laboratory rock defor-
mation tests performed at fast strain rates, above 10�5 s�1,
generally show that brittle deformation is primarily dictated
by the applied stress. Based on linear elastic fracture
mechanics, micromechanical approaches have been used to
predict the mechanical behavior of rocks in compressive
regimes, typically by modeling the growth of “wing” cracks
from preexisting defects [e.g., Kachanov, 1982a, 1982b;
Nemat-Nasser and Horii, 1982; Costin, 1985; Ashby and
Sammis, 1990].
[3] However, laboratory experiments demonstrate that

rocks experience some creep and fail by static fatigue at
stresses significantly below their short term failure strength
[e.g., Kranz, 1979; Carter et al., 1981; Kranz et al., 1982;
Baud and Meredith, 1997; Heap et al., 2009a, 2011]. This
time dependent brittle process, hereafter referred to as brittle
creep, is explained by slow crack growth when the stress
intensity factor at crack tips is lower than the fracture
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toughness, i.e., sub-critical crack growth [e.g., Atkinson,
1984]. The main underlying physical mechanism of sub-
critical crack growth under upper crustal conditions is stress
corrosion, where the amplified stresses at crack tips prefer-
entially activate chemical reactions with strained crack tip
bonds, such as the hydrolysis of silicon-oxygen bonds in the
quartz-water system [e.g., Michalske and Freiman, 1982].
Theoretical and experimental studies [e.g. Wan et al., 1990]
have shown that a lower stress limit to stress corrosion
exists, which in turn affects the lower stress limit to rock
fracture in brittle creep conditions.
[4] Several micromechanical approaches have been pro-

posed to model the macroscopic behavior of rocks in the
brittle creep regime, based on the inclusion of the stress
corrosion effect within conventional fracture mechanics
models. Analytical solutions for the macroscopic strain
induced by the growth of a single crack have been deter-
mined by Kachanov [1982c] and Kemeny [1991]. Lockner
[1993] calculated approximate solutions for the volumetric
strain induced by the growth of a crack population without
interactions. Yoshida and Horii [1992] developed a micro-
mechanical model for brittle creep with a simplified failure
criterion and no explicit formulation for crack interactions.
Creep arising from sub-critical crack growth with crack
interactions has been modeled by Costin [1985] using a
collinear array of cracks. Among the studies mentioned
above, none systematically explores the parameter space, for
instance the effect of confining pressure or temperature on
creep strain rates, or the effect of preexisting defect density
or initial crack length. In addition, the link between the short

term failure strength and the brittle creep conditions remains
to be explored in a single micromechanical framework. The
recent experimental dataset obtained by Heap et al. [2009a,
2009b, 2011], exploring the effects of pressure, stress and
temperature on creep strain rates in various rock types,
provides the opportunity to test the validity of models and to
refine plausible ranges for model parameters.
[5] Here we present an extension of the classical micro-

mechanical model of Ashby and Sammis [1990] to account
for sub-critical crack growth. In the Ashby and Sammis
[1990] formulation, microcrack interactions are taken into
account (in a global sense; see below for details), and the
model is able to predict reasonably well the short term fail-
ure strength of compact rocks at low confining pressures
(typically below 100 MPa, see Bhat et al. [2011]). We first
present the model formulation, including sub-critical crack
growth by stress corrosion, and give the governing differ-
ential equation for macroscopic strain rate during brittle
creep. Due to the complexity of the model, analytical solu-
tions are unfortunately not tractable and only an incremental
strain-crack length relation can be determined. The basic
features of the model are then presented and the parameter
space is explored to determine the influence of confining
pressure, stress and initial damage on the brittle creep
strain rates. Finally, the model outcomes are discussed in
the light of recent experimental data on basalt and sand-
stone [Heap et al., 2009a, 2011] as well as previously
unpublished brittle creep data on Westerly granite.

2. Model Description

2.1. Stress Intensity Factor

[6] In this section, we summarize the assumptions and
results given by Ashby and Sammis [1990] to determine the
stress intensity factor at crack tips in compressive stress
states, including crack interactions, in the 3D case. Let us
consider an isotropic elastic solid that contains an initial set
of penny shaped microcracks of radius a, and all aligned at
an angle Y to the maximum principal stress s1 (Figures 1
and 2). As noted by Bhat et al. [2011], this assumption
means that the brittle behavior of the rock is driven by
the nucleation and propagation of a dominant set of

Figure 1. Schematic of the problem set up (modified from
Ashby and Sammis [1990]).

Figure 2. Wing crack geometry.
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microcracks. In the following we assume Y = p/4, which
implies that the dominant microcracks are those subjected to
the maximum shear stress. In order to simulate the stress state
in a conventional triaxial experiment, we assume that the
minimum (s3) and the intermediate (s2) principal stresses are
equal. Stresses are taken positive in compression. In such a
geometry, the initial crack density is characterized by a scalar
parameter

r0 ¼
4

3
pNV aað Þ3; ð1Þ

where NV is the number of microcracks per unit volume of
the rock, and a = cos Y is the projection of the crack radius in
the vertical plane. Throughout this manuscript, the scalar
parameter r0 will be referred to as “the crack density
parameter”, and not simply the crack density, since it differs
from the general definition given for instance by Sayers and
Kachanov [1995] (see Appendix A).
[7] The remote stress state (s1, s3) produces a shear stress

t and a normal stress sn on the crack planes (Figure 2),
given by

t ¼ s1 � s3

2
sin 2Y; ð2Þ

sn ¼ s1 þ s3

2
� s1 � s3

2
cos 2Y: ð3Þ

[8] Sliding on the initial flaws is controlled by a friction
coefficient m. At low stress, if |t| ≤ m|sn|, the cracks do not
slide and the rock behaves elastically. When the resolved
shear stress t overcomes the static friction, elastic strain
initially allows sliding without further crack extension. Wing
cracks (see geometry in Figure 2) then initiate at a critical
stress expressed by [Ashby and Hallam, 1986]

s1c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p
þ mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ m2
p

� m
s3 þ

ffiffiffi
3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p
� m

⋅
KICffiffiffiffiffiffi
pa

p ; ð4Þ

where KIC is the critical mode I stress intensity factor of the
material (fracture toughness). Here we are only interested in
the behavior at stresses higher than s1c, where wing cracks
are already growing from the tips of the initial flaws. Nev-
ertheless, we will make use of relation (4) to determine
model parameters independently from the results of brittle
creep experiments.
[9] Following Ashby and Sammis [1990], we calculate the

mode I stress intensity factor at the tips of the wing cracks by
approximating the whole kinked crack configuration by a
single tensile crack of radius l + aa being opened by a
“wedging force”

Fw ¼ t þ msnð Þpa2 sinY ¼ A1s1 � A3s3ð Þa2; ð5Þ
where A1 and A3 are constants given by Ashby and Sammis
[1990]:

A1 ¼ p

ffiffiffi
b
3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p
þ m

h i
; ð6Þ

A3 ¼ A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p
þ mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ m2
p

� m
: ð7Þ

These constants A1 and A2 were determined exactly for the
2D case, and Ashby and Sammis [1990] merely assumed
they would hold in 3D with some ad hoc fitting of the
parameter b, the meaning of which is clarified below.
[10] The force Fw and the compressive stress s3 generate a

mode I stress intensity factor at the tips of the wing cracks of
the form [Ashby and Sammis, 1990]

KI ¼ Fw

p l þ bað Þ½ �3=2
� 2

p
s3 � si

3

� � ffiffiffiffiffi
pl

p
; ð8Þ

where b is used to regularize the solution at small l. For our
purpose here, the parameter b can be fitted from short term
failure tests (for instance from the stress at the onset of
cracking), and that value will be used for the brittle creep
simulations. Thus, b will not be adjusted to experimental
brittle creep data. The second term on the right hand side of
relation (8) is the modification of KI due both to the appli-
cation of a confining pressure s3 and to the interaction
between cracks (in the form of an internal stress s3

i ). Crack
interaction is dealt with in a global sense by considering that
the wedging force across a vertical section is balanced by an
internal stress

si
3 ¼

Fw

S � p l þ aað Þ2 ; ð9Þ

where S = p1/3(3/(4NV))
2/3 is the average area associated

with each crack on a vertical cross section of the array
(Figure 1).
[11] In terms of crack length l, the stress intensity factor is

thus expressed as

KIffiffiffiffiffiffi
pa

p ¼ A1s1 � A3s3ð Þ c1 þ c2ð Þ � s3c3; ð10Þ

where

c1 ¼ p�2 l=aþ bð Þ�3=2; ð11Þ

c2 ¼ 2 pað Þ�2 l=að Þ1=2
.

r�2=3
0 � 1þ l= aað Þð Þ2

h i
; ð12Þ

c3 ¼ 2=pð Þ l=að Þ1=2: ð13Þ

Note that the expressions above correct typographical errors
in Ashby and Sammis [1990, equation 26] (in which a factor
b/a was dropped) and Bhat et al. [2011, equation 18] (in
which c2 and c3 were interchanged).

2.2. Crack Growth

[12] In the absence of stress corrosion, crack growth
only commences when KI reaches the critical value KIC.
Above this level, individual cracks grow rapidly at speeds
approaching the Rayleigh wave velocity [Lawn and
Wilshaw, 1975]: the crack length is thus nearly instanta-
neously adjusted to maintain, if possible, KI = KIC. Hence,
equating KI to KIC provides us a relation between the
crack length l and the stress state (s1, s3):

s1 lð Þ ¼ KIC=
ffiffiffiffiffiffi
pa

p þ s3 c3 þ A3 c1 þ c2ð Þð Þ� �
= A1 c1 þ c2ð Þ½ �: ð14Þ
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The function s1(l) exhibits a maximum, denoted s1
peak,

which corresponds to the short term strength of the rock in
the original Ashby and Sammis [1990] approach. At a
given imposed axial stress s1

0 ≤ s1
peak, equation (14) gives

the corresponding equilibrium crack length l0. We use this
procedure to determine the initial length of the cracks at
the start of the brittle creep simulations with constant
applied stress (s1, s3).
[13] In water-saturated environments, it is known from

both experiment and theory that crack growth can occur
even when KI < KIC. There are several empirical rela-
tionships that relate the crack growth rate dl/dt to the
stress intensity factor. Laboratory tests of sub-critical
crack growth of single mode I macrocracks in rocks [e.g.,
Atkinson, 1984] are in good agreement with Charles’s
[1958] law:

dl

dt
¼ l_0 KI=KICð Þn; ð15Þ

where l_0 is a characteristic crack speed, and n is an
empirical exponent, commonly called the stress corrosion
index, that is generally in the range 14–60 for water-
saturated polycrystalline rocks [Atkinson and Meredith,
1987]. Other laws, relating crack growth rate to an
exponential function of KI or KI

2 [e.g., Wiederhorn and
Bolz, 1970; Darot and Guéguen, 1986], also exist and
are discussed in Section 3.3.
[14] The combination of equations (10) and (15) yields an

ordinary differential equation that governs the finite evolu-
tion of the wing crack length over time. Unfortunately, no
analytical solution is available for this equation, and we
therefore resort to numerical integration to access the
solution.

2.3. Macroscopic Strain and Strain Rate

[15] Now that we have a full description of the individual
crack length history, we have to relate it to the evolution of
the macroscopic strain experienced by the rock. The total
axial strain increment between time t and t + dt is partitioned
between the elastic strain and the additional irreversible
strain resulting from crack growth, that we simply denote
d�1. This additional strain can be derived from the variation
in elastic energy dW induced by crack growth, which is
[Rice, 1968]

dW ¼ NV
2p l þ aað Þ

E
K2
I dl; ð16Þ

where E is the Young’s modulus of the crack free rock. Note
that we neglect here the contribution of mode III stress
intensity factors that act along the edges of the initial cracks
during sliding: this contribution has previously been shown
to decrease in importance and hence become negligible
compared to the contribution of KI as the wing cracks extend
[e.g., Kachanov, 1982b; Bhat et al., 2011].
[16] The corresponding irreversible strain increment is

thus d�1 = (∂dW)/(∂s1), and after some algebra we obtain

d�1
dt

¼ 3r0
aað Þ3 l þ aað ÞKI

ffiffiffiffiffiffi
pa

p
E

A1 c1 þ c2ð Þ½ � dl
dt
: ð17Þ

The accumulated strain �1(t) can then simply be computed
numerically by integrating equation (17).

3. Results

3.1. General Features

[17] We first illustrate model predictions for the case of
Westerly granite, for which all the parameter values can be
independently determined from existing experimental data.
The critical mode I stress intensity factor of wet Westerly
granite at room temperature is KIC = 1.74 MPa m1/2

[Atkinson and Rawlings, 1981]. Data from triaxial defor-
mation tests at constant strain rate obtained by Brace et al.
[1966] provide the differential stress at the onset of crack-
ing as a function of confining pressure. The empirical rela-
tion s1c = 3.6s3 + 100 MPa yields a reasonable linear fit to
their data. The identification of this empirical relation with
the theoretical relation (4) yields a friction coefficient
m = 0.7, and a consequent initial flaw size of a = 1.1 mm;
close to the expected Byerlee [1978] friction coefficient and
the mean grain size of 0.8 mm for Westerly granite. As
mentioned previously, in the 3D case the parameter b is used
to regularize the solution for KI at small l. We constrain its
value following the procedure of Bhat et al. [2011], by
maintaining consistency between the rigorous expression of
the axial stress at the onset of opening of the wing cracks,
s1c (equation (4)), and the general formulation of the axial
stress at l = 0, s1(l = 0) (equation (14)), which yields

b ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p
þ mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ m2
p

� m
; ð18Þ

i.e., b = 1.15. This value is larger than the theoretical
value in 2D, equal to 0.1 [Ashby and Sammis, 1990], as
well as the value of 0.45 chosen by Ashby and Sammis
[1990]. Our value of b = 1.15 produces very reasonable
fits to short term strength data, and the benefits of our
procedure is to avoid more arbitrary choices of b and to
reduce the number of fitting parameters. The initial
damage parameter r0 can be determined by fitting the
short term failure stress for various s3 with the maximum
stress given by relation (14). Using failure stresses of
Westerly granite documented by Mogi [1966], a reason-
able agreement is found for r0 = 2.8 � 10�3. Finally, the
parameters of the crack growth law (equation (15)) are
determined from Atkinson and Rawlings [1981], which
yields _l0 = 0.24 m s�1 and n = 34.
[18] Using the parameters given above, we compute a

simulated creep test at a confining pressure s3 = 30 MPa,
and a differential stress s1 � s3 = 450 MPa, i.e., at 85% of
the short term strength (s1

peak � s3 = 531 MPa). At this stress
level, the initial equilibrium crack length determined from
equation (14) is l0 = 1.44 mm. Figure 3 shows normalized
stress intensity factor KI/KIC, crack length l, inelastic axial
strain �1 and inelastic strain rate _�1, all as functions of time.
Three phases can be distinguished. First, the crack growth
and strain decelerate as the stress intensity factor decreases,
producing a decrease in strain rate. Then, the stress intensity
factor and the crack growth rate stabilize, and the strain rate
remains approximately constant. Finally, the crack growth
rate, and thus the strain rate, increase dramatically as the
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stress intensity factor increases and approaches KIC. The
three creep phases predicted by the model are remarkably
similar to the commonly observed primary, secondary and
tertiary creep phases in laboratory tests [e.g., Lockner, 1993].
[19] In the model, the primary creep phase corresponds to

a decrease in KI with increasing wing crack length. This
might seem counter-intuitive, but is entirely as expected for
the growth of mode I cracks under all-round compression
[e.g., Kachanov, 1982c], as illustrated in Figure 4 (bottom,
black line). In the present model, this behavior arises
naturally as the loading of wing cracks is modeled by a
point force, the contribution of which to KI is proportional
to l�3/2. However, crack interactions (through the s3

i term
in equation (8)) tend to increase the stress intensity factor,
and when interactions become dominant KI becomes an
increasing function of crack length, equivalent to tertiary
creep. The contribution of crack interactions to the stress
intensity factor (and hence to the crack growth rate) tends
to infinity when S = p(l + aa)2, i.e.,

l ¼ aa r�1=3
0 � 1

� �
: ð19Þ

Between these two phases, KI/KIC reaches a minimum,
which corresponds to the minimum rate of crack growth.
It is also worth noting that the minimum in KI/KIC

during sub-critical cracking at constant stress (black lines
in Figure 4) occurs at the same critical crack length
(lpeak) as the peak stress in the absence of sub-critical
cracking when KI = KIC (red lines in Figure 4). In this
framework, secondary creep therefore appears naturally
as an inflexion between primary and tertiary creep. The
large value of stress corrosion index, n = 34, implies a
large sensitivity of strain rate to KI/KIC. The low strain
rates achieved when KI/KIC is at its minimum (of the
order of 10�8 s�1) explain why the system spends most
of its time in the secondary creep phase, with a seem-
ingly constant strain rate.

3.2. Derivation of an Approximate Creep Law

[20] In this section we derive a simple approximation
for the minimum strain rates that characterize secondary
creep in the model, so that they can be compared with
the constant secondary creep strain rates measured in
experiments. Since the minimum crack growth rate in
the model corresponds to the minimum stress intensity
factor, we first derive an expression for the minimum in
KI/KIC. We observed above that the minimum in KI/KIC

at constant stress occurs at the same crack length as the
peak stress when KI = KIC. Indeed, taking the derivative
of equation (8) with respect to l, we observe that for

Figure 3. Evolution of the stress intensity factor, crack
length, inelastic axial strain and strain rate as functions of
time for a creep simulation at s1 � s3 = 450 MPa on West-
erly granite. Other parameter values are reported in Table 1.

Figure 4. (top) Axial stress as a function of crack length for
KI = KIC (equation (14)) and for the simulated creep test at
constant axial stress. (bottom) Normalized stress intensity
factor as a function of crack length for the same two cases.
Arrows show the sense of evolution in time.
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KI = KIC the crack length at peak stress (∂s1/∂l = 0)
satisfies

A1s
peak
1 � A3s3

� �
c′1 þ c′2
� �� s3c′3 ¼ 0; ð20Þ

where the prime symbol indicates differentiation with
respect to l, and for constant stress s1, the crack length
at the minimum of KI (i.e., ∂KI/∂l = 0) satisfies

A1s1 � A3s3ð Þ c′1 þ c′2ð Þ � s3c′3 ¼ 0: ð21Þ
For s1 near s1

peak, which is relevant for typical brittle
creep conditions, equations (20) and (21) are very simi-
lar, and the resulting estimates of lpeak are quantitatively
very close. For example, in the case depicted previously
(for an applied differential stress equal to 85% of the
peak differential stress), the relative difference between
the two lengths is equal to 2.3%. Using this approxi-
mation, we can write an expression for the minimum in
KI as a function of s1

peak:

min
KI

KIC

	 

¼ 1� k

speak
1 � s1

KIC=
ffiffiffiffiffiffi
pa

p ; ð22Þ

where k = A1(c1(lpeak) + c2(lpeak)) is a nondimensional
numerical factor. Using m = 0.7, lpeak � a and b � 1,
we find that k is of the order of 0.1. The minimum
crack growth rate is thus

minfl_g ¼ l_0 1� k
speak
1 � s1

KIC=
ffiffiffiffiffiffi
pa

p
" #n

: ð23Þ

[21] Considering that the strongest dependency of the
strain rate is on the crack growth rate (which varies over
several orders of magnitude due to the relatively high value
of the stress corrosion index), the minimum strain rate in the
model, corresponding to the secondary creep strain rate
observed in experiments, is estimated from equations (17)
and (23) as

min _�1f g ≈ C 1� k
speak
1 � s1

KIC=
ffiffiffiffiffiffi
pa

p
" #nþ1

; ð24Þ

where C is a parameter with unit s�1 (i.e., a characteristic
strain rate) whose order of magnitude can be estimated
from

C � l_0
3r0
aað Þ3 aþ aað ÞKIC

ffiffiffiffiffiffi
pa

p
E

k; ð25Þ

where we took l � a as characteristic crack length.
[22] The model also predicts a minimum stress level

below which stress corrosion cracking ceases and hence
tertiary creep to failure will not occur. In general, stress
corrosion in single mode I cracks is only possible above a
certain stress intensity level, which is generally of the order
of 0.4 to 0.5 of KIC [see, e.g., Rice, 1978; Segall, 1984; Wan
et al., 1990]. Inspection of equation (22) shows that KI

decreases below the stress corrosion threshold, denoted
xKIC, in finite time if min{KI/KIC} ≤ x, i.e., when

s1 ≤ speak
1 � 1� xð ÞKIC

k
ffiffiffiffiffiffi
pa

p : ð26Þ

A lower bound of the brittle creep limit can be found by
taking x = 0, i.e., assuming that stress corrosion acts down to
KI = 0. For the case of Westerly granite, a value of x = 0.5
can be determined from the analysis of Segall [1984]. At
s3 = 30 MPa, the minimum stress is equal to 417 MPa, so
that stress corrosion cracking ceases at around 77% of the
peak differential stress.

3.3. Other Choices for the Crack Growth Law

[23] As mentioned previously, Charles’ law is not the only
existing sub-critical crack growth law. Exponential laws of
the form l_ ∝ exp bKIð Þ [Wiederhorn and Bolz, 1970] or

l_∝ exp bK
2

I

� �
[Darot and Guéguen, 1986] have also been

used, with an empirical constant b. The expression for the
minimum stress intensity factor (equation (22)) can be used
to determine the corresponding approximate creep laws,

min _�1f g ∝ exp b 1� k
speak � s1

KIC=
ffiffiffiffiffiffi
pa

p
� � �

ð27Þ

or

min _�1f g∝ exp b 1� k
speak � s1

KIC=
ffiffiffiffiffiffi
pa

p
� �2

" #
: ð28Þ

[24] At high stress s1 (i.e., for low speak � s1), these two
laws take the same asymptotic form as the power law
derived previously. However, Atkinson [1984] noted that, in
practice, most experimental data are not precise enough to
discriminate between these crack growth laws.
[25] By contrast, at low stress, the deformation rates pre-

dicted by the different laws become significantly different.
In this paper we use the creep law derived from Charles’ law
since there is an important corpus of studies that report sub-
critical crack growth in terms of stress corrosion index [e.g.,
Atkinson, 1984; Atkinson and Meredith, 1987].

4. Application and Discussion

4.1. Comparison With Experimental Data

[26] In order to quantitatively test the parameters involved
in the micromechanical brittle creep law, the model predic-
tions are compared with experimental data obtained under
triaxial conditions. We note, however, that the model is only
applicable over a limited range of the experimental obser-
vations. First, since the model is based on Charles’ law, it is
strictly only applicable to sub-critical crack growth con-
trolled by stress corrosion. As reported by Anderson and
Grew [1977], above a certain rate, sub-critical crack
growth is controlled by transport of reactive species to crack
tips rather than by stress corrosion reactions. Second, the
model approach to crack interactions, through the internal
stress s3i , is a simplification that becomes increasingly
invalid with the increasing crack coalescence and strain
localization that leads to macroscopic failure. Nevertheless,
we are able to model deformation during both primary and
secondary creep up to the onset of tertiary creep and accel-
eration to failure.
[27] Thus, we focus on the relation between the brittle

creep strain rate (as observed experimentally during sec-
ondary creep) and the applied differential stress, using
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published strain rate data from stress-stepping creep tests
on low porosity (�3.3%) Crab Orchard sandstone [Heap
et al., 2009b] and on Etna basalt [Heap et al., 2011],
and new data on Westerly granite. The selected data were
collected under triaxial conditions at 50 MPa confining
pressure and 20 MPa pore pressure, i.e., an effective
pressure �s3 ¼ 30 MPa, and at room temperature. Under
these conditions, the short term strength of Crab Orchard
sandstone, Etna basalt and Westerly granite are 403 MPa,
387 MPa and 530 MPa, respectively. The stress stepping
method (see details in Heap et al. [2009a]) was used to
eliminate the effect of sample variability in the determi-
nation of the brittle creep strain rates.
[28] The predicted creep strain rates as a function of nor-

malized differential stress (s1 � s3)/(s1
peak � s3) are given

in Figure 5a for the set of parameters determined indepen-
dently for Westerly granite in the previous section (filled
black circles). It is clear that the model predictions do not
match the experimental data (red squares in Figure 5a). In
particular, the stress sensitivity predicted by the model with
n = 34 is far too high. One possible explanation for this
discrepancy is that the high stress corrosion index obtained
in single crack experiments (in this particular case, from
double torsion tests [Atkinson and Rawlings, 1981]) is valid
only for cracks much larger than the grain size of the rock: in
order to propagate macroscopically, the crack has to traverse
numerous individual grains and grain boundaries. By con-
trast, for the case of the micromechanical model, the size of
the individual wing cracks is of the same order of magnitude
as the grain size: it is thus likely that they propagate within
individual grains and/or along individual grain boundaries.
In single crack experiments performed on single crystals, the
stress corrosion indices are typically much lower; of the order
of 10 [Atkinson, 1984]. We can again test the model predic-
tions using stress corrosion data for quartz single crystals (see
Table 1). In that case, we have KIC = 1 MPa, n = 12.4 and we
determined l_0 ¼ 4:9� 10�3 m s�1 [Atkinson, 1979]. The

corresponding initial flaw size is a = 350 mm (obtained from
relation (4)), and other parameter values remain unchanged.
These results are plotted in Figure 5a (open black circles).
The prediction is much closer to the observation, but there is
still a significant discrepancy. In order to determine the stress
corrosion index that would be needed to match the observa-
tions, the experimental data are fitted to equation (24), with n
and C as free parameters. Importantly, the value of k is fixed
at the value determined from the forward modeling using
a = 1.1 mm and KIC = 1.74 MPa m1/2, as before. The fit is
displayed in Figure 5a by the dashed black line. The inverted
stress corrosion index is n = 5.5, which is still significantly
lower than the value observed in typical single crack tests.
Such a low value might correspond to sub-critical crack
growth along weak grain boundaries, or along cleavage
planes in feldspar or biotite. Another possibility is that the
actual value of KIC is lower than 1.74 MPa m1/2 (typically
less than 1 MPa m1/2 for quartz single crystals [Atkinson,
1984]), in which case the stress corrosion index required to
fit the data would be closer to experimentally observed
values, i.e., of the order of 10 (see the predicted curves using
quartz data in Figure 5). Considering the uncertainties on the
experimentally measured values of KIC and stress corrosion
index n, it is difficult to determine which explanation is the
most plausible.
[29] A similar inversion procedure is followed to deter-

mine the stress corrosion index in Etna basalt and Crab
Orchard sandstone (Figure 5b, see Table 1 for parameter
values). For Etna basalt, the critical stress intensity factor
is set at 2.5 MPa m1/2, the flaw size is a = 3 mm, the
crack density parameter is r0 = 4.8 � 10�3 and the Young’s
modulus is E = 60 GPa. The index obtained from the fit to
Etna basalt data is n = 7.1, which is again much lower
than published values for typical basalts (from n = 22 to
n = 171 [Atkinson, 1984]). For Crab Orchard sandstone,
we use KIC = 0.45 MPa m1/2, the flaw size is a = 250 mm
(approximately equal to the grain size), the crack density

Figure 5. Comparison between model predictions and experimental data in (a) Westerly granite (this
study) and (b) Etna basalt [Heap et al., 2011] and Crab Orchard sandstone [Heap et al., 2009b]. Data
points are shown in red, predictions are in black, et the dashed lines are least squares fits to the data using
equation (24).
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parameter is r0 = 3.110�3, and the Young’s modulus is
E = 44 GPa. In this case we obtain n = 17.6, which is
within the range of reported single crack values (from
n = 17.2 to n = 26.3 [Atkinson, 1984]).

4.2. Effects of Sample Variability

[30] A significant issue in brittle creep experiments is the
difficulty of obtaining repeatable results due to the different
initial damage conditions caused by natural sample vari-
ability [e.g., Baud and Meredith, 1997]. In the framework of
our micromechanical model, the sample variability can be
seen as a variation in initial parameters such as the crack
density parameter r0 and the flaw size a, which are reflected
as variations in the short term peak stress s1

peak (see equation
(14)). We therefore simulate a series of experiments per-
formed under exactly the same loading conditions, in order

to estimate how small variations in r0 and a influence the
brittle creep strain rate.
[31] Figure 6 illustrates the effects of �5% changes in a

and r0 on the short term strength and brittle creep strain
rate in Westerly granite and Crab Orchard sandstone at an
effective confining pressure of 30 MPa, using the fitted
parameter values from Table 1. A �5% variation in a
induces a change in creep strain rate by a factor ≈1.1 in
Westerly granite and ≈1.5 in Crab Orchard sandstone, and
a change in strength of �1% in both rocks. By contrast,
a�5% variation in r0 induces a change in creep strain rate of
a factor ≈1.8 in Westerly granite and a factor of ≈7 in Crab
Orchard sandstone, and a change in strength of �2.5% for
both rocks. Overall, the variations in a and r0 induce only
minor changes in short-term strength, but significant varia-
tions in long-term creep strain rate. The strain rate changes
are modest in Westerly granite, but very significant in Crab

Figure 6. Effects of small variations in (a) initial flaw size a and (b) crack density parameter r0 on brittle
creep strain rate (solid lines) and strength (dotted lines), for Crab Orchard sandstone and Westerly granite
at �s3 ¼ 30 MPa. Reference parameter values are reported in Table 1. The stress corrosion index and ref-
erence crack speed are those derived from data fits. The strain rate is normalized by its value for the ref-
erence parameters set.

Table 1. Physical Properties and Model Parameters

Parameter Westerly Granite Westerly Granite (Qz)a Crab Orchard Sandstone Etna Basalt

Young’s modulus, E (GPa) 70 70 44 60
Friction coefficient, m 0.7 0.7 0.7 0.7
Correction factor, b 1.15 1.15 1.15 1.15
Critical stress intensity factor,b KIC (MPa m1/2) 1.74 1 0.45 (2.5)
Initial flaw size,c a (mm) 1.1 0.35 0.25 3
Initial flaw density,d r0, � 10�3 2.8 2.8 3.1 4.8
Stress corrosion index,b n 34 12.5 13.7 –
Stress corrosion index from fits, n 5.5 – 17.6 7.1
Ref. crack growth rate,b l_0 (m s�1) 0.24 4.9 10�3 398 –
Ref. crack growth rate from fits, l_0 (m s�1) 7 10�5 7 10�5 1.5 10�6 2.5 10�4

Activation enthalpy, H (kJ mol�1) 50e – 31f –
Preexponential factor, A (m s�1) 5.7104f – 1f –

aParameters in this column are chosen assuming that wing cracks propagate through quartz grains only.
bFrom Atkinson [1984]. The KIC value for Etna basalt is assumed to be equal to that of Preshal More basalt.
cCalculated from relation (4) using data from Brace and Byerlee [1966] (Westerly granite), Heap et al. [2009b] (Crab Orchard sandstone), and Heap et al.

[2011] (Etna basalt).
dEstimated from fits of short term peak stress data.
eEstimated from Barre granite data from Kranz et al. [1982].
fEstimated from fits of Heap et al. [2009b] data.
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Orchard sandstone. We interpret this as being due to their
low (n = 5.5) and high (n = 17.6) stress corrosion indices,
respectively.

4.3. Effects of Pressure and Temperature

[32] The influence of effective confining pressure (�s3) on
creep strain rate is embedded in the model through the
parameter k = A1(c1(lpeak) + c2(lpeak)) and the peak stress
s1
peak. Figure 7 shows the effects of changes in �s3 on the

strain rate as a function of the normalized differential stress
(Figure 7a) and absolute differential stress (Figure 7b). In
terms of absolute differential stress, the effect of �s3 appears
to be simple offset in strain rate. When the differential stress
is normalized to the peak differential stress, there is an
apparent change in stress sensitivity that arises from the
dependency of strength on �s3.
[33] The effect of temperature can be estimated by

assuming that the reference crack speed has the following
form [Atkinson, 1984]:

l_0 ¼ Ae�H=RT ; ð29Þ

where A is a constant, H is an activation enthalpy, R is the
gas constant and T is the absolute temperature. A conse-
quence of the assumption (29) is that an increase in tem-
perature merely offsets the strain rate, but does not change
its stress dependency. It is further assumed that the strength
does not change significantly with temperature. This is in
general what is observed in experimental data, for example
Barre granite [Kranz et al., 1982] and Crab Orchard sand-
stone [Heap et al., 2009b]. Using the activation enthalpy
H ≈ 50 kJ mol�1 given by Kranz et al. [1982] for Barre
granite, we obtain the creep strain rate as a function of dif-
ferential stress for various temperatures (Figure 7). In terms
of absolute differential stress (Figure 7b), there is an appar-
ent change in stress sensitivity of the strain rate which arises

from the intrinsic non linearity of log _�1ð Þ with s1 (see
equation (24)).
[34] In addition, it is also possible that the stress corrosion

index changes with temperature [Meredith and Atkinson,
1982]. In that case, the sensitivity of strain rate to absolute
differential stress can vary with temperature in a more
complex manner, as recently illustrated for experiments on
sandstones [Heap et al., 2009b]. It should be noted that such
a temperature dependency would arise more naturally from
exponential crack growth laws, in which the parameter b that
determines the stress sensitivity of the crack growth rate (see
equations (27) and (28)) is of the form b∝ 1/RT [e.g., Darot
and Guéguen, 1986].

4.4. Competition Between Stress Corrosion
and Pressure Solution in Porous Rocks

[35] Our micromechanical model of brittle creep is based
on stress corrosion enhanced growth of wing cracks. How-
ever, in porous rocks, pressure solution is also an important
time-dependent deformation mechanism [e.g., Rutter, 1983].
Using our simplified brittle creep law (equation (24)) with
parameter values inverted from experimental data on Crab
Orchard sandstone, together with models for pressure solu-
tion creep in the same rock, we can determine the range of
stress and temperature conditions over which each mecha-
nism dominates deformation.
[36] In addition to the parameters already determined in

section 4.1, we also need to constrain the activation enthalpy
H for stress corrosion cracking in Crab Orchard sandstone.
The activation enthalpy for quartz determined from single
crack tests is close to 50 kJ mol�1 [Atkinson, 1984]. How-
ever, the value estimated from triaxial brittle creep experi-
ments [Heap et al., 2009b] is closer to H ≈ 31 kJ mol�1. We
therefore use the latter value in our computations.
[37] The deformation rate due to pressure solution can be

calculated using the approach and parameter values from

Figure 7. Brittle creep strain rate as a function of (a) normalized differential stress and (b) absolute dif-
ferential stress, for Westerly granite under various effective confining pressure �s3 and temperature T.
Parameter values are those used in section 3.1, except the stress corrosion index n = 5.5 and reference
crack growth rate l_0 ¼ 710�5 m s�1 which are derived from data fits. The effect of temperature is com-
puted using relation (29) with an activation enthalpy of H = 50 kJ mol�1 [Kranz et al., 1982].
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Rutter [1983] in the case of diffusion-limited rate, or
using the model of Niemeijer et al. [2002] in the case of
dissolution-limited rate. For the case of diffusion-limited
pressure solution, the axial strain rate is given by [Rutter,
1983]

_�1 ≈ 32APSe
�HPS=RTs1w=d

3; ð30Þ

where the preexponential factor is APS ≈ 1.05 � 10�14, the
activation enthalpy is HPS = 40 kJ mol�1, the width of the
inter-granular fluid layer is w = 10 Å, and the grain size is
d = 250 mm. For the case of dissolution-limited pressure
solution, the axial strain rate can be approximated by
[Niemeijer et al., 2002]

_�1 ≈ 6W� 10 1:174�0:002028T�4158=Tð Þ exp
s1W
RT

� �
� 1

 �
=d; ð31Þ

where W = 2.310�5 m3 mol�1 is the molar volume of quartz.
Note that equation (31) has been simplified from the more
complete relation given by Niemeijer et al. [2002] by
assuming that there is no significant stress amplification at
grain contacts. Hence equation (31) provides a lower bound
of the strain rate.
[38] The results are presented in the form of deformation

mechanism maps for �s3 ¼ 30 MPa in Figure 8. At tem-
peratures below 50�C, the transition from stress corrosion
dominated to pressure solution dominated deformation
occurs at strain rates of the order of 10�9 s�1 and at differ-
ential stresses around 90% of the strength for diffusion-
limited pressure solution, and at strain rates of the order of
10�13 s�1 and differential stress around 85% of the strength
for dissolution limited pressure solution. At higher tem-
peratures, stress corrosion becomes decreasingly dominant
and the transition occurs at higher stress and higher strain
rate. This is entirely as expected because the activation
energy of stress corrosion is lower than the activation energy
of pressure solution. It follows that low strain rate, long term
creep due to stress corrosion is a high stress, low temperature
phenomenon, relative to pressure solution creep. For other

materials in which the activation energy of stress corrosion is
higher than that of pressure solution, we expect that the
transition from stress corrosion dominated to pressure solu-
tion dominated deformation will occur at decreasing stress
with increasing temperature.

4.5. Implications for the Strength of the Crust

[39] We now use our creep law (equation (24)) to estimate
the strength of the upper crust as a function of depth and
strain rate. We assume a typical continental geothermal
gradient of 30�C km�1, a lithostatic pressure gradient of
28 MPa km�1 and a hydrostatic pore fluid pressure gra-
dient of 10 MPa km�1, and compute creep strain rates for
Westerly granite (using parameters from fits, see Table 1)
as a function of depth and differential stress (Figure 9a).
Pressure solution is not expected to be an important pro-
cess in this rock since the porosity is lower than 1%.
Figure 9a shows that stress corrosion creep occurs only
over a limited range of differential stress at any given
depth, consistent with experimental observations. It is also
clear that the stress sensitivity of the process increases
with depth, so that the contours of strain rate become
compressed with increasing depth.
[40] A similar procedure is applied to Crab Orchard

sandstone, in which we expect pressure solution to also be
an important time dependent deformation mechanism. In
order to maintain consistency with experimental observa-
tions, we use the stress corrosion index and reference crack
growth rate from the fits of triaxial creep data. The results
are plotted in Figure 9b and show that stress corrosion creep
occurs over an even more limited range of differential stress
than for Westerly granite; again consistent with experimental
observations [Heap et al., 2009b]. The depth for transition
from stress corrosion creep to pressure solution creep
increases dramatically with increasing strain rate. For any
given depth, an increase in tectonic (differential) stress will
lead to a linear increase in strain rate during pressure
solution. However, when the pressure solution to stress
corrosion transition is reached, the strain rate will accelerate

Figure 8. Deformation mechanism map of the maximum of log _�1ð Þ as a function of differential stress and
temperature, in Crab Orchard sandstone at s3 = 30 MPa. Pressure solution is computed using either
(a) equation (31) [from Niemeijer et al., 2002] in the case of dissolution-limited rate or (b) equation (30)
[from Rutter, 1983] in the case of diffusion-limited rate.
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dramatically to failure, due to the much higher stress sen-
sitivity of the stress corrosion mechanism.
[41] In all cases, we should bear in mind that brittle creep

is never a steady state process. On the one hand, during
pressure solution, local dissolution and precipitation pro-
cesses act to decrease porosity and increase intergranular
contact area, thus progressively decreasing deformation rate.
We can thus speculate that, in addition to the transition from
pressure solution to brittle creep as a function of pressure
and temperature, there might exist a similar transition as a
function of time. On the other hand, during stress corrosion
creep, the damage state is continuously increasing due to
subcritical crack growth, and this leads to a progressive
increase in deformation rate. Hence the results shown in
Figure 9 should be considered as merely snapshots of the
minimum strain rate allowed for a given differential stress at
a given depth. Further, once the rock has failed, the defor-
mation process becomes frictional and our micromechanical
model no longer applies without modification.

5. Conclusion

[42] We have coupled the sliding wing crack model of
Ashby and Sammis [1990] to Charles [1958] description of
sub-critical crack growth to explore the behavior of rocks
subjected to constant differential stress in an overall com-
pressive stress field. Our resulting model successfully
reproduces the qualitative behavior observed in experiments.
Primary (decelerating) creep corresponds to a decrease in the
stress intensity factor at crack tips with increasing crack
length, as expected for mode I cracking in compression.
Tertiary (accelerating) creep corresponds to an increase in
the stress intensity factor with increasing crack length due to
crack interactions. Secondary creep arises as an inflexion
between these two end-members.

[43] The minimum strain rate during secondary creep is
well approximated by a law of the form

_�∝ e�H=RT 1� k
speak � s1

KIC=
ffiffiffiffiffiffi
pa

p
 �nþ1

; ð32Þ

where the stress corrosion index n gives the overall stress
sensitivity. In Crab Orchard sandstone, the stress corrosion
index determined from single crack experiments (n = 13.7)
is close to that determined from fits to triaxial brittle creep
strain rate data (n = 17.6). By contrast, the high values of n
(of the order of 30 or more) determined in tensile single
crack experiments in crystalline rocks such as granite and
basalt, are not consistent with triaxial creep data for these
rocks which yield values in the range n = 6 to 8. Such low
values could correspond to microcrack propagation within
single mineral grains or along grain boundaries.
[44] The micromechanical model can be used to estimate

the strength of the upper crust as a function of creep strain
rate and depth. For typical tectonic strain rates (of the order
of 10�15 s�1), the strength decreases down to the theoretical
lower limit of stress that allows brittle creep speak

1 �
KIC= k

ffiffiffiffiffiffi
pa

pð Þ. This corresponds to an offset in the strength
that can be interpreted as a loss of cohesion. In porous rocks,
creep due to stress corrosion is in competition with pressure
solution creep, and we show that long term creep due to
stress corrosion is a high stress, low temperature phenome-
non, relative to pressure solution creep.

Appendix A: Relations Between Various Definitions
of Crack Density

[45] Generally, in an isotropic matrix and for randomly
oriented penny-shaped cracks, the crack density is described

Figure 9. Contours of log _�ð Þ as a function of differential stress and depth for (a) Westerly granite and
(b) Crab Orchard sandstone. The stress corrosion indices and reference crack growth rates are those
derived from data fits. The strain rates for pressure solution in Crab Orchard sandstone are calculated
from equation (31).
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by the second-order tensor g defined by Sayers and
Kachanov [1995] as

gij ¼ NVa
3ninj; ðA1Þ

where n is a unit vector normal to the crack. In the config-
uration given in Figure 1, the crack density parameter r0 is
related to g33 (vertical crack density) as

r0 ¼
4

3
pag33; ðA2Þ

and the horizontal crack density g11 is then

g11 ¼ r0 1� a2
� � 3

4pa3
: ðA3Þ

The total (scalar) crack density, as defined by Walsh [1965],
is tr(g) = 3r0/(4pa

3).
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