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ABSTRACT 
 
Micronutrients are important growth promoting elements not only for crops but also for human being. 
More than two billion of the global populations are malnourished. For developing countries like India, 
micronutrient malnutrition among the people of every age is very common. The impact is highly 
seen in poor and landless rural people who can’t afford diverse foods or supplements in their diets 
with needed nutrients. To alleviate this micronutrient deficiency, biofortification has come to the 
surface as a potent option. Biofortification of crops can increase the level of micronutrients in final 
food products. Pulses are the cheapest sources of proteins, vitamins and micronutrients and can be 
supplied to the people through daily diet. Pulses are irrefutable contender for Biofortification since it 
is easily available to the each and every group of people. This paper focuses on the role of 
micronutrients on human health and various mechanisms to get nutrient rich staple food along with 
main emphasis on biofortification. 
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1. INTRODUCTION 
 

Worldwide, more than two billion of people or 
one in every three persons is spotted to be 
troubled with multiple micronutrient deficiencies 
[1]. Growing children are grievously affected by 
nutrient deficiencies compared to adults, as their 
nutrients requirement changes according to 
growth and developmental phages [2]. In 
Kolhapur district, 40% children between the age 
group of 8-9 years are micronutrients deficient 
(iron in 38.8% and fluoride in 36.6% respectively) 
[3] and globally it is 22% [4]. In the whole India, 
18% of infants had a birth weight of less than 2.5 
kg, 38% children below five years were under-
weight, 28% mild, 29% moderately and 2% 
severely anaemic [5]. Malnutrition caused by 
vitamins and minerals is also known as “Hidden 
hunger”, which don’t give any visual symptom 
usually. As per GHI 2018,[6] India ranked 103

rd
 

among 119 countries while world-wide level of 
hunger declines from 29.2 in 2000 to 20.9 in 
2018. Micronutrient deficiencies are the 
fountainhead of various health issues like poor 
neurological function, impaired eye sight, 
diabetes, hypertension, week immunity, diarrhea, 
food allergies, thinning hair, leaky gut, acne or 
rashes [7,8,9,10].Those deficiencies are 
attributable to low intake of quality diet riched 
with proteins, vitamins and minerals [11,12]. 
Increased price of non staple commodities is 
one of the important reasons of decreasing 
dietary quality, especially to resource poor 
people [13]. In developing countries agricultural 
products are the prime source of nutrients 
[14,15]. Main concern of green revolution was 
laid on yield increase not on quality food 
production. And it scale down soil productivity 
accompanied by less nutritive food grain 
production [11]. Micronutrient rich vegetables, 
pulses and animal products have also not been 
increased in last fifty years [12]. Possible ways 
to combat those deficiencies encircle dietary 
diversification (healthy balance diet), food 
fortification, biofortification and supplementation 
[16]. Biofortification is the process of increasing 
nutrient concentration in plant edible parts by 
fertilization (agronomic intervention), breeding 
approaches or microbes, [17] whereas forti-
fication is nutrient enrichment during processing 
(https://en.wikipedia.org/wiki/Food_fortification). 
Biofortification is an effective strategy in long run 
to overcome the current situation as it is more 
cost effective, sustainable and practical one to 
reach poorest of the poor population [18,19]. 

Besides quality enhancement, micronutrient has 
some added advantages like yield increase, 
biomass enhancement and disease control in 
micronutrient deficient soils [20]. A healthy 
balance diet must include pulses as they are rich 
source of energy, protein, dietary fibre and also 
content considerable amount of vitamins and 
minerals like thiamin, riboflavin, pyridoxine, folic 
acid, vitamin E and K, zinc, iron etc [21,22,23] 
So, pulses can be considered as good option for 
biofortification to provide nutritious food 
sustainably [22]. 

 
2. ROLE OF MICRONUTRIENTS ON 

HUMAN HEALTH 
 
Iron plays key role in haemoglobin formation and 
oxygen transport [24]. Iron deficiency exerts 
influence on learning ability, [25] immune system, 
[26] ability to work [27] and cognitive 
development [28]. Its deficiency is also 
associated with anemia and pregnancy related 
issues like mortality, low birth weight etc [25]. 

 
Zinc requirement get larger during pregnancy 
and puberty. Zinc deficiency curtails physical 
growth and development of children [29]. 
Gastrointestinal, central nervous, epidermal, 
immune, skeletal, and reproductive systems are 
known to be affected by zinc deficiency [30]. The 
daily requirement of Zn and Fe varies with the 
age of people (Table 1). 

 
Table 1. Daily requirements of Zn and Fe in 

Indian context [39] 

 
 Group Recommended daily 

allowance (mg day-1) 
Zinc Iron 

Adult men  12 21 
Adult women Normal 10 17 

Pregnant 12 35 
Children 1-3 Years 5 9 

4-6 Years 7 13 
7-9 Years 8 16 

Adolescents Boys 11-12 21-28 
Girls 9-12 26-27 

 
Selenium is a good source of antioxidant which 
narrow down heart and skin diseases, cancer, 
alzheimer, [31,32,33,34,35], thyroid [36], asthma 
[37]. Patients having tuberculosis, influenza and 
hepatitis C delineated to be benefited by 
selenium [38]. 
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3. CRITERIA OF BIOFORTIFIED CROP 
 
Bouis and Welch [40] suggested the following 
criteria to be a potential biofortified crop. 
 
High Yielding: Crop productivity must be 
maintained. 
 
Effective: The increased level of micronutrient 
must have significant positive impact on human. 
 
Stable: Increased level of micronutrients in crop 
must be stable year after year. 
 

Quality: Good Taste and Cooking Quality 
 

4. POTENTIAL WAYS OF BIOFORTI-
FICATION 

 

Biofortification of crop can be done through 
agronomic, breeding and microbial interventions.  
 

4.1 Agronomic Interventions 
 

Agronomic biofortification is the application of 
micronutrients via chemical fertilizer with the aid 
of foliar application, soil application, seed priming 
and seed coating of fertilizers to increase the 
bioavailability of nutrients in edible plant parts 
[41]. Several factors like source of fertilizer, 
quantity of fertilizer and time and methods of 
application regulate the nutrient intake to the 
edible plant parts and it’s bioavailability to the 
consumer [42,43]. Micronutrient amendment in 
soil is a useful strategy to increase micronutrient 
quantity in crop [44,45,46]. Among the different 
methods of application, foliar application is more 
efficient [47] as it can manage soil 
immobilization [11] and quick availability of 
nutrients to the crop. Hidoto et al. [48] reported 
85 g ha-1 grain zinc yield with foliar application in 
chickpea which was significantly higher than soil 
application (71 g ha

-1
) and priming (68 g ha

-1
). 

Combined application in both soil and foliar often 
showed better results [49]. Other biofortification 
methods like seed priming and seed coating are 
spotted to give very infrequent result [50,23] 
found that seed priming with both B and Zn 
increased the seed Zn and B content of chickpea 
and lentil respectively (Table 2). Zinc and 
selenium biofortification is most fruitful with 
agronomic interventions [51].  
 

4.1.1 Zinc fortification 
 
Application of zinc to the pulse crops greatly 
helps in enhancing the level of zinc in harvested 
(economic) plant parts. Zinc fertilization 

increases bioavailability of Zn in human by 
increasing phytate content [52]. Molina et al. [53] 
concluded that application of zinc chelate (7 and 
14 mM L

-1
 of Zn-EDTA) increase grain zinc and 

iron concentration in cowpea. Shivay et al. [54] 
reported that foliar spray of zinc at three different 
stages of chickpea had significant influence on 
zinc uptake both in grain and straw during 2011-
12 and 2012-13 (Table 3). Foliar spray of Zn-
EDTA at active vegetative, flowering and grain 
filling stages had greatest crop recovery of 
applied Zn (17.33%) during 2011-12 (Table 2). 
Zinc fertilization improves zinc bioavailability in 
bean and pea [55,56]. Zinc content in seed helps 
in significant liner increase of protein 
biosynthesis [57]. Maximum Fe content was 
recorded with application of 50µM Zn-DTPA 
(183.7±2.16 ppm) and 100 µM ZnSO4 
(197.9±3.45 ppm) whereas highest Zn with 
100µM Zn-DTPA (46.3±3.87 ppm) and 100 µM 
ZnSO4 (49.6±2.54 ppm) of bean in hydroponic 
situation (Table 4). Hidoto et al. [58] stated that 
maximum grain Zn content and Zn yield in 
chickpea were noted in soil application of 25 kg 
ha-1 Zn which had an advantage of 7% over 
control (Table 5).  
 
4.1.2 Iron fortification 
 
Iron is another most important micronutrient 
which improves human health. Supply of iron 
through fortification of pulses is helpful and 
economic for major portion of Indian population. 
Iron content of cowpea bean seed increased 
29.4% with application of 100µM L-1 ferrous 
sulphate and 32% with 50µM L

-1
ferrous chelate 

over control [59]. Ali et al. [60] observed that 
application of 1.5% FeSO4 at branching and 
flowering resulted 55%, 66% and 81% increase 
in iron content in leaf, stem and grain in 
mungbean over control respectively (Table 6). 
Khalid et al. [61] reported that application of 
PGPR along with iron (5.6 kg ha

-1
) resulted grain, 

root and shoot iron content 4.6 mg, 3.16 mg and 
1.7 mg in 100 g chickpea seed respectively 
(Table 7). According to Salih [63] foliar 
fertilization of 2 ppm Fe and 2 ppm Zn reported 
maximum increase in Fe (154 mg kg

-1
) and Zn 

(42 mg kg-1) content of cowpea seed respectively 
(Table 8). Nandan et al. [64] pointed out that 
foliar spray of 0.05% Fe along with 
recommended dose of fertilizer resulted 
significantly higher iron content in seed (66.46 
mg kg-1) and stover (66.83 mg kg-1) whereas, 
maximum zinc content in seed (44.98 mg kg

-1
) 

and straw (44.08 mg kg
-1

) was noted with Zn 
(0.5%) and Fe (0.05%). 
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Table 2. Effect of seed priming on Zn, B and Mo content of chickpea and lentil 
 

Treatments Seed content (mg kg-1) 
Chickpea Lentil 

Zn B Mo Zn B Mo 
(purchased)  40 9 3 50 6 2 
water  60 10 4 50 6 2 
B  60 100 3 50 100 2 
Zn  700 7 3 630 5 2 
1/2(B + Zn)**  400 50 2 400 50 2 
B + Zn  800 80 3 660 100 2 
B, 12 h  40 100 3    
Zn, 12 h  500 8 2    
Mo  60 4 300    

(Source: Johnson et al. 2005)[23] **Priming times were 8 h and 12 h for chickpea and lentil respectively. 
Solutions used were 0.004M ZnSO4·7H2O (for Zn), 0.008 M H3BO3 (for B), 0.0026M Na2MoO4·2H2O (for Mo) 

 
Table 3. Zinc content by grain and straw of chickpea 

 
Treatment Zn uptake in grain (g ha

−1
) Zn uptake in straw (g ha

−1
) 

2011-12 2012-13 2011-12 2012-13 
Check (no Zn) 78.5 71.3 78.0 68.5 
ZnSHH soil at 5 kg Zn ha

−1
 102.3 93.9 104.2 93.9 

ZnSHH one spray (V)  96.3 87.9 103.3 92.8 
ZnSHH two sprays (V + F) 112.3 103.2 128.6 116.2 
ZnSHH, three sprays (V + F + G) 124.9 114.8 166.8 152.0 
Zn-EDTA soil at 2.5 kg Zn ha−1 102.7 93.9 114.5 103.5 
Zn-EDTA one spray (V) 98.8 90.9 117.0 106.0 
Zn-EDTA two sprays (V + F) 125.4 115.8 139.2 126.6 
Zn-EDTA three sprays (V + F + G) 162.8 135.4 181.0 148.9 
LSD (P = 0.05) 14.93 15.52 10.45 20.25 
ZnSHH= Zn sulfate hepta hydrate V= active vegetative stage, F= flowering stage, G= grain filling stage (Source: 

Shivay et al. 2015 [54] 
 

Table 4. Iron and zinc concentration of bean in hydroponic situation 
 

Dose Micronutrient concentration 
Zn-DTPA (µM) Fe  Zn 

0 146.5±0.41 28.4±1.12 
25 174.4±1.45 45.7±2.35 
50 183.7±2.16 42.8±3.55 
100 153.0±1.63 46.3±3.87 

ZnSO4 (µM) Fe Zn 
0 146.5±0.41 28.4±1.12 
25 189.2±2.89 42.3±3.11 
50 162.1±2.03 42.6±2.87 
100 197.9±3.45 49.6±2.54 

Source: (Sida-Arreola et al. 2017) [62] 
 

4.1.3 Selenium fortification 
 

Selenium fertilization by means of inorganic 
fertilizer results increased selenium 
concentration in diet [65,66]. Unlike selenite            
( -2

3SeO ), selenite ( -2
4SeO ) provides immediate 

availability to plants when addedtosoil [67,68,69]. 
Selenium foliar application increases 
concentration in pea and common bean from 21 

μg kg
-1

 to 743 μg kg
-1 

[70] and 30 to 2379 μg kg
-1 

[71] respectively. 
 
Further credibility of agronomic biofortification 
requires much more research on micronutrient 
bioavailability, including metabolic pathways that 
affect absorption and health benefits of different 
chemical forms of micronutrients. 
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Table 5. Effect of zinc sulphate soil application on chickpea 
 

Zn rate Straw Zn Grain Zn Zn yield 
ZnSO4.7H2O  (kg ha-1) (mgkg-1) (mgkg-1) (gha-1)  
0  20.63  37.05  91.0  
5  20.48  37.54  98.3  
10 23.24  34.20  87.7  
15  22.15  33.11  86.2  
20  21.82  35.52  86.3  
25  21.57  39.55  99.7  
30  22.31  39.18  98.0  

Source: Hidoto et al. 2016 [58] 
 

Table 6. Iron content in leaves, stems and grains in mungbean 
 
Treatment Iron content (mg kg-1) 

Leaves Stems Grains 
Control  511.37 380.07 78.50 
0.5% FeSO4 at branching  601.73 470.42 90.43 
0.5% FeSO4 at flowering  623.70 488.17 96.10 
0.5% FeSO4 at branching + 0.5% FeSO4 at flowering 675.43 520.24 101.50 
1.0% FeSO4 at branching  654.07 515.22 96.83 
1.0% FeSO4 at flowering  668.37 505.16 99.60 
1.0% FeSO4 at branching + 1.0% FeSO4 at flowering  717.17 585.54 127.80 
1.5% FeSO4 at branching  672.60 550.33 115.73 
1.5% FeSO4 at flowering  698.70 559.51 121.43 
1.5% FeSO4 at branching + 1.5% FeSO4 at flowering  794.90 634.27 146.43 

Source: Ali et al., 2014[60] 
 

Table 7. Iron uptake in different plant parts of chickpea 
 

Treatment Fe Concentration (mg 100 g-1) 
Grains Shoot Root 

Absolute control  1.20 0.66 0.14 
Fe (5.6 kg ha

-1
) 2.40 1.80 0.86 

S1  3.26 2.23 1.40 
S2  3.30 2.50 1.30 
S3  3.36 2.26 1.33 
S4  3.20 2.36 1.36 
S5  3.40 2.40 1.30 
S1+Fe (5.6 kg ha-1) 3.60 2.73 1.70 
S2+Fe (5.6 kg ha

-1
) 4.36 3.16 1.56 

S3+Fe (5.6 kg ha-1) 3.50 2.80 1.50 
S4+Fe (5.6 kg ha

-1
) 3.53 2.70 1.50 

S5+Fe (5.6 kg ha-1) 3.63 2.63 1.46 
Source: Khalid et al., 2015 [61] 

 
4.2 Breeding Interventions 
 
When utilizable genetic variability is present in a 
species then genetic biofortification is 
conductible, but when there is no variability, 
transgenic approaches are well qualified [72]. 
Initially reduction of Phytic acid and polyphenols 
are used to be the fundamental approach of 
biofortification as these compounds are known to 
narrow down iron bioavailability. But recent 

studies implies that priority should be given to 
increase iron concentration rather than Phytic 
acid and Plyphenol reduction because those also 
have some beneficial properties and resist 
cancer cell [73,74]. Zein protein over expression 
on soybean increases methionine and cysteine 
content [75] and methionine content by 
cystathionine γ-synthase, [76,77]. Increase in 
beta carotene and oleic acid in soybean has 
been attended by introducing bacterial PSY gene 
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[78] and siRNA-mediated gene silencing had 
been used to reduce α-linolenic acids [79]. 
Similarly, linoleic acid and palmitic acid content 
of soybean was reduced by antisense RNA 
technology [80].  Storage albumin of Brazil nut 
which is rich source of methionine has been used 
to increase common bean methionine content 
[81] whereas, lupines methionine has been 
intensified by albumin of Sunflower [82]. A 
sensitive approach to understand the escalated 
zinc uptake is DNA strand breakage [83].  
 
Field trials regarding genetic effect on selenium 
concentration reported significant difference 
among genotypes [84,85,86]. 94 pea genotypes 

were grown in Saskatchewan field (University of 
Saskatchewan) and not a single nucleotide 
polymorphism (SNP) marker was noted to affect 
seed Se concentration [87]. In contrast, lentil 
and chickpea revealed genotypic variation 
associated with selenium concentration in 
Saskatchewan [88,89,86,90]. Field experiments 
conducted in Morocco, Nepal, Syria, Australia 
and Turkey were also ensured significant 
genetic variance in lentil Se concentration [22]. 
Mungbean [91] and soybean [92] also shown 
genetic variation.  Bean has a potential to 
increase zinc content by 50% and iron by 60-
80% as it evidence high heritability in zinc and 
iron content [93,94,95]. 

 

Table 8. Effect of foliar fertilization on Fe, B and Zn content of cowpea 
 

 Treatment Fe B Zn 
 Mg kg-1 
 Control, 0 ppm 40.00 16.00 8.00 
 Fe, 1 ppm 90.00 31.00 25.00 
 Fe, 2 ppm 154.00 47.00 42.00 
 B, 1 ppm 51.00 31.00 18.00 
 B, 2 ppm 58.00 40.00 24.00 
 Zn, 1 ppm 47.00 26.00 13.00 
 Zn, 2 ppm 50.00 37.00 17.00 
Tukey’s 
HSD 

Treatment and concentration 1.28 1.35 1.35 
Interaction 2.61 2.94 2.94 

Source: Salih, 2013[63] 
 

Table 9. Several lentil released varieties that possess high iron and zinc levels (The 2nd Global 
Conference on Biofortification: Getting Nutritious Foods to People, AshutoshSarker (ICARDA)) 

 

Country Variety Content (ppm) 
Fe Zn 

Bangladesh Barimusur-4 86.2 --- 
Barimusur-5 86 59 
Barimusur-6 86 63 
Barimusur-7 81 --- 

Nepal Sisir 98 64 
Khajurah-2 100.7 59 
Khajurah-1 --- 58 
Shekhar 83.4 --- 

India PusaVaibhav 102 --- 
L4704 125 74 
IPL 220 73-114 51-64 
PusaAgetiMasoor 65.0 --- 

Syria Idlib-2 73 --- 
Idlib-3 72 --- 

Ethiopia Alemaya 82 66 
 

Table 10. Iron biofortified bean variety released by harvest plus Garg et al. [72] 
 

Rwanda Democratic Republic of Congo 
RWR 2245, RWR 2154, MAC 42, MAC 44, CAB 
2, RWV 1129, RWV 3006, RWV 3316, RWV 
3317, and RWV 2887 

COD MLB 001, COD MLB 032, HM 21-7, RWR 
2245, PVA 1438, COD MLV 059, VCB 81013, 
Nain de Kyondo, Cuarentino, Namulenga. 
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4.3 Microbial Interventions 
 

Phytoavailability of micronutrients can be 
increased by soil microorganisms like 
Rhizobium, Bacillus, Pseudomonasetc [96,97]. 
PGPR can be an alternate approach to biofortify 
pulses as it increases disease resistance 
[98,99], solubility of phosphorus [100,101] and 
root growth, [102,56]. But the implication of 
PGPR and other microorganisms in bioforti-
fication of pulses are sparse [103]. 
Rhizobacteria produce siderophores which 
promote iron fortification in crop as well as 
revamps soil fertility directly by enhancing iron 
availability at rhizosphere or indirectly by 
reducing pathogen effect [104,105]. 
 

Grain protein concentration of chickpea ranged 
from 180 to 309 mg g 

−1
  with inoculation 

of  Bacillus PSB1 and  M. ciceri RC3 + A. 
chroococcum A4 + Bacillus PSB10 respectively 
with 25% yield advantage [101].  
 

Fungi and bacteria improves bioavailability of 
zinc at rhizosphere zone [106,107] due to decline 
in soil pH [108,109], chelation [110] and 
increased root sphere [111]. 
 

Some biofortified pulse crop varieties were 
released across the world helping to combat the 
present situation of malnutrition and hidden 
hunger of mineral nutrients among the people 
(Table 9 and 10). 

 

5. CONCLUSION 
 

Largest number of hungry people especially 
children and women live in India which is quite 
alarming. In a developing country like India, 
where maximum people does not have sufficient 
access to afford commercially fortified food, 
diversified diet and food supplements, 
biofortification is an acceptable cost effective 
way to eliminate malnutrition. And evidences 
revealed that a nutritious food like pulse is one 
of the good options to fortify. 
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