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MICRO-MILLING ENHANCES IRON BIOACCESSIBILITY FROM WHOLEGRAIN WHEAT 1 

Latunde-Dada, G.O., Li, X., Parodi A., *Edwards, C. H., *Ellis, P.R. and Sharp, P.A. King's 2 

College London, Diabetes and Nutritional Sciences Division,*Biopolymers Group, Faculty 3 

of Life Sciences and Medicine, Franklin-Wilkins Building, London, SE1 9NH, United 4 

Kingdom. 5 

 6 

Abstract 7 

Cereals constitute important sources of iron in human diet; however, much of the iron in 8 

wheat is lost during processing for the production of white flour. This study employed 9 

novel food processing techniques to increase the bioaccessibility of naturally-occurring 10 

iron in wheat. Iron was localized in wheat by Perl’s Prussian blue staining. Soluble iron 11 

from digested wheat flour was measured by a ferrozine spectrophotometric assay. Iron 12 

bioaccessibility was determined using an in vitro simulated peptic-pancreatic digestion, 13 

followed by measurement of ferritin (a surrogate marker for iron absorption) in Caco-2 14 

cells. Light microscopy revealed that iron in wheat was encapsulated in cells of the 15 

aleurone layer and remained intact after in vivo digestion and passage through the 16 

gastrointestinal tract. The solubility of iron in wholegrain wheat and in purified wheat 17 

aleurone increased significantly after enzymatic digestion with driselase, and following 18 

mechanical disruption using micro-milling. Furthermore, following in vitro simulated 19 

peptic-pancreatic digestion, iron bioaccessibility, measured as ferritin formation in 20 

Caco-2 cells, from micro-milled aleurone flour was significantly higher (52%) than from 21 

whole aleurone flour. Taken together our data show that disruption of aleurone cell 22 

walls could increase iron bioaccessibility. Micro-milled aleurone could provide an 23 
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alternative strategy for iron fortification of cereal products. 1 

Key words: bioaccessibility, micro-milling, wheat, aleurone 2 

 3 

Introduction 4 

Iron deficiency (ID) and iron deficiency anemia (IDA) are nutritional disorders affecting 5 

large population groups world-wide1. These disorders are prevalent in developing 6 

countries and fortification of foods with iron has proved to be an effective strategy to 7 

combat deficiency. However, food fortification remains a major challenge since water 8 

soluble fortificants change the colour and taste of foods and less soluble fortificants, 9 

such as ferric pyrophosphate or elemental iron powder, cause fewer sensory changes in 10 

foods but are poorly absorbed in the gastrointestinal (GI) tract2,3. Consequently, the 11 

development of novel approaches, which both improve iron bioavailability and are 12 

acceptable to consumers, may provide an effective solution to the current problems of 13 

iron fortification. 14 

Cereal grains and cereal products constitute important sources of iron in human diet in 15 

many countries (40-50% total daily intake in the UK, (NDNS 2014)4. Iron in wheat is 16 

confined in the aleurone layer (AL), a single layer of cells located between the 17 

endosperm and outer pericarp of the wheat grain5. This layer is removed as part of the 18 

bran component during the production of white flour, hence the mandatory fortification 19 

of white and brown flours with elemental iron powder iron (1.65 mg / 100 g flour) in the 20 

UK. However, this iron source has low bioavailability6. Furthermore, the fortification of 21 



3 

 

flour with iron has additional challenges due to the presence of high levels of dietary 1 

inhibitors such as phytates, tannins and dietary fibre (e.g. anionic polysaccharides such 2 

as pectins), which have the potential to interact with iron and reduced bioavailability7.  3 

 4 

The aim of the current study is to determine whether the bioaccessibility of endogenous 5 

iron in wheat can be increased by micro-milling of wheat products and in particular the 6 

AL since it contains approximately 70% of the iron in wheat grain8. In essence, this 7 

process employs mechanical disruption of wheat to rupture the cell walls comprising the 8 

AL and thus expose the intra-cellular contents. Remarkably, particle size reduction 9 

enhanced iron bioavailability from both elemental iron and iron nanocompounds9, 10. 10 

We hypothesize that this process will increase bioaccessibility of iron from aleurone and 11 

thereby enhance iron bioavailability. We propose that micro-milled aleurone could 12 

provide a bioavailable source of iron for use in food fortification. 13 

 14 

Materials and Methods 15 

Reagents and chemicals  16 

Unless otherwise stated, all the reagents and chemicals used in this study were 17 

purchased from Sigma-Aldrich Company Ltd (Dorset, UK). Driselase (EC286-055-3), 18 

pepsin (EC232-629-3) and pancreatin (EC232-468-9) were stored at-20 °C. Solutions of 19 

enzymes were all prepared freshly just before use.  20 

 21 

Wheat samples 22 
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Purified aleurone flour and micro-milled aleurone and wholegrain wheat flour were a 1 

gift from Bühler AG (Switzerland). Standard ball-milled aleurone product has an average 2 

particle size of 110-240 µm, while that of the micro-milled is 10-20 µm, which is ~3 3 

times smaller than the average diameter of aleurone cells (60 µm)11,12. Micro-milling 4 

was performed using a roller mill (Micromill; Bühler AG, Switzerland).  Wholegrain 5 

wheat flour was obtained from Triticum durum L. wheat grain ground in a blender 6 

(Millbo Italy, Svevoc.v.). 7 

 8 

Moisture analysis 9 

Moisture content of the samples was determined according to the AOAC (1999) method. 10 

Briefly, samples were weighed and placed in an oven at 100 °C overnight to dry for 11 

24-48 h until constant weights were achieved. Afterwards the percentage moisture 12 

content was calculated for each sample. 13 

 14 

Determination of iron content in wheat samples 15 

Wheat samples were weighed in crucibles with lids. The samples were dried in an oven 16 

at 70°C overnight and cooled in a desiccator. Samples were charred over a Bunsen 17 

burner flame at a low heat to eliminate smoke before placing in a muffle furnace at 18 

525°C for 3 h hours during which all the organic matter was oxidized leaving remnants of 19 

clean white ash. Samples were oven-dried for 48 hours, cooled in a desiccator and 20 

reweighed. Fe, Mg, Zn, Ca and Mn concentrations in the samples was analysed using 21 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES, Thermo-Fisher). 22 
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Plasma parameters and sample aspiration methods were performed according to the 1 

manufacturer’s recommendations. Mineral concentrations were extrapolated from the 2 

standard curve in the range of 0.1 –10 µg/ml. The internal standard, Yttrium (Merck 3 

Millipore), was added to each sample according to manufacturer’s specification to 4 

correct for sample losses due to volatility and evaporation.    5 

 6 

In vitro peptic-pancreatic digestion 7 

Samples were digested by simulated peptic-pancreatic digestion13. Enzymes and bile 8 

extract were demineralized with Chelex-100 (Bio-Rad Laboratories Ltd., Hercules, CA) 9 

before performing the experiments. The weight of samples used for experiment was 10 

calculated according to iron content in different samples to ensure that equal amounts 11 

of iron (150 µg) were used for digestion experiments. Following this, known weights of 12 

samples (in quadruplicate) were added to 10 mL of isotonic saline solution (140 mM 13 

NaCl and 5 mM KCl) and were adjusted to pH 2.0 with HCl (1 M). During peptic digestion, 14 

0.5 mL pepsin (16 mg/mL) was added and incubated at 37 °C for 75 min followed by pH 15 

was adjustment to 5.5 with NaHCO3 (1 M) to stop peptic digestion. Afterwards, 2.5 mL 16 

bile-pancreatin extract (8.5 mg/mL bile extract and 1.4 mg/mL pancreatin) was added 17 

and pH was adjusted to 7.0 with NaHCO3 (1 M) to start pancreatin-bile digestion. The 18 

volume was brought to 15 mL by adding isotonic saline solution and incubated at 37 °C 19 

for 120 min. Following digestion, tubes were centrifuged at 3000 x g for 5 min and the 20 

supernatant of digests was retained for experiment. 21 

 22 
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Cell culture 1 

Caco-2 cells (ATCC; HTB-37) at passage 28 were used for the experiments. Cells were 2 

grown in Dulbecco’s Modified Eagle Medium (DMEM, Gibco, Life Technologies, UK), 3 

which contained 1% antibiotic/antimycotic solution, 25 mM HEPES and 10% fetal bovine 4 

serum. For the experiment, cells were trypsinised and seeded into 6-well plates at a 5 

density of 50,000 cells in 2.5 mL DMEM. Cells were incubated at 37 °C with 5% CO2 and 6 

95% air for 14 days while the medium was changed every 2 days.  7 

 8 

The day before experiments, DMEM was replaced with minimum essential medium 9 

(MEM, Gibco Life Technologies, UK) containing 10 mmol/L PIPES, 1% penicillin and 10 

streptomycin, 11 µM dexamethasone and 0.87 µM insulin and the cells were incubated 11 

at 37 °C for 24 h. Afterwards fresh MEM (2 ml) was added to the cells. 1.5 mL of each 12 

digest was pipetted into cellulose dialysis tubing (15,000 Da molecular weight cutoff 13 

dialysis membranes (Tubing Spectra/Por 7 dialysis membrane, Fisher Scientific) that 14 

were exposed to the medium bathing the cells.  Cells were then incubated at 37 °C for 15 

2 h for iron uptake. The baseline control was incubated with only MEM medium. 16 

Following that, the digest was removed, 1 mL of supplemented MEM was added to the 17 

cells and these were incubated for a further 22 h. Following this incubation period, cells 18 

were washed with PBS and lysed with Mammalian Protein Extraction Reagent (MPER®, 19 

Thermo Fisher Scientific, Cramlington, UK). The cell lysate was centrifuged (5 min, 20 

16,000 x g) to remove cell debris and the supernatant used for ferritin and protein 21 

analysis. Thereafter, cells were harvested in 200 mL PER protein lysate solution (Thermo 22 
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Scientific) and analyzed for ferritin content using a commercially available ELISA (Ramco 1 

Laboratories, TX, USA). Experiments were carried out in triplicate and data expressed as 2 

ng ferritin per mg cell protein. 3 

 4 

In vitro digestion with driselase 5 

Wholegrain wheat flour was digested with driselase (EC286-055-3) an enzyme mixture 6 

containing laminarinase, xylanase and cellulase activity that hydrolyses cell walls of 7 

plants. Two milliliters of enzyme solution (1 Unit/mL) was made by mixing 100 μL of 2% 8 

driselase (w/v) with 1.9 mL buffer (1.33 mL of 50 mM sodium acetate and 0.57 mL of 50 9 

mM acetic acid, pH 2.5). 100 mg of wholegrain wheat flour was added to 2 mL enzyme 10 

solution and this was incubated at 37 °C for 6 h. The control group was incubated with 11 

the buffer without driselase. After digestion, tubes were centrifuged at 3000 x g for 5 12 

min and the supernatant was saved for measurement of soluble iron afterwards. 13 

 14 

Iron Solubility from Wheat samples 15 

The amount of soluble iron was analyzed using the ferrozine assay14. The blank solution 16 

consisted of enzymes without the wheat samples. One milliliter of supernatant from 17 

each of the digests, the blank and the standards were added to microfuge tubes (Figure 18 

2). To this was added 0.1 mL of solution containing 10% HCl (v/v) and 5% hydroxylamine 19 

hydrochloride (w/v), mixed and incubated at room temperature for 30 min. Afterwards, 20 

0.1 mL of a solution containing 5 mg/mL ferrozine and 1 M 21 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer was added, mixed 22 
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and allowed to stand at room temperature for 1 h. Finally, the absorbance of the 1 

solutions was measured in a spectrophotometer (Camspec M330 UV-visible) at 562 nm. 2 

Standard solutions containing 0.015 – 0.5 μg/mL FeCl3 were prepared and treated as 3 

with the samples. 4 

 5 

Microscopic Localization of Iron in Wheat Aleurone Layer 6 

The localization of iron and the structure of aleurone layer observed under the 7 

microscope after staining with Perl’s Prussian blue according to a protocol described by 8 

Wang and Cuschieri15. The stain used was a mixture of 2.5% potassium ferrocyanide 9 

(w/v) in 2.5% hydrochloric acid (HCl) (v/v). Approximately 50 mg of wheat sample and 10 

500 µL of Perl’s Prussian blue solution were placed in 1.5 ml microfuge tubes and 11 

incubated at room temperature for 30 min before examination with a light microscope 12 

(Axioskop 2 mot plus, Car-Zeiss, UK) to reveal tissue structure and iron deposits in the 13 

aleurone layer. 14 

 15 

Animal studies  16 

Changes to the structure of aleurone layer and the iron content of the aleurone cells in 17 

different regions of the gastrointestinal tract and in faeces were also determined.  18 

Eight male six weeks old C57BL/6 mice (Charles Rivers, Kent, U.K.) were used for the 19 

studies. Mice were fasted overnight and then fed in two groups of four mice wholegrain 20 

wheat flour or aleurone flour ad libitum for 24 h to allow complete transit through the 21 

gastrointestinal tract. Mice were housed in a light- and temperature-controlled room 22 
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with ad libitum access to deionized water.  1 

Following feeding flour for 24 h, mice were killed by cervical dislocation and contents of 2 

the stomach, duodenum, jejunum, ileum and colon contents as well as faeces from the 3 

mice were removed and placed in tubes for microscopic examination. Perl’s Prussian 4 

blue staining and light microscopic examination in each sample was performed as 5 

described above. All procedures were conducted in accordance with methods approved 6 

by the United Kingdom Animals (Scientific Procedures) Act 1986. 7 

 8 

Statistical Analysis 9 

Data were analysed with Microsoft Office Excel 2010 and SPSS software 20.0.0 (SPSS Inc., 10 

USA). Data are shown as mean ± SEM. Comparison of means was analysed either by 11 

Student’s unpaired t-test, or one-way analysis of variance (ANOVA) with Turkey’s 12 

post-test for multiple comparisons. Significant differences were considered at P<0.05. 13 

 14 

Results 15 

 16 

Mineral analysis in wheat samples 17 

Table 1 shows the mineral content of whole grain wheat and aleurone samples. Mineral 18 

concentrations were significantly enriched in the aleurone fraction compared with the 19 

whole wheat samples, with iron in particular being some 3-4 fold enriched. Mineral 20 

content of wholegrain and aleurone flour was not significantly altered following 21 

micro-milling. 22 
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Microscopic localization of iron in wheat products 1 

Light microscopy revealed the localization of iron in the aleurone layer of whole wheat 2 

(Fig 1). Aleurone cells were largely resistant to in vivo digestion during transit along the 3 

gastrointestinal tract. Microscopic examination of digests from mice that were fed 4 

aleurone flour overnight revealed iron-stained globules encased within aleurone cells 5 

obtained from different regions of the gastrointestinal tract (Fig 2a-e) and also in fecal 6 

contents (Fig 2f). 7 

 8 

In vitro iron solubility from aleurone samples 9 

The aleurone cell walls were disrupted by enzymatic digestion with driselase (Fig 3a and 10 

3b) and by micro-milling (Fig 3c and 3d). Next we investigated whether enzymatic or 11 

mechanical disruption of aleurone cells would alter bioaccessibility of iron. Following 12 

driselase treatment (Fig 4a) and mechanical disruption through micro-milling there was 13 

a significant increase in iron solubility in aleurone and whole wheat samples (Fig 4b).  14 

 15 

Micro-milling and iron availability in wheat aleurone 16 

To determine whether mechanical disruption of the aleurone cell layer increased iron 17 

solubility and in turn lead to increased iron bioaccessibility, we employed a model of in 18 

vitro digestion/cell iron uptake13. Micro-milling of purified aleurone flour and 19 

wholegrain wheat flour (Fig 5) significantly enhanced iron bioaccessibility after 20 

peptic-pancreatin digestion of the samples and iron uptake in Caco-2 cells, using cell 21 

ferritin protein content as a surrogate marker. 22 
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Discussion 1 

Fortification of staple crops with iron is recommended for alleviation of the high 2 

prevalence of ID and IDA in population groups in many countries16. Well established 3 

strategies employ ferrous (II) salts, ferric (III) salts, ferric (III) chelates or elemental Fe 4 

powders as the primary fortificants17. Moreover iron supplementation poses inherently 5 

difficult issues such as solubility, bioavailability, toxicity or tolerability in the 6 

gastrointestinal (GI) tract18,19. Consequently, transgenic transformation of cereals and 7 

other food crops became an attractive option for improving iron nutrition in human 8 

populations20,21. Plants have been genetically modified to yield grains that express 9 

ferritin22, phytase23,24, haemoglobin25,26 or co-expression of ferritin and phytase in an 10 

attempt to improve iron nutrition27. Bio-fortification, both is still in its developmental 11 

phase and is beset by numerous challenges both technical and emotive. Thus, if a simple 12 

food processing technique could increase iron bioaccessibility, or a naturally iron-rich 13 

food component could be modified to provide a bio-accessible and bioavailable source 14 

of iron for food fortification, this would represent a major advance in human nutrition. 15 

 16 

Here we have investigated whether wheat aleurone might provide a bioaccesible source 17 

of iron. One immediate obstacle to the use of aleurone is that the cell walls, which are 18 

composed of mainly non-starch polysaccharides (dietary fiber), are highly resistant to 19 

digestion in the upper GI tract of humans and many experimental animals. Microscopic 20 

examination of the lumenal contents from different segments of mouse (GI) tract and 21 

even from fecal samples revealed encapsulated iron in intact aleurone cells (Fig 2). This 22 
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suggests that iron in aleurone cells is partly accessible even after transit throughout the 1 

entire length of the GI tract. It has been reported that plant cell walls are resistant to 2 

digestion in the upper GI tract of humans28 with only 60% of the aleurone cell walls 3 

degraded in this region in the pig29. Colonic fermentation could lead to further 4 

degradation of cell walls and the release nutrients in the distal segment of the GI tract. A 5 

study using animal models demonstrated that 45% and 24% of aleurone was degraded 6 

during fermentation in the colon of rats and cockerels, respectively30. Moreover, partial 7 

degradation of the aleurone cell walls was evident in fecal samples from rats31 fed wheat 8 

fractions. However, for iron at least, little or no absorption takes place in the colon32,33. 9 

 10 

Clearly to be of use as a food fortificant the aleurone cell walls would need to be 11 

disrupted to provide increased access to the iron contained within. Our first approach 12 

was to use an enzymatic digest with driselase. Following a 6 h digest with driselase there 13 

was a significant increase in the release of soluble iron (Fig 4a). While this approach 14 

increases iron release from aleurone cells, its use would be limited to situations where 15 

pre-digested aleurone could be added as a food fortificant. We therefore also used a 16 

non-enzymatic approach by mechanically distrupting aleurone through micro-milling. 17 

Micro-milling of the AL was found to significantly increase iron solubility and 18 

bioaccessibility (Figs 4b and 5). The increase in bioaccessibility might be due to 19 

increased digestibility and degradability by grinding, which increases the surface area of 20 

the samples for enhanced enzymatic digestion34. Furthermore, there is evidence that 21 

phytic acid, a resident component of the AL, is decreased during ball milling35. Phytic 22 
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acid is a potent inhibitor of non-haem iron bioavailability13,36. It is possible that changes 1 

in phytate species and concentration as a result of micro-milling may influence iron 2 

bioaccessibility from aleurone flour and this is currently under investigation. Moreover, 3 

particle size reduction increased redistribution of cellulose rich fibre fractions (another 4 

potent resident inhibitor of iron absorption) in favour of water soluble fibre components 5 

as well as increased gastrointestinal function37.  6 

 7 

An advantage of the mechanical approach to iron release from wheat aleurone is that 8 

the bioaccesibility of the endogenous aleurone iron reservoir could be increased 9 

through modified food processing technique. Potentially this could enhance the 10 

bioaccessibility of iron from wholegrain flour. Furthermore, micro-milled aleurone could 11 

offer a natural, stable, bioavailable iron fortificant or complement in foods. While our 12 

study has focused on iron, micro-milled aleurone could potentially provide a 13 

bioavailable source of a number of other minerals (e.g. calcium) and vitamins (e.g. 14 

thiamine, nicotinic acid and folate), all of which are commonly added as fortificants to 15 

white wheat flour38-40. Indeed aleurone has been studied previously as a potential folate 16 

source for incorporation into bread. This approach would also be feasible for iron 17 

fortification. Published data already shows that wheat bread made with white flour 18 

enriched with 20% aleurone has a flavour similar to standard white bread and contains 19 

comparable levels of nutrients to wholegrain bread41. Subsequent studies will address 20 

the optimal particle size and relative proportions of micro-milled aleurone enrichment 21 

required to achieve comparable or improved iron absorption efficacy to standard 22 
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inorganic iron fortificants. This strategy might contribute to an improvement of the 1 

management of iron status in vulnerable groups in different countries. While our in vitro 2 

data support the notion that micro-milled aleurone might be useful as an iron fortificant, 3 

it will be important to validate our findings in vivo by assessing the bioavailability of iron 4 

from aleurone-enriched wheat products in human volunteers, both in single meal 5 

studies and also as part of more complex diets. 6 

 7 
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Fig 1. Localization of iron in the aleurone layer of whole wheat flour. Wheat flour treated with Perl’s 7 

Prussian Blue solution and visualized under the microscope revealed a single blue stained aleurone 8 

layer (arrow). 9 
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 38 

Fig 2. Structure and localization of iron in aleurone flour after passing through gastrointestinal tract 39 

of mice. Mice were fed aleurone flour overnight and food contents were obtained from different 40 

parts of the gastrointestinal (GI) tract for microscopic observation. Samples were obtained from 41 

stomach (A), duodenum (B), jejunum (C), ileum (D), colon (E) and feces (F). 42 
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Fig 3. Location of iron in in wheat flour before (A) and after (B) digestion by driselase. Wholegrain 

wheat flour was digested by driselase (final concentration of 0.1%) at 37 °C for 6 h. Structure and 

localization of iron in whole aleurone flour (C) and micro-milled aleurone flour (D). Samples were 

treated with Perl’s Prussian Blue solution and observed under microscope. Iron staining in intact 

aleurone in wholegrain and aleurone flour and in diffuse particle globules in digested wholegrain and 

micro-milled aleurone (arrows). 
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Fig 4. Iron solubility in wholegrain wheat flour after digestion with driselase (A). Iron solubility from 

standard- and micro-milled and aleurone and whole wheat flour (B). Data are means ± SEM, n=4-6, 

Comparison of means was analyzed by Student’s t-test.* P<0.0001, (aleurone) and P<0.05 

(wholewheat). 
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Fig 5. Iron bioaccessibility from standard- and micro-milled aleurone flour (a) and whole wheat flour 

(b) expressed in terms of Caco-2 cell ferritin synthesis. Data are means ± SEM, n=6, Comparison of 

means was analyzed using Student’s t-test. * P<0.01. 
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Table 1: Mineral concentrations in wheat samples  

 

Wheat 

fractions 

Minerals (mg/ 100 g dry weight) 

 Fe Mn Zn Ca Mg Cu 

Aleurone 14.0±0.36 9.50±0.29 10.02±0.29 102±1.13 792±6.7 1.53±0.11 

Aleurone(Micro 

milled) 

12.7±0.05 6.81±0.11 8.15±0.18 91.0±0.09 660.1±0.41 1.30±0.04 

Whole wheat 3.5±0.05 4.71±0.55 3.18±0.09 40.4±0.47 139.6±3.4 0.47±0.02 

Whole 

wheat(Micro 

milled) 

3.5±0.10 4.02±0.07 2.99±0.03 39.5±0.63 129.3±2.2 0.36±0.04 

 

Values are means ± SE (n = 4) 
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