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Introduction

Micron-scale plasma membrane curvature exists at the base 

of neuronal outgrowths, cilia, and the cytokinetic furrow. Al-

though it is well known that proteins can sense and generate 

curvature on the nanometer scale (e.g., BAR domain proteins) 

via numerous mechanisms, it is unclear whether proteins can 

directly sense shape on the micron scale, which is the level of 

many cell shape features (Zimmerberg and Kozlov, 2006). Dy-

namic changes in cell shape are central to processes as diverse 

as blood clotting, neurogenesis, and cancer cell metastasis. 

Thus, we reasoned that cells may have a capacity to sense local 

cell shape and use this information to inform behavior.

Septins, which are conserved �lament-forming, mem-

brane-associated proteins, are found at regions of cells which 

are characterized by micron-scale curvature, including the 

cytokinetic furrow and the bases of cell branches in neurons, 

fungi, and ciliates (Fares et al., 1995; Helfer and Gladfelter, 

2006; Tada et al., 2007; Xie et al., 2007; Hu et al., 2010). At 

these sites, septins tether organelles, restrict diffusion, rigidify 

the cell cortex, and spatially localize signaling (Longtine et al., 

2000; Tooley et al., 2009; Gilden and Krummel, 2010; Hu et 

al., 2010; Gilden et al., 2012; Chao et al., 2014). Perturbation 

of septin genes results in abnormal cell morphology, cytoki-

nesis defects, and inviability in many organisms (Gladfelter et 

al., 2005; Mostowy et al., 2011; Mostowy and Cossart, 2012). 

Humans possess 13 septins which are implicated in numerous 

pathologies, including neurodegenerative diseases, infertility, 

and cancers (Dolat et al., 2014). Despite their importance, little 

is understood about the molecular function of septins compared 

with other cytoskeletal proteins. Given their capacity to self- 

assemble into rod-shaped complexes that are tens of nanome-

ters in length and �laments on the plasma membrane that are 

microns in length, we hypothesized that septins are capable 

of micron-scale curvature recognition (Sirajuddin et al., 2007; 

Bertin et al., 2008; Bridges et al., 2014).

Results and discussion

Septins enrich at sites of positive 

curvature in Ashbya gossypii

To assess the curvature dependence of septin localization, we 

used Ashbya gossypii, a �lamentous fungus that has similar 

genome organization to Saccharomyces cerevisiae (Dietrich et 

al., 2004). During hyphal growth in A. gossypii, septins assem-

ble into three genetically and spatially separable higher-order 

structures associated with the cell cortex: (1) straight, stable 

bundles or “bars” of �laments; (2) thin, dynamic �laments, 

often enriched at sites of cell growth; and (3) dense assemblies 

at the base of lateral branches, reminiscent of septin localiza-

tion at the base of outgrowths in neurons (Fig.  1  A, Fig. S1 

A, and Video  1; Helfer and Gladfelter, 2006; DeMay et al., 

2009). A. gossypii branches emerge in a variety of orientations 
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creating a situation where different curvatures are present lo-

cally at the base of the same branch. We found that the septin 

Cdc11a is asymmetrically localized and preferentially enriched 

on the side of a branch with the highest curvature, even though 

both surfaces have access to the same local soluble pool of 

septins (Fig. 1 B). This suggested that septins localize in a cur-

vature-dependent manner.

To systematically determine the relationship between 

cell shape and septin localization, we visualized the cell out-

line using a cell wall dye and measured curvature proximal to 

A. gossypii branches (Fig. 1 C and Fig. S2, A–C). Considering 

that the bases of branches are saddle shaped, we analyzed septin 

localization versus the two orthogonal principal curvatures and 

mean curvature. For clarity, we report the measured curvature 

of the cytoplasmic face of the cell, which is what septins ex-

perience. From this perspective, A. gossypii are primarily com-

posed of a negative principal curvature, which runs around the 

tube-shaped cells, including at the base of branches. In con-

trast, a positive principal curvature is only found at the base 

of branches, and it runs from the main hyphae into branches, 

where the membrane bends inward toward the cytoplasm (Fig. 

S2 A). We found a strong relationship between Cdc11a-GFP 

Figure 1. Septin abundance scales with positive curvature in A. gossypii. (A) Septin higher-order structures in A. gossypii, visualized by Cdc11a-GFP 
using structured illumination microscopy (SIM). Straight bundles (1), thin filaments (2,) and branch assemblies (3) exist in the same cell. (B) SIM images of 
Cdc11a-GFP signal at the base of four lateral branches emanating from hyphae at distinct angles, producing different curvatures. (C) Mean curvature heat 
map produced by imaging Blankophor in the A. gossypii cell wall followed by curvature analysis. For this display, curvature was mapped onto the external 
surface and values were inverted to represent curvature as viewed from the cell interior. (D) Cdc11a-GFP intensity at the base of branches plotted against 
positive and negative principal curvatures and mean curvature as viewed from the cell interior. Diagrams illustrate the curvature measured in each plot. 
(E) Filament orientation at the base of branches visualized by Cdc11a-GFP SIM. (F) Filament orientation in hyphae, away from sites containing a positive 
curvature component. (G) Filament orientation relative to the hyphal axis was measured compared with a random simulation of filament orientations (solid 
lines, mean; dotted line, SD; n = 263 filaments in 13 hyphae). (H) Colocalization of Cdc11-mCherry (green) and Hsl7-GFP (magenta) at the base of 
branches and straight bundles in A. gossypii.

http://www.jcb.org/cgi/content/full/jcb.201512029/DC1
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enrichment and the positive curvature component (r = 0.850) 

and little correlation with the negative principal curvature (r 

= 0.145; Fig. 1 D). Consistent with a preference for positive 

curvature, septin abundance increased as the mean curva-

ture increased and did not peak at zero, which is what would 

be expected with preference for the saddle point (r = 0.790; 

Fig.  1  D). Individual septin �laments were readily seen to 

align and add along the arc of branches, further supporting that 

septins are likely responding to positive curvature (Fig.  1 E, 

Fig. S1 B, and Video 1). Septins were also detected at locations 

of even higher positive membrane curvature in stressed cells or 

in yeast cells responding to mating pheromone, consistent with 

�ndings for mammalian cells responding to osmotic shock 

(Fig. S1, D–E; Gilden et al., 2012). In unbranched regions of 

the cell, septin �laments aligned parallel to the hyphal growth 

axis, avoiding the more negative curvature that would be en-

countered if �laments aligned orthogonal to the growth axis 

(Fig. 1, F and G; and Fig. S1 C). Thus, septins enrich at sites of 

positive curvature, and the degree of curvature corresponds to 

the abundance of septins recruited.

If septins do sense positive curvature, we predicted that 

septin-interacting proteins could be differentially recruited to 

distinct higher-order structures. Indeed, we found that Hsl7, 

a methyltransferase involved in regulating nuclear division, 

bound exclusively to straight septin bars but never to septins 

localized at branch sites (n = 41; Fig. 1 H; Helfer and Gladfelter, 

2006). Collectively, these results suggest that eukaryotic cells 

possess a mechanism to recognize micron-scale curvature, and 

signaling proteins (e.g., Hsl7) can distinguish between curved 

and straight septin platforms. It is unclear from these exper-

iments, however, if septins alone possess the ability to sense 

micron-scale curvature or if an upstream factor recognizes the 

local geometry and in turn recruits septins.

Purified septins recognize micron-scale 

membrane curvature

To address if septins can directly differentiate among mi-

cron-scale curvatures, we set up a minimal system to measure 

septin adsorption on positively curved surfaces. We used re-

combinantly expressed and puri�ed yeast septin complexes 

containing Cdc10, Cdc3, Cdc12, and Cdc11-SNAP and sup-

ported lipid bilayers containing anionic phospholipids formed 

on silica beads of different �xed curvatures (diameters, 0.3, 1.0, 

3.0, 5.0, and 6.5 µm; Figs. 2 A and S3 A). Indeed, when we 

mixed septins with bilayer-coated beads, we found septin ad-

sorption was dependent on bead diameter and thus the curvature 

of the bead (Fig. 2, A and B; and Video 2). At physiological 

concentrations, septins were maximally recruited to intermedi-

ately sized beads (1–3 µm), with little to no recruitment to both 

very large (5–6.5 µm) or very small beads (0.3 µm; Fig. 2 C; 

Bridges et al., 2014). These measurements reveal approxi-

mately eight times more septins bound to the 1.0-µm beads 

than the 6.5-µm beads at 100-nM septin complex concentration 

after normalizing for surface area using lipid dye intensity. The 

relative abundance of septin on each bead size was found to be 

highly septin concentration–dependent (Fig. 2, D and E). Nota-

bly, the preference for the intermediate-sized beads is similar to 

the curvatures in cells where septins are enriched (κ = 0.6 µm–1; 

Fig. 1 D). These results demonstrate that septins can readily 

distinguish between micron-scale curvatures in the absence of 

other cellular factors.

Septin affinity for membranes varies 

depending on curvature

How do septins differentiate between membrane curvatures? We 

reasoned that either septins have a higher af�nity for membranes 

of speci�c curvatures (such as found on 1–3-µm beads) or their 

maximum binding capacity (Bmax—effectively how much septin 

can �t on a given curved surface) is greater on these curvatures. 

Because of limitations in protein yield, we were unable to mea-

sure saturation binding curves on all bead sizes. To circumvent 

this problem, we analyzed binding over time to 1- and 5-µm 

beads (Fig. 3 A). We found that septins accumulated faster on the 

smaller beads, suggesting that Bmax differences alone could not 

explain differences in adsorption. In our analysis of saturation 

binding to larger beads, we noticed another interesting feature. 

The intermediate binding of septins to 5-µm beads at high septin 

concentrations, produced by averaging many beads, was actually 

composed of a nearly bimodal distribution of septin adsorption 

(Fig. 3 B). A population of beads displayed nearly the same ad-

sorption as the 1-µm beads, whereas others had almost no septin 

enrichment, suggesting that the adsorption process is highly co-

operative. Because adsorption was found to be highly salt depen-

dent, by lowering the salt conditions to well below physiological 

levels (50 mM KCl), we were able to achieve similar binding of 

septins to 1- and 5-µm beads (Figs. 3 C and S3 B). Collectively, 

these results suggest that an effective af�nity difference rather 

than Bmax is the driving force behind septin curvature preference.

Single septin complexes recognize 

curvature but must polymerize for stable 

membrane association

Next, we wondered whether septin curvature sensing re-

quired septin–lipid interaction at their predicted anionic lipid- 

binding module, a short polybasic region on the N terminus of 

each septin protein. To determine this, we used an alternative 

means to recruit septins using lipid mixtures containing Ni2+-

NTA modi�ed headgroups and septin complexes containing an 

N-term 6xHIS tag on Cdc12. With this method, septin com-

plexes still displayed a curvature preference for 1.0-µm beads, 

albeit slightly reduced compared with anionic lipids (1.4× en-

richment on 1- over 3-µm beads compared with 3.7× enrichment 

on anionic mixtures at the same septin concentration; Fig. 4 A). 

This indicates that conformational changes induced by speci�c 

lipid interactions are not essential for curvature sensing but may 

tune it to a certain degree.

Given the micrometer scale of the curvatures detected by 

septins, we next asked whether complexes must polymerize to 

sense curvature. Alternatively, single septin complexes (32-nm-

long rods) may have a higher af�nity for curved membranes. 

To address this issue, we introduced mutations into the α6 helix 

of the Cdc11 N–C interface, which mediates polymerization of 

complexes into �laments (Sirajuddin et al., 2007). These mutant 

septins puri�ed as complexes, yet failed to polymerize (Fig. 4 B 

and Fig. S3, C–E). When we recruited cdc11α6 mutant com-

plexes via the Cdc12 6xHIS tag and Ni2+-NTA lipids, we 

found that the curvature preference was still intact (Fig. 4 C). 

Similarly, wild-type (WT) complexes at high salt concentra-

tions that prevent polymerization and association with anionic 

membranes also retain curvature preference on Ni2+-NTA– 

containing bilayers (Fig. 4 D; Booth et al., 2015). These results 

indicate that individual septin complexes are able to perceive 

micron-scale curvature differences.

http://www.jcb.org/cgi/content/full/jcb.201512029/DC1
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Figure 2. Septins recognize micron-scale positive membrane curvature. (A) Supported lipid bilayer (25% PI and 75% PC) and trace Rh-PE–coated silica 
beads ranging from 0.3 to 6.5 µm in diameter mixed with 50 nM S. cerevisiae septin complex containing Cdc11-SNAP488 for visualization. The Rh-PE is 
shown in magenta, and Cdc11-SNAP488 is shown in green. (B) Mean intensity images of 10 beads for each condition. (C) Septin adsorption to each bead 
size at 100-nM septin complex. (D) Septin adsorption to beads as a function of concentration. (E) Heat map of fold difference in septin adsorption to beads 
as a function of concentration. Data were normalized to the lowest detectable septin adsorption, on 1-µm beads at 10-nM septin complex concentration. 
500 nM was the highest experimentally attainable septin complex concentration that could be mixed with beads. In C–E, n ≥ 32 for each size, and error 
bars represent standard error. Dunn test results: ***, P < 0.005; *, P < 0.05. n.s., not significant.

Figure 3. Septin affinity for membranes var-
ies depending on curvature. (A) Adsorption of 
septins to silica beads over time on 1 µm (κ 
= 2 µm–1) and 5 µm (κ = 0.4 µm–1) at 250-
nM septin complex concentration. Solid lines 
represent means, and shaded areas repre-
sent SD (average n/time point: 2 µm–1 = 158 
beads and 0.4 µm–1 = 18 beads). (B) Adsorp-
tion of 500-nM septin complexes on 1-µm (κ 
= 2 µm–1) and 5-µm (κ = 0.4 µm–1) beads in 
100 mM KCl. (C) Adsorption of 500-nM septin 
complexes on 1-µm (κ = 2 µm–1) and 5-µm (κ 
= 0.4 µm–1) bilayer-coated beads in 50 mM 
KCl. In B and C, n ≥ 50 for each size; black 
bars represent medians.
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We then assessed what happens when a nonpolymerizable 

septin is expressed in cells. When cdc11α6 was expressed in 

A. gossypii cells, we found no incorporation of cdc11α6-GFP 

into septins at the base of branches but could detect very faint 

association in the form of puncta with straight septin bundles 

(Fig.  4  E). Consistent with this result, when we mixed these 

cdc11α6 mutant complexes with 1.0-µm beads coated with 

L-α-phosphatidylcholine (PC)/L-α phosphatidylinositol (PI) 

bilayers, we found that adsorption to bilayers was dramatically 

reduced compared with WT septin complexes (Fig. 4 F). This 

result implies that avidity through polymerization permits sta-

ble septin association with anionic lipids. In addition, this could 

mean that septins in the straight bundles are recruited to the 

cell cortex by other proteins or have lateral interactions that 

are capable of recruiting nonpolymerizing septin complexes. 

Collectively, these data suggest that the septin complex has an 

intrinsic curvature preference; however, for stable association 

with membranes to occur, septins must polymerize, indicating 

that polymerization is critical for retention of septin complexes 

at sites of curvature in cells. In addition, a small difference in 

complex af�nity for curved membranes could be ampli�ed by a 

cooperative adsorption process.

Septin curvature recognition is conserved 

beyond the fungal kingdom

Finally, we sought to determine whether septin curvature rec-

ognition is conserved beyond the fungal kingdom. Previous 

work has shown that human septin complexes form rings when  

polymerized in vitro and in the absence of F-actin in mamma-

lian cells and are able to tubulate giant unilamellar vesicles, 

which we hypothesized were a manifestation of the same prop-

erties that could drive curvature sensing (Kinoshita et al., 2002; 

Tanaka-Takiguchi et al., 2009). Similar to fungal systems, many 

distinct septin structures can exist during interphase (Kinoshita 

et al., 2002; Gilden and Krummel, 2010; Bowen et al., 2011; 

Bridges and Gladfelter, 2015). These include straight perinuclear 

�laments, regions of colocalization with the actin cortex, and at 

the base of cell protrusions in NIH-3T3 �broblasts (Fig. 5 A). 

In an attempt to disentangle these structures, we perturbed the 

actin cytoskeleton and found septin abundance appeared to 

scale with the degree of membrane curvature (Fig. 5 B). To ver-

ify that mammalian septins also intrinsically possess the ability 

to distinguish between curvatures and to measure mammalian 

septin curvature preference, we puri�ed complexes containing 

human SEPT2, SEPT6, and SEPT7 and added them to the an-

ionic lipid bead-binding assay (Figs. 5 C and S3 G). Consis-

tent with our observations with the fungal complexes, we found 

preferential adsorption on 1-µm beads (Fig. 5, C and D). This 

suggests that a fundamental property of the septins from widely 

divergent species is to recognize plasma membrane shape on 

the scale of microns, which has not been reported previously for 

other plasma membrane–binding proteins.

Conclusion

What is the structural basis for micron-scale curvature recog-

nition? One possibility is that septin complexes are curved and 

Figure 4. Curvature preference remains intact in single complexes, but filament formation is required for stable membrane association. (A) Adsorption of 
25 nM 6xHIS WT Cdc11–SNAP488 complexes to 1-µm (κ = 2 µm–1) and 3-µm (κ = 0.67 µm–1) beads coated in 2% DGS-Ni2+ NTA lipids in 100 mM KCl. 
For visualization of fold enrichment, data were normalized to 3-µm beads. (B) WT Cdc11–SNAP complexes and Cdc11-α6–SNAP complexes, containing 
point mutations in the polymerization interface of Cdc11, were diluted to 250 nM in 50 mM KCl to promote filament formation and visualized on a poly-
ethylene glycol–coated coverslip. (C) Adsorption of 100 nM 6xHIS Cdc11-α6–SNAP488 complexes to 1-µm (κ = 2 µm–1) and 3-µm (κ = 0.67 µm–1) beads 
coated in 2% DGS-Ni2+ NTA lipids in 100 mM KCl. (D) Adsorption of 25 nM 6xHIS WT Cdc11–SNAP488 complexes to 1-µm (κ = 2 µm–1) and 3-µm  
(κ = 0.67 µm–1) beads coated in 2% DGS-Ni2+ NTA lipids in 300 mM KCl. (E) WT and α6 mutant Cdc11-GFP expressed and imaged in live A. gossypii.  
(F) Membrane adsorption of 100 nM WT and Cdc11-α6–SNAP488 complexes on anionic-supported lipid bilayer (25% PC, 75% PI, and trace RhPE)–
coated 1-µm beads. In A, C, D, and F, n ≥ 43 for each size. Dunn test results: ***, P < 0.005.
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as such preferentially associate with curved membranes (Fig. 

S3 H; Bertin et al., 2008). Alternatively, the human complex 

may dynamically hinge in the center (Fig. S3 I; Sirajuddin et 

al., 2007). In either case we propose that one of two principles 

drives septin curvature recognition: either the septin–lipid inter-

action is geometrically favorable when membranes are curved 

or interacting with a curved membrane promotes an energet-

ically favorable septin complex conformation. Given that hu-

mans have 13 septin genes, it is likely that alternative septin 

complexes, containing different septin proteins, could tune 

and regulate curvature sensing. From the data presented in this 

work, we cannot rule out that on anionic phospholipid mem-

branes, curvature promotes septin adsorption via additional 

mechanisms other than the af�nity of single septin complexes. 

Given the importance of polymerization for membrane adsorp-

tion demonstrated in this work, it is also possible that curved 

membranes promote polymerization and thereby membrane 

af�nity. Alternatively, stochastic fragmentation or depolymer-

ization of �laments could be reduced on curved membranes.

This work identi�es the �rst direct sensor of micron-scale 

curvature in eukaryotic cells and demonstrates that septin com-

plexes have an intrinsic capacity to recognize speci�c curva-

tures (Fig. 5 E). Although a bacterial protein has been shown 

to recognize the micron-scale forespore membrane, and myo-

sin-II has been shown to enrich in areas of low curvature, in 

neither case is it clear how the nanometer to micron scales 

are linked (Ramamurthi et al., 2009; Elliott et al., 2015). The 

elongated rod-shaped complexes make septins suf�ciently long 

to perceive micron-scale differences in shape before polym-

erization; however, polymerization must take place for stable 

membrane association. Interestingly, septin complexes can 

make curved bundles of F-actin; however, it is unclear that 

this is related mechanistically or functionally to the work re-

ported here (Mavrakis et al., 2014). Although we acknowledge 

that the same curvature sensing properties of septins could also 

produce membrane curvature, we hypothesize that the forces 

required to deform membranes on the micron scale in a cell, 

particularly in fungi which have a rigid cell wall, are too great 

for septins alone to carry out. We propose that septins at the 

base cell protrusions may serve as landmarks and signaling 

platforms so the cell can know its local shape long after such 

topologies have been constructed.

Materials and methods

A. gossypii growth and imaging
A. gossypii cultures were grown for 15–17 h in A. gossypii full media 

at 30°C. Cells were collected by gentle centrifugation, resuspended in 

A. gossypii low �uorescence media, and mounted between a 1.5 cov-

erslip and a 0.5–1.5% agar pad hydrated with low �uorescence media. 

Before imaging, cells were grown 22°C on the agar pad for 1 h.

Display images (Fig. 1, A and B; and Fig. S1, A, D, and E) were 

acquired on a Nikon N-SIM microscope using a 100× Plan Apo 1.49 NA 

oil lens with 14 bits per pixel on an iXon Ultra DU-897 camera (Andor 

Technology) with EM gain; laser power and exposure were adjusted to 

keep pixel intensities in the �rst quarter of the camera dynamic range. 

Z-stacks were acquired with 0.125-µm-thick z-sections and 15 images 

per optical slice (three angles and �ve phases). 3D reconstruction was 

performed in Elements software (version 40.30.01; Nikon). Reconstruc-

tion parameters were chosen to match best septin localization observed 

on traditional wide-�eld microscopes while maximizing resolution.

For analysis of curvature at the base of A. gossypii branches, the 

cell wall was localized using Blankophor (MP Biomedicals), whereas 

Figure 5. Mammalian septins recognize membrane curvature. (A) Phalloidin (magenta) and SEPT7 (green) localization, visualized by α-SEPT7 immuno-
fluorescence, in NIH 3T3 fibroblasts. (B) SEPT7 localization (green) in NIH 3T3 fibroblasts treated with 1 µM latrunculin A for 15 min to disrupt actin-de-
pendent septin localization. The cell outline (magenta), was produced by imaging Alexa Fluor 647–conjugated wheat germ agglutinin. (C) 50 nM human 
septin complexes (SEPT2–SEPT6–SEPT7) labeled with NHS-Alexa Fluor 488 on supported lipid bilayer–coated silica beads. (D) Adsorption of 50 nM 
human septin complex on bilayer-coated beads (25% PC, 75% PI, and trace RhPE). n ≥ 67 for each size. Dunn test results: ***, P < 0.005; n.s., >0.05. 
(E) Model displaying the scale of septin curvature sensing compared with other established proteins that interact with curved membranes.
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septins were imaged using Cdc11a-GFP replaced at the endogenous 

locus (AG384). Z-stacks of both channels were imaged with a step 

size of 0.2 µm on a Nikon A1RSi laser scanning confocal microscope 

using a 100× Plan Apo 1.49 NA oil lens. Blankophor was excited with 

a 407-nm laser, and GFP was excited with a 488-nm laser with the 

pinhole open to 2 AU. See the following section for a description of 

the curvature analysis.

For imaging Cdc11a-GFP �lament orientation (Fig. 1, E and F; 

and Fig. S1 C), super-resolution 3D-SIM images were acquired on a 

DeltaVision OMX V4 (GE Healthcare) equipped with a 60×/1.42 NA 

PlanApo oil immersion objective (Olympus), 405-, 488-, 568- and 

642-nm solid-state lasers (100 mW) and sCMOS cameras (pco.edge). 

Z-stacks were acquired with 0.125-µm-thick z-sections and 15 images 

per optical slice (three angles and �ve phases). Images were recon-

structed using Wiener �lter settings of 0.005, and optical transfer func-

tions were measured speci�cally for each channel with SoftWoRx 6.1.3 

(GE Healthcare) to obtain super-resolution images with a twofold in-

crease in resolution both axially and laterally. Unless otherwise stated, 

cells were imaged at 22°C.

A. gossypii curvature analysis
Z-stacks of septins in A. gossypii branches were analyzed using Imaris 

7.7.2 (Bitplane AG). For curvature analysis in 3D, images were resa-

mpled using the Imaris “Resample 3D” command to produce voxels 

of isotropic dimensions. Images were subsequently background sub-

tracted using the software’s Gaussian �lter for background determina-

tion (width 10.6 µm) and then cropped to eliminate all but the curved 

region on one side of any given branch. Individual surfaces were cre-

ated for the Cdc11a-GFP signal and the Blankophor signal. The GFP 

surface was then used to determine the mean GFP intensity. It also 

served as a guide for the placement of the region of interest (ROI) for 

curvature measurements, which was performed on the surface created 

from the Blankophor signal. Curvature analysis was conducted on the 

cytoplasmic face of the Blankophor surface, as this is the side to which 

septins associate. The ROI used for curvature analysis was the area of 

intersection between the Blankophor surface and the GFP surface (Fig. 

S2 C). The �nal ROI includes a slightly larger area than the surface 

intersection, thereby including more points in the curvature calculation 

than desired. However, these unwanted points only represented a neg-

ligible percentage of the total number of points used for the curvature 

calculation (∼4.5% in Fig. S2 C), thereby not having a substantial effect 

on the curvature calculation. Using custom curvature analysis Imaris 

XTensions written in MAT LAB R2015a (MathWorks), the following 

curvature values were calculated within the ROI: mean curvature, 

Gaussian curvature, and both principal curvatures. The core of the cus-

tom curvature analysis XTension was created by Matthew J. Gastinger 

(Bitplane). This XTension uses Dirk-Jan Kroon’s “Patch Normals” and 

“Patch Curvature” functions (Kroon, 2009, 2014). Curvature values, as 

well as the mean Cdc11a-GFP intensity, were exported into Microsoft 

Excel �les. Files were then imported into R version 3.2.2 using RStudio 

0.99.467 (R Foundation for Statistical Computing), where all of the 

statistical analyses took place. Plots were generated using the ggplot2 

package in R (Wickham, 2009).

Analysis of hyphal filament orientation
To evaluate whether �laments within hyphae were aligned to minimize 

negative curvature, �lament orientation was compared with the hyphal 

growth axis. This analysis focused on one straight segment of a single 

hypha at a time to avoid areas where hyphal bending occurred. To 

determine the hyphal orientation, the cell outline was traced using 

Fiji (version 1.50b; National Institutes of Health), and the arithmetic 

mean of both sides of the hypha served as the orientation relative to 

the horizontal axis. Angle measurements were always performed in 

the direction of cell growth using the “Measure_Angle_and_Length” 

macro available at http ://rsb .info .nih .gov /ij /macros /.

Within the cell outline, �lament angles with respect to horizontal 

were measured. Using a custom MAT LAB script, the �lament orienta-

tion with respect to hyphal orientation was calculated. A total of 263 

�lament angles were measured. The distribution of these measurements 

was then compared with a random distribution. To obtain the random 

distribution, 263 angles between –90 and 90° were chosen randomly 

from a uniform distribution using R’s runif function. This process was 

repeated 1,000 times, which allowed for the calculation of mean and 

SD density values. The measurement and random values were com-

piled and plotted in R (Wickham, 2007; Winston, 2014).

Yeast septin purification and labeling
BL21 (DE3) Escherichia coli cells were transformed with a duet septin 

expression platform (see Generation of strains section), selected for 

with ampicillin and chloramphenicol, and induced to express with 

1  mM IPTG at an OD600 of 0.6–0.7.  After 24  h of growth at 22°C, 

cells were harvested by centrifugation at 10,000 relative centrifugal 

force (RCF) for 5 min. Pellets were either lysed immediately or stored 

at –80°C until lysis. Cells were thawed and incubated in lysis buffer 

(50 mM KH2PO4, pH 8.0, 1 M KCl, 1 mM MgCl2, 1% Tween-20, 10% 

glycerol, 1× protease inhibitor [Roche], and 20 mM imidazole), with  

1 mg/ml lysozyme for 30 min on ice. Cells were then sonicated for 

20  s, and resulting whole-cell extract was clari�ed by centrifugation 

at 4°C for 30 min at 20,000 rpm in an SS-34 rotor in a Sorvall RC-6 

centrifuge. Clari�ed supernatant was placed on an equilibrated Ni2+-

NTA agarose (QIA GEN) column containing 2 ml of resin per liter of 

E. coli culture. Bound protein was washed three times (5× column vol-

ume) with wash buffer (50 mM KH2PO4, pH 8.0, 1 M KCl, and 20 mM 

imidazole) and eluted with a high imidazole concentration (50  mM 

KH2PO4, pH 8.0, 300 mM KCl, and 500 mM imidazole). Protein was 

dialyzed into septin storage buffer (50 mM Tris, pH 8.0, 300 mM KCl, 

1  mM DTT) to remove excess imidazole overnight via two 500-ml 

steps using 10,000 MW cutoff cassettes (Thermo Fisher Scienti�c). 

Subsequently, the 6xHIS tag on Cdc12 was removed by treatment with 

ProTEV Plus protease (Promega). Protein was then run over a second 

Ni2+-NTA column to remove cleaved 6xHIS tag, the TEV protease, and 

Ni2+-NTA binding contaminants. SNAP Surface 488 (New England Bi-

olabs) was incubated with protein eluate at a 1.5× excess molar ratio at 

4°C overnight. Excess dye was removed by dialysis with septin storage 

buffer. Purity was assessed by 10% SDS-PAGE, and protein concentra-

tion was determined by Bradford assay.

Human septin purification
Human septin plasmids were a gift from M. Mavrakis (Institut de Biol-

ogie du Développement de Marseille, Marseille, France), and proteins 

were puri�ed as described in Mavrakis et al. (2014). In brief, Bl21-

(DE3) containing a plasmid encoding His6-hSEPT2 and hSEPT6, and 

a second plasmid encoding h-SEPT7-Strep, were grown to an OD600 

of 2–3 and induced to express by 1 mM IPTG for 1 h. Cells were col-

lected by centrifugation at 10,000 RCF for 5 min. Pellets were either 

lysed immediately or stored at –80°C until lysis. Cells were thawed 

and incubated in lysis/wash buffer (50 mM Tris, pH 8.0, 500 mM KCl, 

5 mM MgCl2, 1× protease inhibitor, and 10 mM imidazole), with 1 mg/

ml lysozyme for 30 min on ice. Cells were then sonicated for 20 s, and 

resulting whole-cell extract was clari�ed by centrifugation at 4°C for 

30 min at 20,000 rpm in a SS-34 rotor in a Sorvall RC-6 centrifuge. 

Clari�ed supernatant was placed on an equilibrated Ni2+-NTA agarose 

(QIA GEN) column containing 2 ml of resin per liter of E. coli culture. 

Bound protein was washed three times (5× column volume) and eluted 

http://rsb.info.nih.gov/ij/macros/
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with a high imidazole concentration (50  mM Tris, pH 8.0, 500  mM 

KCl, 5 mM MgCl2, and 250 mM imidazole). Eluate was then immedi-

ately passed over a Strep-Tactin (IBA) sepharose column, and bound 

protein was washed three times (5× column volume; 50  mM Tris,  

pH 8.0, 300 mM KCl, and 5mM MgCl2) and eluted with buffer contain-

ing desthiobiotin (50 mM Tris, pH 8.0, 300 mM KCl, 5 mM MgCl2, and 

2.5 mM desthiobiotin). Purity was assessed by 10% SDS-PAGE, and 

protein concentration was determined by Bradford assay.

For labeling of human complexes, septins were exchanged into 

a lower pH buffer (potassium phosphate, pH 6.5, 300 mM KCl, and 

5 mM MgCl2) and reacted with Alexa Fluor 488 NHS Ester to ensure 

labeling at the N terminus. Buffer was then exchanged by dialysis to 

remove excess dye, and septins were stored in 50 mM Tris, pH 8.0, 

300 mM KCl, and 5 mM MgCl2.

Preparation of and experimentation with supported lipid bilayer 
microspheres
Septin lipid binding was evaluated using a lipid composition of 

75 mol% PC (egg, chicken; 840051; Avanti Polar Lipids), 25% PI 

(liver, bovine; sodium salt; 840042; Avanti Polar Lipids), and >0.1% 

L-α-phosphatidylethanolamine-N-(lissamine rhodamine B sulfonyl) 

(Rh-PE; ammonium salt; egg-transphosphatidylated, chicken; 810146; 

Avanti Polar Lipids). Lipids were mixed in chloroform solvent, dried 

by a stream of argon gas, followed by at least 2 h in a vacuum. Lipids 

were hydrated for 30 min at 37°C at a �nal lipid concentration of 5 mM 

in buffer (20 mM Tris, pH 8.0, 300 mM KCl, and 1 mM MgCl2) and 

bath sonicated (1510; Branson) to clarity (∼5 min) to form small unil-

amellar vesicles (SUVs).

To recruit septins via the 6xHIS tag on the N terminus of Cdc12, 

a lipid composition of 98 mol% 1,2-dioleoyl-sn-glycero-3-phospho-

choline (850375; Avanti Polar Lipids) and 2 mol% 1,2-di-(9Z-octa-

decenoyl)-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic 

acid)succinyl] (nickel salt; 790404; Avanti Polar Lipids) was mixed in 

chloroform solvent, dried by a stream of argon gas followed by at least 

2 h in a vacuum. Lipids were hydrated at 5 mM in �ltered PBS at 37°C 

for 30 min and freeze-thawed in liquid nitrogen 30 times. Subsequently 

vesicles were bath sonicated to clarity (∼2 min).

SUVs were adsorbed onto nonfunctionalized silica microspheres 

(0.31, 0.96, 3.17, 5.06, and 6.46 µm mean diameter, rounded in text 

for simplicity; Bangs Laboratories) by mixing 50 nmol lipids with 

440 mm2 of silica microsphere surface area in a �nal volume of 80 µl 

for 1 h in a roller drum at 22°C (PC/PI mixtures) or 37°C (Ni-NTA/

PC mixtures). Excess SUVs were removed by pelleting coated beads 

for 30 s at the minimum force required to pellet each bead size (see  

http ://www .bangslabs .com / for sedimentation properties) followed by 

4× washes with excess buffer (100 mM KCl and 50 mM Tris, pH 8.0).

To measure binding of septins to supported lipid bilayer-covered 

microspheres, 25 µl of septins in septin storage buffer were added to 

75 µl of a bead-buffer solution yielding a �nal buffer composition con-

taining 5 mm2 total lipid-bead surface area (100 mM KCl, 50 mM Tris, 

pH 8.0, 0.1% methylcellulose, 0.1% BSA [fatty-acid free; Sigma-Al-

drich], and 1  mM DTT, unless otherwise stated). For human septin 

experiments, the buffer was 50 mM KCl, 50 mM Tris, pH 8.0, 0.1% 

methylcellulose, 0.1% BSA, 500 µM MgCl2, and 1 mM DTT. Exper-

iments comparing septin adsorption to multiple bead sizes were per-

formed both in complex mixtures, containing multiple bead sizes, and 

in conditions where only one bead size was present. Because results 

were qualitatively similar, and for convenience in quanti�cation (beads 

often attached to one another), data represented in graphs were acquired 

using mixtures of septins with individual bead sizes at a time. Plastic 

chambers were glued to polyethylene glycol–passivated coverslips, and 

the septin-microsphere mixture was incubated for at least 1  h at RT 

until equilibrium was reached. Beads were imaged on a laser scanning 

confocal microscope (A1RSi; Nikon) using a 100× Plan Apo 1.49 NA 

oil lens, with the pinhole open to 2.0 AU. The entire z-series were ac-

quired using Elements software controlling a piezo z-drive (Mad City 

Labs) with Nyquist sampling for both rhodamine and 488 channels.

For analysis of septin binding, raw images were exported to 

Imaris 8.1.2 (Bitplane AG). Every image was individually background 

subtracted in both channels using the software’s Gaussian �lter for 

background determination (width, 31.4 µm). The surface of each bead 

was de�ned in a given �eld using the lipid channel, and beads that stuck 

together were excluded from analysis. From the surface of each bead, 

a sum rhodamine lipid intensity and sum septin intensity (SNAP–Sur-

face488 for yeast complexes and Alexa Fluor 488 for human complexes) 

were exported into Microsoft Excel. Files were then imported into R 

version 3.2.2 using RStudio 0.99.467, where all further analyses took 

place. “Septin adsorption” was calculated by dividing the sum septin 

intensity by the sum rhodamine lipid intensity to control for any poten-

tial optical differences between bead sizes. Plots were generated using 

the ggplot2 package in R (Wickham, 2007; Winston, 2014). Statistical 

analyses were done on a plot by plot basis. In every case, a Levene test 

showed that equal variances could not be assumed across groups (Fox 

and Weisberg, 2011). This called for a nonparametric approach. Thus, 

a Kruskal-Wallis rank sum test was performed, followed by a Bon-

ferroni-adjusted Dunn test (Wickham, 2007; Lisovich and Day, 2014; 

Dinno, 2015; Wickham and Francois, 2015; Warnes et al., 2015a,b). 

For each experimental condition (unique combinations of lipid com-

position, bead size, salt concentration, and septin concentration), the 

number of beads analyzed ranged from 32 to 743. Although SNAP-

tagged Cdc11 was used for publication materials, qualitatively similar 

results were obtained with septin constructs containing Cdc11-GFP.

Generation of strains
A complete table of strains used in this study can be found in Table 

S1. Plasmids are listed in Table S2 and oligos are listed in Table S3. 

To generate SNAP-labeled Cdc11 for recombinant expression in the 

septin complex (AGB501), pACYC-Duet with ScCdc3 and ScCdc11, 

(AGB400.1; gift from J. Thorner, University of California, Berkeley, 

Berkeley, CA), was cut with EcoRV-HF/KpnI-HF. The digest was 

subsequently cleaned over a PCR puri�cation column (QIA GEN) 

and then treated with rAPid Alkaline Phosphatase (Roche). AGB493 

(pRS416 ScCdc11-yeSNAPf) was then cut with EcoRV-HF/KpnI-HF 

and cleaned over a PCR puri�cation column before ligating. Ligation 

was preformed of prepared vector and insert using NEB T4 DNA ligase 

followed by transformation into NEB 5α competent cells selected on 

plates of LB media with 34 µg/ml Alfa Aesar chloramphenicol. Indi-

vidual colonies were mini-prepared using a QIAprep Spin Miniprep 

kit (QIA GEN). Veri�cation digestion was performed with BamHI-HF.

To generate a cleavable 6xHIS-tagged Cdc12 for recombinant 

expression in septin complexes (AGB710), a Tobacco Etch Virus 

(TEV) site was added between 6xHIS and ScCDC12 in AGB401 (pET-

Duet-6xHIS-ScCdc12/ScCdc10) using PCR with AGO1557/AGO1558 

and PfuUltraII Fusion HS DNA polymerase (Agilent Technologies). 

The resulting PCR product was treated with DpnI and cleaned with a 

PCR puri�cation kit. DNA was then transformed into NEB 5 α high-ef-

�ciency competent cells. Single colonies were then mini prepared with 

a mini spin kit (QIA GEN) and then sequenced through the TEV inser-

tion with AGO172 and AGO1192.

To introduce E289R, Y291A, and R292E point mutations in 

the α6 helix of the NC interface of Cdc11 for recombinant expres-

sion (AGB744) in septin complexes, pACYC-Duet with ScCdc3 and 

ScCdc11-SNAP (AGB501) was mutated using PCR with AGO1613/

AGO1614 and PfuUltraII Fusion HS DNA polymerase (Agilent 

http://www.bangslabs.com/
http://www.jcb.org/cgi/content/full/jcb.201512029/DC1
http://www.jcb.org/cgi/content/full/jcb.201512029/DC1
http://www.jcb.org/cgi/content/full/jcb.201512029/DC1
http://www.jcb.org/cgi/content/full/jcb.201512029/DC1
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Technologies). The resulting PCR product was treated with DpnI and 

cleaned with a PCR puri�cation kit. DNA was then transformed into 

NEB 5 α high-ef�ciency competent cells. Single colonies were then 

mini prepared with a mini spin kit and then sequenced through the point 

mutations with AGO1609 and AGO1251.

To create an analogous, nonpolymerizing cdc11α6 mutant for 

expression in A.  gossypii (AGB849), a gBLO CK (IDT) of cdc11A 

from 3,861–4,560 (700 bp) was synthesized. This fragment contained 

mutations in homologous residues (in A.  gossypii Cdc11a: E288R, 

Y290A, and R291E) and the restriction enzyme sites A�I–MluI 

for downstream cloning. PCR was performed on the fragment with 

AGO1770 and AGO1771. This fragment, and AGB214 (pRS416-Ag-

CDC11A-GFP-GEN), were cut with A�II–MluI, and the vector was 

treated with rAPid Alkaline Phosphatase. Ligation was performed, and 

the product was veri�ed by test digestion and sequencing with AGO130 

and AGO1771. The plasmid was then introduced into A. gossypii by 

electroporation and selection was performed using G418.

Septin pelleting assay and FCS
A sedimentation assay was performed to determine the polymeriza-

tion state of septins by diluting septin complexes into a low salt buffer 

(50  mM KCl, 50  mM Tris, pH 8.0, and 1  mM DTT) for 2  h.  Next, 

samples were centrifuged for 20 min at 22°C under 100,000 RCF (Op-

tima Ultracentrifuge; Beckman Coulter). Supernatant was removed, 

and pellets were resuspended in the same volume. Samples were 

then analyzed by SDS-PAGE.

The FCS autocorrelation curve of �uorescent septin complexes 

in high salt buffer (300 mM KCl, 50 mM Tris, pH 8.0, and 1 mM DTT) 

was generated using commercial PicoQuant hardware and software on 

a Nikon A1 LSM, using a Plan Apo IR 60× WI 1.27NA objective. Iden-

tical laser intensity was used when comparing complexes containing 

Cdc11–SNAP–Atto488 and the mutant Cdc11-α6–SNAP–Atto488. 

Fluctuations in �uorescence intensity were monitored for 20 s for each 

experiment. The autocorrelation function was obtained with after pulsing 

suppression by means of �uorescence lifetime correlation spectroscopy 

with a pulsed 485-nM laser (40 mHz) in SymPhoTime (PicoQuant).

Mammalian cell culture and immunofluorescence
NIH 3T3 �broblasts (ATCC) were cultured in DMEM media and sup-

plemented with 10% FBS, 2 mM L-glutamine, and penicillin-strepto-

mycin. Cells were plated on glass coverslips for 24 h before �xation. 

Cells treated with latrunculin A (Sigma-Aldrich) were incubated with 

the drug at 1 µM for 15 min before �xation. Cells were �xed with 4% 

paraformaldehyde for 15 min, washed 3× in PBS, and then incubated 

for 10 min with 5 µg/ml Alexa Fluor 647 conjugated wheat germ agglu-

tinin (Invitrogen) to label the membrane. Cells were washed 3× in PBS, 

permeabilized with 0.5% Triton X-100, and then incubated with Alexa 

Fluor 488 conjugated phalloidin (Invitrogen) and a rabbit anti–human 

Septin 7 primary antibody (IBL-America), followed by a goat anti–rab-

bit Alexa Fluor 567 (Invitrogen) secondary antibody. Coverslips were 

mounted on glass slides in ProLong Gold mounting media (Invitrogen).

Cells were imaged on an inverted Nikon Ti-E microscope with 

a Yokogawa CSU-X spinning disk scanhead, a laser merge module 

containing 491, 561, and 642 laser lines (Spectral Applied Research), 

and an HQ2 CoolSNAP CCD camera (Roper Scienti�c). Metamorph 

acquisition software (Molecular Devices) was used to control the mi-

croscope hardware. Images were acquired with a Nikon 60× 1.49 NA 

ApoTIRF oil-immersion objective.

Online supplemental material
Tables S1, S2, and S3 list the fungal strains, plasmids, and oligos used 

in this study, respectively. Fig. S1 contains additional images of septins 

in A. gossypii and S. cerevisiae. Fig. S2 contains a graphical description 

of curvature and a visual example of curvature analysis in A. gossypii. 

Fig. S3 contains Coomassie-stained gels of septin puri�cations, 

characterization of the Cdc11-α6 mutant and a model of septin complex 

�exibility. Videos 1 and 2 demonstrate septin dynamics in A. gossypii 

and in vitro on supported lipid bilayer–coated beads, respectively. 

The following scripts are also included in the supplemental materials: 

�lamentOrientation.m: Calculates �lament angles with respect to 

branch angle; XT_MJG_MSJ_Curvature.m: Imaris XTension to 

calculate curvature values on an Imaris Surface and select curvature 

values within an ROI; and XT_ROI_part2_MSJ.m: Imaris XTension 

that complements XT_MJG_MSJ_Curvature.m by expediting the 

ROI selection process. Online supplemental material is available at  

http ://www .jcb .org /cgi /content /full /jcb .201512029 /DC1.
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