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ABSTRACT: Asymptotic homogenization models for smart composite plates
with periodically arranged embedded actuators and rapidly varying thickness
are derived. The formulated models enable the determination of both local fields
and effective elastic, actuation, thermal expansion, and hygroscopic expansion
coefficients from three-dimensional local unit cell problems. The actuation
coefficients, for example piezoelectric or magnetostrictive, characterize the intrin-
sic transducer nature of active smart materials that can be used to induce strains
and stresses in a coordinated fashion. The theory is illustrated by means of examples
pertaining to thin smart composite plates of uniform thickness, rib- and wafer-
reinforced smart composite structures, and sandwich smart composite plates with
honeycomb filler.

KEY WORDS: smart composite plate, asymptotic homogenization, effective
coefficients, actuation coefficients, ribs, wafers, honeycomb filler.

1. INTRODUCTION

I
N RECENT YEARS, general homogenization models and their applications

for periodic composite and reinforced structures were developed using

asymptotic homogenization techniques. The mathematical framework of

the asymptotic homogenization technique can be found in Bensoussan et al.

[1] and Sanchez-Palencia [2]. This method is mathematically rigorous and
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it enables the prediction of both the local and overall averaged properties of

the composite solid. Many problems in the framework of elasticity and

thermoelasticity have been solved using these models [3–5].

The homogenized models of plates with periodic non-homogeneities

in tangential coordinates have been developed in this way by Duvaut [6],

Adrianov et al. [7], and others. A refined approach developed by Caillerie

[8] in his heat conduction studies consists of applying a two-scale

formalism directly to the three-dimensional problem of a thin non-

homogeneous layer. Accordingly, Caillerie introduces two sets of ‘rapid’

coordinates. One of these, in the tangential directions, is associated with

rapid periodic oscillations in the composite properties. The other is

associated with the small thickness of the layer and takes into

consideration that there is no periodicity in this transverse direction.

The two small parameters thus described may or may not be of the same

order of magnitude. Kohn and Vogelius [9], adopted this approach in

their study of the pure bending of a thin, linearly elastic homogeneous

plate. Kalamkarov [3] applied the modified asymptotic homogenization

technique to three-dimensional elasticity and thermoelasticity problems

pertaining to a curvilinear three-dimensional inhomogeneous layer with a

rapidly varying thickness. As a result, the general homogenization models

for composite and reinforced shells were derived. These models were then

used to analyze a variety of composite and reinforced shells and plates of

practical importance, and subsequently proceed to their design and

optimization [4,5].

The interest in composite materials has led in recent years to their

integration within such areas as the aerospace industry, civil engineering,

transportation, and marine engineering. At the same time, significant

advancements in MEMS, telecommunications and other fields, significantly

facilitated the development of new and highly effective sensors and actuators.

It would thus seem natural that the ever-expanding field of composite

materials would seek ways to take advantage of and encompass these

advancements in actuator and sensor technology. The merge of these

domains gave birth to the so-called ‘smart composite materials’. Smart

composite materials are adaptive composite structures, which incorporate

sensors and actuators. Depending on their type, smart composites can be

classified as passive or actively controlled. Passive smart materials

incorporate sensors that provide information on their state and integrity,

while the actively controlled smart materials incorporate both sensors and

actuators and they can perform self-adjustment or self-repair as conditions

change.

Modeling of smart composite materials with integrated actuators and

other related issues have been the focus of many researchers in recent
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years. Aboudi [10] developed a microstructural model that encompasses

both local and global effects, to analyze the behavior of resin-matrix and

metal-matrix composites with embedded shape memory alloy (SMA)

fibers. Choi and Lee [11] performed analytical and experimental studies

on shape control of glass/epoxy composite beams with embedded SMA

wire actuators. Song et al. [12] investigated active position control of

honeycomb-type composite beams with SMA wires embedded in one of

the face sheets. Kannan and Dasgupta [13] performed finite element

studies of the behavior of multi-functional composites with embedded

magnetostrictive devices.

Modeling of piezoelectric composites has become very important in

view of the widespread applications of such materials. A survey by Rao and

Sunar [14] has demonstrated the wide and important applications of

piezoelectric materials in many branches of engineering. Rajapakse [15]

developed closed-form plane strain and plane stress solutions for piezo-

electric laminates. The use of piezoelectric actuators and sensors as elements

of smart structures was investigated by Crawley and de Luis [16], Reddy

[17], Ashida and Tauchert [18], Kalamkarov and Drozdov [19], Kalamkarov

and Kolpakov [20], Kalamkarov and Georgiades [21,22], Tzou [23], Tzou

and Bao [24], Wang and Rogers [25], and Tzou and Tiersten [26] among

others.

It is apparent that the use of smart composite structures will be greatly

facilitated if the effective properties and coefficients such as elastic,

piezoelectric, thermal expansion etc. can be predicted at the design stage.

In previous work, the authors developed comprehensive homogeniza-

tion models for general three-dimensional small composite structures with

homogeneous boundary conditions [21] and with more general boundary

conditions where the existence of so-called boundary-layer type solutions

were shown to arise [22]. The present study however, deals specifically

with a smart composite plate of rapidly varying thickness and a periodic

array of embedded actuators. The models derived are quite general so

that the variation of the thickness of the composite structure may be

attributed to either the existence of reinforcements such as ribs and

stiffeners, or to the surface attachment of the actuating elements. The

clear objective of the work is to construct fundamental micromechanical

models that illustrate the development and use of the effective

coefficients. Although some of the examples chosen for illustration

purposes pertain to piezoelectric components, the analysis presented

should be considered to hold equally well if the material in question is

associated with some other transduction characteristics that can be used

to induce strains and stresses. The model is applied to thin smart

composite plates of uniform thickness, rib- and wafer-reinforced smart
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composite structures, and sandwich smart composite plates with

honeycomb filler.

1.1 Smart Structures with Rapidly Varying Thickness

A main objective of the work in this study involves determining the

effective coefficients of smart composite structures with rapidly varying

thickness. The practically important structures that are considered are

(a) rib-reinforced smart composite plates, (b) smart sandwich plates with

rib-like filler, (c) wafer-reinforced smart composite plates, and (d)

sandwich smart composite plates with honeycomb filler. These structures

are shown in Figures 1–4. The unit cells shown are the basic periodic

units that repeat themselves in the x1–x2 plane to generate the smart

structures.

2. PROBLEM FORMULATION

To analyze the smart composites shown in Figures 1–4, one must develop

the equations characterizing the behavior of a generalized thin composite

structure with wavy surfaces and containing a large number of periodically

arranged actuators as shown in Figure 5. This periodic structure is obtained

by repeating a certain small unit cell �� in the x1–x2 plane. All three

coordinates in Figure 5 are assumed to have been made dimensionless by

dividing by a certain characteristic dimension of the body, L. Note that the

shape of the lateral surface of the layer is determined by the type of surface

reinforcement, for example by shape of stiffeners or reinforcing ribs.

The unit cell of the problem is characterized by the following inequalities

(Figure 5):

x1

x3

δH
δ

x2

δh2
δh1

δt1

Unit cell

Figure 1. A rib-reinforced smart composite plate and its unit cell.
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δt2

Unit cell

δ

x1

x2

x3

δH

δt1

δh1

Wafer-reinforced plate

δh2

Figure 3. A wafer-reinforced plate and its unit cell.

x1

x2

x3

δt1

δ δh1

δh2

δH

Unit cell

Figure 4. A sandwich composite plate with honeycomb filler and its unit cell.

x1
δh2

δh1

x2

x3

δt1

Unit cell 

Figure 2. A smart sandwich plate with rib-like filler and its unit cell.
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�
�h1

2
< x1 <

�h1

2
, �

�h2

2
< x2 <

�h2

2
, S� < x3 < Sþ

� �

,

where S� ¼ �
�

2
� �F� x1

�h1
,
x2

�h2

� � ð2:1Þ

The elastic deformation of this smart structure is characterized by the

following system:

�ij, jx � Pi ¼ 0 where,

�ij ¼ Cijkl ekl � d
ðrÞ
klmRm � �

ð�Þ
kl T� �

ðcÞ
kl C

n o

and

eij ¼
1

2
ui, jx þ uj, ix
� �

ð2:2Þ

Here, Cijkl is the tensor of elastic coefficients, ekl is the strain tensor

which is a function of the displacement field u, d
ðrÞ
ijk is a tensor of

actuation (such as piezoelectric) coefficients describing the effect of a

Ωδ

S

δ

x1

x2

x3

δh2

δh1

Unit cell

Figure 5. Thin three-dimensional smart composite solid of a periodic structure and its
unit cell.
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control signal R on the stress field �ij, �
ð�Þ
ij is the thermal expansion tensor,

and �
ðcÞ
ij is the hygroscopic expansion tensor. Finally, T and C represent

changes in the temperature and moisture content (with respect to a reference

hygrothermal state) respectively. It is assumed that Cijkl, d
ðrÞ
ijk ,�

ð�Þ
ij ,�

ðcÞ
ij are

periodic in x1 and x2 with respective periods �h1 and �h2 but are not periodic

in the transverse coordinate x3. Finally note that throughout this work,

partial derivatives will be denoted as follows:

 ij, kx ¼
@ ij

@xk
and #ij, ky ¼

@#ij

@yk
ð2:3Þ

Assume that the top and bottom surfaces of the plate S� are subjected

to surface tractions pi (not to be confused with the body forces Pi) which are

related to stresses by Cauchy boundary conditions,

�ijnj ¼ pi ð2:4Þ

where for the surfaces x3¼ S� (x1, x2) we have the following unit normal

vector:

n� ¼
�S�

1,x, � S�
2,x, 1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S�
1,x

� �2

þ S�
2,x

� �2

þ1

r ð2:5Þ

3. ASYMPTOTIC ANALYSIS AND ASSUMPTIONS

Analysis begins with the introduction of the ‘fast’ variables,

y1 ¼
x1

�h1
, y2 ¼

x2

�h2
, z ¼

x3

�
ð3:1Þ

remembering that � is the thickness of the smart layer. The introduction

of the fast variables is in recognition of the fact that the field variables

have both periodic and non-periodic components and become functions of

x and y. As well, the derivatives transform according to the following

relationships:

@

@x�
!

@

@x�
þ

1

�h�

@

@y�
and

@

@x3
¼

1

�

@

@z
ð3:2Þ
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The use of the fast variables also means that the unitcell �� is now

defined by:

�
1

2
< y1 <

1

2
, �

1

2
< y2 <

1

2
, Z� < z < Zþ

� �

,

where Z� ¼ �
1

2
� F� yð Þ

ð3:3Þ

Subsequently, the following asymptotic assumptions are made:

p�� ¼ �2r� x, yð Þ, p�3 ¼ �3q�3 x, yð Þ

P� ¼ �f� x, y, zð Þ, P3 ¼ �2g3 x, y, zð Þ

d
ðrÞ
ijk ¼ �dijk y, zð Þ, �

ð�Þ
kl ¼ ��kl y, zð Þ, �

ðcÞ
kl ¼ ��kl y, zð Þ ð3:4Þ

T ¼ T ðoÞðxÞ þ zT ð1ÞðxÞ

C ¼ C ðoÞðxÞ þ zC ð1ÞðxÞ

Ri ¼ R
ðoÞ
i ðxÞ þ zR

ð1Þ
i ðxÞ ð3:5Þ

Equation (3.5) assumes linear through-the-thickness relationships for T,

C, and Ri. We are justified in making this approximation on account of

the small thickness of the smart structure in comparison to its in-plane

dimensions. It should also be noted that in Equation (3.4) and in the sequel

Greek indices will be assumed to take on the values of 1 and 2, and Latin

indices will vary from 1 to 3.

The next step is to assume asymptotic expansions for the displacement

and stress fields in the form of:

ui ¼ u
ð0Þ
i ðxÞ þ �u

ð1Þ
i x, y, zð Þ þ �2u

ð2Þ
i x, y, zð Þ þ � � � ð3:6Þ

�ij ¼ �
ð0Þ
ij x, y, zð Þ þ ��

ð1Þ
ij x, y, zð Þ þ �2�

ð2Þ
ij x, y, zð Þ þ � � � ð3:7Þ

From Equations (2.2) and (3.6), one arrives, after equating like powers of �,

at the following analogous asymptotic expansion for the strain field,

eij ¼ e
ð0Þ
ij þ �e

ð1Þ
ij þ �2e

ð2Þ
ij þ � � � ð3:8Þ

where the various terms are functions of the type u
ðjÞ
i .
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4. EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS

The substitution of Equation (3.7) into Equation (2.2) gives, on

account of the relationships (3.2), the following system of differential

equations:

1

h�

� �

�
ð0Þ
i�, �y þ �

ð0Þ
i3, z ¼ 0

�
ð0Þ
i�,�x þ

1

h�

� �

�
ð1Þ
i�, �y þ �

ð1Þ
i3, z ¼ 0

�
ð1Þ
i�,�x þ

1

h�

� �

�
ð2Þ
i�, �y þ �

ð2Þ
i3, z ¼ fi and

�
ð2Þ
i�,�x þ

1

h�

� �

�
ð3Þ
i�, �y þ �

ð3Þ
i3, z ¼ gi

ð4:1Þ

The corresponding boundary conditions follow from Equations (2.4)

and (3.7) and are,

�
ð0Þ
ij N�

j ¼ 0,

�
ð1Þ
ij N�

j ¼ 0,

�
ð2Þ
ij N�

j ¼ �!�r�i and

�
ð3Þ
ij N�

j ¼ �!�q�i ,

ð4:2Þ

where the following definitions are made:

N� ¼ �
1

h1

� �

F�
1, y, �

1

h1

� �

F�
2, y, 1

� �

and

!� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
1

h2

� �2

F�
1, y

� �2

þ
1

h2

� �2

F�
2, y

� �2

s

:

ð4:3Þ

5. DETERMINATION OF UNIT CELL PROBLEMS

The solution for the first terms in the asymptotic expansions of the stress

and displacement fields, (Equations (3.6) and (3.7)), is the same as for the
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purely elastic problem solved by Kalamkarov [3] and is given by:

�
ð0Þ
ij ¼ 0 ð5:1Þ

u
ð0Þ
1 ¼ u

ð0Þ
2 ¼ 0, u

ð0Þ
3 ¼ w xð Þ

uð1Þv ¼ vð1Þ� xð Þ � zw, �x, u
ð1Þ
3 ¼ v

ð1Þ
3 xð Þ ð5:2Þ

uð1Þm ¼ Uk�
m y, zð Þ "

ð0Þ
k� xð Þ þ vð1Þm xð Þ: ð5:3Þ

Here, vð1Þm is the homogeneous solution that satisfies

Dikv
ð1Þ
k ¼ 0, ð5:4Þ

and Uk�
m the particular solution that satisfies

DikU
m�
k ¼ �Cim� and

LijkU
m�
k þ Cijm�

� �

N�
j ¼ 0 on Z�:

ð5:5Þ

In the latter expressions, the following operators are defined:

Lijk ¼ Cijk�

1

h�

� �

@

@y�
þ Cijk3

@

@z
,

Dij ¼
1

h�

� �

@

@y�
Li�j þ

@

@z
Li3j, and

Ci�j ¼
1

h�

� �

@Ci��j

@y�
þ
@Ci3�j

@z
:

ð5:6Þ

Also, the strain terms "
ð0Þ
k� ðxÞ that appear in Equation (5.3) are defined by:

2"
ð0Þ
ij ¼ Cijk� u

ð0Þ
k,�x þ u

ð0Þ
�, kx

� �

: ð5:7Þ

We are now in a position to solve for the second term of the asymptotic

expansion of the stress field. From Equations (3.4), (3.8), (5.3), and (2.2)

we arrive at:

�
ð1Þ
ij ¼ Lijku

ð2Þ
k þ Cijk�"

ð1Þ
k� þ zCij����� � PijkR

ð0Þ
k � ZPijkR

ð1Þ
k þ

� KijT
ð0Þ � zKijT

ð1Þ � BijC
ð0Þ � zBijC

ð1Þ
ð5:8Þ

260 A. L. KALAMKAROV ET AL.



where,

2"
ð1Þ
�� ¼ v

ð1Þ
�, �x þ v

ð1Þ
�, �x

� �

, ��� ¼
�@2w

@x�@x�
, Pijm ¼ Cijkldklm,

Kij ¼ Cijkl�kl, Bij ¼ Cijkl�kl

ð5:9Þ

Furthermore, the solution for u
ð2Þ
k follows from Equations (4.1), (4.3), and

(5.8) and is:

Diku
ð2Þ
k ¼� cik�"

ð1Þ
k� � Ci3�� þ zci��

� �

��� þ P�
ikR

ð0Þ
k þ Pi3k þ zP�

ik

� �

R
ð1Þ
k þ

þ K�
i T

ð0Þ þ Ki3 þ zK�
i

� �

Tð1Þ þ B�
i C

ð0Þ þ Bi3 þ zB�
i

� �

Cð1Þ ð5:10Þ

Lijku
ð2Þ
k þ Cijk�"

ð1Þ
k� þ zCij����� � PijkR

ð0Þ
k � zPijkR

ð1Þ
k þ

�KijT
ð0Þ � zKijT

ð1Þ � BijC
ð0Þ � zBijC

ð1Þ

 !

N�
j ¼ 0 on Z�

ð5:11Þ

where the following definitions are made:

P�
ik ¼

1

h�

� �

Pi�k, �y þ Pi3k, z, K�
i ¼

1

h�

� �

Ki�, �y þ Ki3, z,

B�
i ¼

1

h�

� �

Bi�, �y þ Bi3, z ð5:12Þ

The separation of variables in each term on the right-hand-side of (5.10)

prompts the solution for u
ð2Þ
k in the form of

uð2Þm ¼ Uk�
m "

ð1Þ
k� þ V��m ��� þUK

mR
ð0Þ
k þ VðkÞ

m R
ð1Þ
k þWmT

ð0Þ

þ XmT
ð1Þ þ YmC

ð0Þ þ AmC
ð1Þ ð5:13Þ

where use was also made of Equation (5.3). Substitution of solution (5.13)

into Equations (5.10) and (5.11), leads, on account of the following

definitions,

bm�ij ¼ LijkU
m�
k þ Cijm�, b

���
ij ¼ LijkU

��

k þ zCij��, dkij ¼ Pijk � LijmU
k
m,

d�kij ¼ zPijk � LijmV
k
m, �ij ¼ Kij � LijmW, �

�
ij ¼ zKij � LijmXm,

�ij ¼ Bij � LijmYm, �
�
ij ¼ zBij � LijmAm ð5:14Þ
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to a group of eight problems to be referred to in the sequel as unit cell

problems. They are

1

h�

� �

b
��
i�, �y þ b

��
i3, z ¼ 0, and b

��
ij N�

j ¼ 0 on Z� ð5:15aÞ

1

h�

� �

b
���
i�, �y þ b

���
i3, z ¼ 0, and b

���
ij N�

j ¼ 0 on Z� ð5:15bÞ

1

h�

� �

dki�, �y þ dki3, z ¼ 0, and dkijN
�
j ¼ 0 on Z�

� �

ð5:15cÞ

1

h�

� �

d�ki�, �y þ d�ki3, z ¼ 0, and d�kij N
�
j ¼ 0 on Z�

� �

ð5:15dÞ

1

h�

� �

�i�, �y þ�i3, z ¼ 0, and �ijN
�
j ¼ 0 on Z�

� �

ð5:15eÞ

1

h�

� �

�
�
i�, �y þ�

�
i3, z ¼ 0, and �

�
ijN

�
j ¼ 0 on Z�

� �

ð5:15fÞ

1

h�

� �

�i�, �y þ�i3, z ¼ 0, and �ijN
�
j ¼ 0 on Z�

� �

ð5:15gÞ

1

h�

� �

�
�
i�, �y þ�

�
i3, z ¼ 0, and �

�
ijN

�
j ¼ 0 on Z�

� �

ð5:15hÞ

These unit cell problems provide the functions U
��

k ðy, zÞ, V
��

k ðy, zÞ,

Um
k ðy, zÞ, V

m
k ðy, zÞ etc., which are 1-periodic in y1 and y2 and determine,

in turn, the functions b
��
ij , b

���
ij , dkij, d

�k
ij etc., needed to calculate the first

non-vanishing term in the asymptotic expansion for the stress field,

Equation (3.7), given by:

�
ð1Þ
ij ¼ b

��
ij "

ð1Þ
�� þ b

���
ij ��� � dkijR

ð0Þ
k � d�kij R

ð1Þ
k þ

��ijT
ð0Þ ��

�
ijT

ð1Þ ��ijC
ð0Þ ��

�
ijC

ð1Þ
ð5:16Þ

The expanded forms of the unit cell problems (5.15a) and (5.15c) as

well as the stress fields (5.16) are given in Appendix A. These

equations contain only commonly used material coefficients. As a final

note, it should be remarked that unlike the unitcell problems of classical

homogenization schemes [2,27], those set by Equations (5.15a)–(5.15h)

depend on the boundary conditions at Z� rather than on periodicity in

the z direction.
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6. EFFECTIVE COEFFICIENTS

Applying the following averaging procedure,

 

 �

¼ ��j j�1

Z

��

 dy1 dy2 dz ð6:1Þ

to the functions b
��
ij , b

���
ij , dkij, d

�k
ij ,�ij,�

�
ij,�ij,�

�
ij obtained from the unit

cell problems in Equations (5.15a)–(5.15h) gives the so-called effective

elastic, hb
��
ij i, hb

���
ij i; actuation, hdkiji, hd

�k
ij i; thermal expansion, h�iji, h�

�
iji;

and hygroscopic expansion coefficients, h�iji, h�
�
iji, pertinent to the smart

composite with rapidly varying thickness.

To appreciate the meaning of the effective coefficients one may consider

the simple case of a composite laminate of uniform thickness. The force and

moment resultants acting on the laminate due to hygrothermal effects are

given (e.g., Gibson [28]),

NT
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� �

k
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k
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2

X
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�Q
� �

k
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k
x23, k � x23, k�1

� �

,

ð6:2Þ

where ½ �Q�k is the matrix of the plane stress-reduced elastic coefficients for the

kth ply, and x3,k x3,k�1 denote the distance of that ply from the middle of the

laminate. The superscripts T and M refer to thermal and hygroscopic effects

respectively. Based on the work presented here, the corresponding forces

and moments may be presented as:

NT
�� ¼ �2 ���


 �

Tð0Þ þ �2 �
�
��

D E

Tð1Þ, MT
�� ¼ �3 z���


 �

Tð0Þ þ �3 z��
��

D E

Tð1Þ

NM
�� ¼ �2 ���


 �

Cð0Þ þ �2 �
�
��

D E

Cð1Þ, MM
�� ¼ �3 z���


 �

Cð0Þ þ �3 z��
��

D E

Cð1Þ

ð6:3Þ
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Similarly, one may define actuation force and moment resultants by the

following equations:

NR
�� ¼ �2 dm��

D E

Rð0Þ
m þ �2 d�m��

D E

Rð1Þ
m ,

MR
�� ¼ �3 zdm��

D E

Rð0Þ
m þ �3 zd�m��

D E

Rð1Þ
m

ð6:4Þ

It can be easily shown that if T(1) and C(1) are ignored, Equations (6.2)

and (6.3) are equivalent. It can further be shown that the following

relationships are also true [4].

A�� ¼ � b����

 �

, A�6 ¼ � b12��

 �

, A66 ¼ � b1212

 �

,

B�� ¼ �2 zb����

 �

¼ �2 b�����


 �

, B�6 ¼ �2 zb12��

 �

¼ �2 b�12��


 �

,

B66 ¼ �2 zb1212

 �

¼ �2 b�1212


 �

D�� ¼ �3 zb�����


 �

, D�6 ¼ �3 zb�12��


 �

, D66 ¼ �3 zb�1212


 �

ð6:5Þ

Here the coefficients Aij, Bij, and Dij are the well-known extensional,

coupling and bending coefficients pertinent to a composite laminate.

Hence, the asymptotic model converges to the classical plate model

for the case of a composite laminate with uniform thickness, and in view

of Equations (6.3)–(6.5) the meaning of the effective coefficients is clear.

7. APPLICATIONS OF GENERAL MODEL & DISCUSSION

7.1 Uniform-thickness Laminates

We will illustrate our work by means of two sets of examples. The first

set pertains to laminates of constant thickness, as shown in Figure 6.

We will assume that all layers are made of homogeneous materials and are

perfectly bonded with one another. As shown in the unit cell of Figure 6,

each layer is completely determined by the parameters �1, �2, . . . , �M where

M is the total number of layers. The thickness of the mth layer is therefore

�m��m�1 with �0¼ 0 and �M¼ 1. The real thickness of the mth layer as

measured in the original (x1, x2, x3) coordinate system is �(�m��m� 1), where

� is the thickness of the laminate (again with respect to the original

coordinate system). Clearly, since material coefficients for this problem are

independent of y1 and y2, all partial derivatives in Equations (5.15a)–(5.15h)

become ordinary derivatives with respect to z and the unit cell problems

can be solved in an elementary way.

264 A. L. KALAMKAROV ET AL.



Solution of the unit cell problems in Equations (5.15a)–(5.15h) and

subsequent application of the averaging procedure in Equation (6.1) gives

the effective coefficients. For example, the effective elastic and piezoelectric

(actuation) coefficients are given by:

b
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Figure 6. Unit cell of smart composite laminate.
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The use of these coefficients will be illustrated by calculating the strains

and stresses in an 8-layer [þ45/�45]4 antisymmetric angle-ply laminate

consisting of 0.125mm thick AS/3501 graphite/epoxy laminae with material

properties shown in Table 1 [28] and subjected to forces Nx¼ 10 kN/m,

Ny¼�5 kN/m and moments Mx¼ 4Nm/m and My¼�3Nm/m. A typical

plot is given in Figure 7 which shows the variation of �x. As explained

above, the results are consistent with the classical plate theory to which

the model converges.

The use of the effective piezoelectric coefficients will be illustrated by

calculating the strains induced in a [0/90]4 laminate composed of PVDF

piezoelectric layers with elastic and piezoelectric properties given by Vel and

Batra [29]. It will be assumed that R
ð0Þ
3 and R

ð1Þ
3 are both equal to 100V/mm.

A typical plot is given in Figure 8 which gives the variation of "x and "y
through the thickness of the laminate. As was the case with the previous

example, the results are consistent with the classical plate theory.

Similar results are obtained for the case of the effective hygroscopic and

thermal expansion coefficients.
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Figure 7. Variation of �x through thickness of laminate.

Table 1. Elastic material properties [28].

Material E1(GPa) E2(GPa) G12 (GPa) �12

AS/3501 graphite/epoxy 138 9.0 6.9 0.3
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7.2 Smart Composite Structures with Wafers,

Ribs, and Honeycomb Fillers

The remaining examples to be considered pertain to four practically

important structures. These are (a) rib-reinforced smart composite plates,

(b) smart sandwich with rib-like filler, (c) wafer-reinforced smart composite

plates, and (d) smart sandwich composite plates with honeycomb filler. The

geometry of these structures is illustrated in Figures 1–4. For convenience,

these structures will be referred to in the sequel as structures 1, 2, 3, and 4

respectively.

A solution for these types of geometry can be obtained by assuming that

the thickness of each element of the unit cell (i.e., base plate, ribs etc.) is

small in comparison with the other two dimensions. For example, referring

to the wafer structure in Figure 3, this assumption amounts to the following:

t1 << h2, t2 << h1, H � h1, h2 ð7:3Þ

The local problems can then be approximately solved for each of the unit

cell elements assuming that complications at the joints are highly localized

and do not contribute significantly to the integrals over the unit cell.

The structures in Figures 1–4 are assumed to be made of orthotropic

materials that may also exhibit piezoelectric characteristics. For generality,
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Figure 8. Strain variation through thickness of piezoelectric laminate due to an electric field.
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each member of the unit cell may be made of a different orthotropic

material. For example, for the rib-reinforced plate in Figure 1, the ribs may

be piezoelectric, whereas the plate itself may not exhibit any actuation

characteristics.

The determination of the effective coefficients for all three types of smart

composites is obtained by solving the pertinent unit cell problems in

Equations (5.15a)–(5.15h), and subsequent application of Equation (6.1).

The solution steps are straightforward but rather lengthy and will not be

repeated here. Instead, some representative results are given below:
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Equation (7.4) gives the effective thermal expansion coefficients of

structure 1. Here the superscripts (1) and (3) refer to the reinforcing element

(rib) and base plate respectively, while the quantities F
ðwÞ
1 ,S

ðwÞ
1 , J

ðwÞ
1 are,

respectively, the cross-sectional area, the first moment of area, and the

moment of inertia of the cross-section of the rib relative to the middle

surface of the base plate. The other terms in Equation (7.4) refer to the

familiar material properties. Equation (7.5) gives the effective piezoelectric

coefficients for structure 3. As anticipated, superscripts (1) and (2) refer to

the reinforcing elements in the x2 and x1 directions respectively, and

superscript (3) refers to the base plate. Similar results are obtained for all

the other effective coefficients pertinent to all of structures 1–4:
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It is of interest to plot and compare the effective coefficients for

structures 1–4. Some representative plots are shown in Figures 9–13.

Figure 9 compares some effective elastic coefficients of structures 1 and 3.

In each case, the base plate is made of glass/epoxy material and the

piezoelectric ribs and wafers are made of PZT4. The properties for these
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Figure 9. Plot of effective elastic coefficients vs H for structures 1 and 3.
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materials can be found in Table 2 [28,29]. The plot shows the variation of the

effective elastic coefficients as a function of H. As anticipated, the effective

elastic coefficients are generally larger for structure 3 than for structure 1,

except for hzb2222i (and also hb2222i) which has the same value for both

structures. This is to be expected, because these coefficients depend only on

the reinforcing elements in the x2 direction which are identical for structures

1 and 3. Figure 10 compares the effective piezoelectric coefficients of

structures 1 and 3. Again, the effective piezoelectric coefficients are generally

larger for structure 2 except for hzd322i and hd322i which are equal for both

structures as expected from the geometry of the unit cells. Similar

considerations apply to the effective hygroscopic expansion coefficients of

Figure 11. Pertaining to this figure, both structures 1 and 3 are made entirely

of E-glass/epoxy. Figure 12 compares some effective piezoelectric coeffi-

cients for structures 2 and 4. For both structures, the top and bottom carrier

layers are made of E-glass/epoxy, while the middle stiffeners are made of

PZT-5A piezoelectric material. As expected, the effective coefficients are

generally higher for structure 4 than for structure 2, except for coefficients

such as hd322i and hzd322i which must have the same value for both structures

due to the makeup of the unit cell. Finally, Figure 13 compares some

effective thermal expansion coefficients for structures 2 and 4. In this case,

the entire structures are made of E-glass/epoxy. Once again, these

coefficients are higher for structure 4, with the exception of h�22i and

hz�22i which are identical for both structures. In summary, it is noteworthy

to mention that the effective coefficients are universal in nature for a

particular unit cell geometry, and they can be used to analyze a wide variety

of boundary value problems.

Table 2. Material coefficients for smart reinforced structures [28,29].

Properties E-glass/epoxy PZT4 PZT-5A

E1(10
9Pa) 38.6 81.23 61.0

E2(10
9Pa) 8.27 81.23 61.0

G12(10
9Pa) 4.14 30.6 22.6

G23(10
9Pa) 3.281 25.6 21.1

G13(10
9Pa) 4.14 25.6 21.1

�12 0.26 0.327 0.35

�21 0.055 0.327 0.35

d31(10
�10C/N) 0 �1.238 �1.238

d32(10
�10C/N) 0 �1.238 �1.238

�1 0.014

�2 0.29

�1(10
�6/�C) 6.3 1.5

�2(10
�6/�C) 20 1.5
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8. CONCLUSIONS

The method of asymptotic homogenization was used to analyze a periodic

smart composite plate with a large number of embedded actuators and

rapidly varying thickness. A set of 8 three-dimensional local unit cell prob-

lems was derived which, unlike classical homogenization schemes, was shown

to depend on boundary conditions rather than periodicity in the transverse

direction. The solution of the unit cell problems allows the determination of

effective elastic, actuation, thermal expansion, and hygroscopic expansion

coefficients pertinent to the homogenized anisotropic smart plate. The

effective coefficients in turn lead to the determination of the displacement and

stress fields. In the limiting case of a thin elastic plate of uniform thickness the

derived model converges to the familiar classical laminate model.

To illustrate the use of the unit cells and the applicability of the effective

coefficients, two broad classes of examples were considered. The first

pertained to various laminates composed of orthotropic materials. In

particular, angle-ply laminates were subjected to mechanical loads and

electric fields, and the effective coefficients were used to calculate the strain

and stress distribution through the thickness of the laminates. It was shown

that the results conformed to the classical laminate theory. The remaining

examples dealt with some practically important structures, namely rib-

reinforced smart composite plates, smart sandwich plates with rib-like filler,

wafer-reinforced smart composite plates, and sandwich smart composite

plates with honeycomb filler. The effective coefficients of these structures

were determined and compared. The differences in the values of the effective

coefficients were attributed to the geometries of the respective unit cells. The

importance of the effective coefficients lies in the fact that they are universal

in nature, and once determined they can be used to study a wide variety

of boundary value problems.

ACKNOWLEDGMENT

This work has been supported by the Natural Sciences and Engineering

Research Council of Canada.

APPENDIX A

The unit cell problems are given in Equations (5.15a)–(5.15h). Next, we

give two of these differential equations and pertinent boundary conditions in

expanded form which contain only commonly used material coefficients and

the 1-periodic (in y1 and y2) functions U
k�
m , and ,Uk

m to be determined from

these problems. These functions enter Equations (3.6), (5.3), and (5.13).
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Thus, Equation (5.15a) becomes:
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Likewise, Equation (5.15c) becomes:
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The remaining of the unit cell problems can be written in a similar

fashion. Finally, the stress field in Equation (5.16) may be written in

expanded form as follows:
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