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Abstract. Media forensics tries to determine the originating device of a signal. 

We apply this paradigm to microphone forensics, determining the microphone 

model used to record a given audio sample. Our approach is to extract a Fourier 

coefficient histogram of near-silence segments of the recording as the feature 

vector and to use machine learning techniques for the classification. Our test 

goals are to determine whether attempting microphone forensics is indeed a 

sensible approach and which one of the six different classification techniques 

tested is the most suitable one for that task. The experimental results, achieved 

using two different FFT window sizes (256 and 2048 frequency coefficients) 

and nine different thresholds for near-silence detection, show a high accuracy of 

up to 93.5% correct classifications for the case of 2048 frequency coefficients 

in a test set of seven microphones classified with linear logistic regression 

models. This positive tendency motivates further experiments with larger test 

sets and further studies for microphone identification. 
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1   Motivation 

Being able to determine the microphone type used to create a given recording has 

numerous applications. Long-term archiving systems such as the one introduced in 

the SHAMAN project on long-term preservation [3] store metadata along with the 

archived media. Determining the microphone model or identifying the microphone 

used would be a useful additional media security related metadata attribute to retrieve 

recordings by. 

In criminology and forensics, determining the microphone type and model of a 

given alleged accidental or surveillance recording of a committed crime can help 

determining the authenticity of that record. Furthermore, microphone forensics can be 

used in the analysis of video statements of dubious origin to determine whether the 

audio recording could actually have been made by the microphone seen in the video 

or whether the audio has been tempered with or even completely replaced. Also, other 

media forensic approaches like gunshot characterization/classification [12] require 

knowledge about the source characteristics, which could be established with the 

introduced microphone classification approach. 

Finally, determining the microphone model of arbitrary recordings can help 

determine the actual ownership of that recording in the case of multiple claims of 



ownership, and can thus be a valuable passive mechanism like perceptual hashing in 

solving copyright disputes. 

The goal of this work is to investigate whether it is possible to identify the 

microphone model used in making a certain audio recording by using only Fourier 

coefficients. Its goal is not comprehensively cover the topic, but merely to give an 

indication on whether such a classification is indeed possible. Thus, the practical 

results presented may not be generalizable.  

Our contribution is to test the feature extraction based only on frequency domain 

features of near-silence segments of a recording (using two different FFT window 

sizes (256 and 2048 frequency coefficients) and nine different thresholds for near-

silence detection) and to classify the seven microphones using six different classifiers 

not yet applied to this problem. In this process, two research questions are going to be 

answered: First, is it possible to classify microphones using Fourier coefficient based 

features, thereby reducing the complexity of the approach presented in [1]? Second, 

which classification approach out of a variety (logistic regression, support vector 

machines, decision trees and nearest neighbor) is the most suitable one for that task? 

Additionally, first indications for possible dimensionality reduction using principal 

component analysis (PCA) are given and inter-microphone differences in 

classification accuracy are mentioned. 

The remaining paper is structured as follows: Section 2 presents related work to 

place this paper in the larger field of study. Section 3 introduces our general testing 

procedure, while Section 4 details the test setup for the audio recordings and Section 5 

details the feature extraction and classification steps. The test results are then shown 

in Section 6 and are compared with earlier results. The paper is concluded with a 

summary and an outlook on future work in Section 7. 

2   Related Work 

The idea of identifying recording devices based on the records produced is not a new 

one and has been attempted before with various device classes. A recent example for 

the great variety is the work from Filler et al. [6] as well as Dirik et al. [7] on 

investigating and evaluating the feasibility of identifying a camera used to take a 

given picture. Forensics for flatbed scanners is introduced in [8] and Khanna et al. 

summarize identification techniques for scanner and printing device in [9]. Aside 

from device identification, other approaches also look into the determination of the 

used device model, such as done in for cameras models in [10] or performed for 

handwriting devices in [11]. However, to our knowledge no other research group has 

yet explored the feasibility of microphone classification. 

Our first idea based on syntactical and semantic feature extraction, analysis and 

classification for audio recordings was introduced in [13] and described a first 

theoretical concept of a so-called verifier-tuple for audio-forensics. Our first practical 

results were presented by Kraetzer et al. [1] and were based on a segmental feature 

extractor normally used in steganalysis (AAST; computing seven statistical measures 

and 56 cepstral coefficients). The experiments were conducted on a rather small test 

setup containing only four microphones for which the audio samples were recorded 



simultaneously – an unlikely setup for practical applications that limits the 

generalizability of the results. These experiments also used only two basic classifiers 

(Naïve Bayes, k-means clustering). The results demonstrated a classification accuracy 

that was clearly above random guessing, but was still by far too low to be of practical 

relevance. Another approach using Fourier coefficients as features was examined in 

our laboratory with an internal study [5] with an extended test set containing seven 

different microphones. The used minimum distance classifier proved to be inadequate 

for the classification of high-dimensional feature vectors, but these first results were a 

motivation to conduct further research on the evaluation of Fourier features with 

advanced classification techniques. The results are presented and discussed in this 

paper. 

3   Concept 

Our approach is to investigate the ability of feature extraction based on a Fourier 

coefficient histogram to accurately classify microphones with the help of model based 

classification techniques.  

Since Fourier coefficients are usually characteristic for the sounds recorded and not 

for the device recording it, we detect segments of the audio file that contain mostly 

noise, and apply the feature extractor only to these segments. The corresponding 

Fourier coefficients for all those segments are summed up to yield a Fourier 

coefficient histogram that is then used as the global feature vector. 

The actual classification is then conducted using the WEKA machine learning 

software suite [2]. The microphone classification task is repeated with different 

classification algorithms and parameterizations for the feature extractor (non-

overlapping FFT windows with 256 and 2048 coefficients (therefore requiring 512 

and 4096 audio samples per window), and nine different near-silence amplitude 

thresholds between zero and one for the detection of segments containing noise). With 

the data on the resulting classification accuracies, the following research questions 

can be answered: 

1. Is it possible at all to determine a microphone model based on Fourier coefficient 

characteristics of a recording using that microphone? 

2. Which classifier is the most accurate one for our microphone classification setup? 

In addition, we give preliminary results on whether a feature space reduction might be 

possible and investigate inter-microphone differences in classification accuracy. 

4   Physical Test Setup 

For the experiments, we focus on microphone model classification as opposed to 

microphone identification. Thus, we do not use microphones of the same type. 

The recordings are all made using the same computer and loudspeaker for playback 

of predefined reference signals. They are recorded for each microphone separately, so 

that they may be influenced by different types of environmental noise to differing 

degrees. While this will likely degrade classification accuracy, it was done on purpose 



in order for the classification results to be more generalizable to situations were 

synchronous recording of samples is not possible. 

There are at least two major factors that may influence the recordings besides the 

actual microphones that are supposed to be classified: The loudspeaker used to play 

back a sound file in order for the microphone to record the sample again and the 

microphone used to create the sound file in the first place. We assume that the effect 

of the loudspeaker is negligible, because the dynamic range of the high quality 

loudspeaker used by far exceeds that of all tested microphones. The issue is graver for 

the microphones used to create the sound files, but varies depending on the type of 

sound file (see Table 1). 

Table 1. The eight source sound files used for the experiments (syntactical features: 44.1kHz 

sampling rate, mono, 16 bit PCM coding, average duration 30s). 

File Name Content 

Metallica-Fuel.wav Music, Metal 

U2-BeautifulDay.wav Music, Pop 

Scooter-HowMuchIsTheFish.wav Music, Techno 

mls.wav MLS Noise 

sine440.wav 440Hz sine tone 

white.wav White Noise 

silence.wav Digital silence 

vioo10_2_nor.wav SQAM, instrumental 

 

Some of our sound samples are purely synthetic (e.g. the noises and the sine sound) 

and thus were not influenced by any microphone. The others are short audio clips of 

popular music. For these files, our rationale is that the influence of the microphones is 

negligible for multiple reasons. First, they are usually recorded with expensive, high 

quality microphones whose dynamic range exceeds that of our tested microphones. 

And second, the final piece of music is usually the result of mixing sounds from 

different sources (e.g. voices and instruments) and applying various audio filters. This 

processing chain should affect the final song sufficiently in order for the effects of 

individual microphones to be no longer measurable.  

We tested seven different microphones (see Table 2). None are of the same model, 

but some are different models from the same manufacturer. The microphones are 

based on three of the major microphone transducer technologies. 

Table 2. The seven microphones used in our experiments. 

Microphone Transducer technology 

Shure SM 58 Dynamic microphone 

T.Bone MB 45 Dynamic microphone 

AKG CK 93 Condenser microphone 

AKG CK 98 Condenser microphone 

PUX 70TX-M1 Piezoelectric microphone 

Terratec Headset Master Dynamic microphone 

T.Bone SC 600 Condenser microphone 

 

All samples were played back and recorded by each microphone in each of twelve 

different rooms with different characteristics (stairways, small office rooms, big 



office rooms, a lecture hall, etc.) to ensure that the classification is independent from 

the recording environment. 

Thus, the complete set of audio samples consists of 672 individual audio files, 

recorded with seven microphones in twelve rooms based on eight source audio files. 

Each file is about 30 seconds long, recorded as an uncompressed PCM stream with 16 

bit quantization at 44.1kHz sampling rate and a single audio channel (mono). To 

allow amplitude-based operations to work equally well on all audio samples, the 

recordings are normalized using SoX [4] prior to feature extraction. 

5   Feature Extraction and Classification 

Our basic idea is to classify for each recorded file f the microphones based on the FFT 

coefficients of the noise portion of the audio recordings. Thus, the following feature 

extraction steps are performed for each threshold t tested (t ∈{0.01, 0.025, 0.05, 0.1, 

0.2, 0.225, 0.25, 0.5, 1} for n=256 and t ∈{0.01, 0.025, 0.05, 0.1, 0.25, 0.35, 0.4, 0.5, 

1} for n=2048; cf. Figure 1): 

Fig. 1. The classification pipeline. 

The feature extractor first divides each audio file f of the set of recorded files F into 

equally-sized non-overlapping windows fW  with size 2n samples 

( { }( ), ( ),..., ( )f 1 2 mW w f w f w f= ; m=sizeof(f)/(2n)). Two different values for n are 

used in the evaluations performed here: n=256 and n=2048. For each file f, only those 

windows ( )iw f (1≤i≤m) are selected for further processing where the maximum 

amplitude in the window does not exceed a variable near-silence threshold t and thus 

can be assumed to contain no content but background noise. For each n nine different 

t are evaluated here.  

All s selected windows for f form the set fX  ( f fX W⊆ , 

{ }( ), ( ),..., ( )f 1 2 sX x f x f x f= ). These s selected windows are transformed to the 

frequency domain using a FFT and the amplitude portion of the complex-valued 

Fourier coefficients is computed. The resulting vector of n Fourier coefficients 
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(harmonics) for each selected window is identified as 

( ), , ...,f,j 1 2 n f,j
c FC FC FC=
�

with 1≤j≤s. Thus, for each file f, a set Cf of s 

coefficient vectors f,jc
�

 of dimension n is computed. To create a constant length feature 

vector fa
�

 for each f the amplitudes representing the same harmonic in each element 

in Cf are summed up, yielding an amplitude histogram vector fa
�

 of size n. To 

compensate for different audio sample lengths and differences in volume that are not 

necessarily characteristics of the microphone the feature vector is normalized as a last 

step so that its maximum amplitude value is one. 

Parameter Considerations. The test setup allows for two parameters to be chosen 

with some constraints: the FFT window size (2n and has to be a power of two) and 

the amplitude threshold t (between 0 and 1) that decides whether a given sample 

window contains mostly background noise and thus is suitable to characterize the 

microphone. Both need to be considered carefully because their values represent 

trade-offs: 

If t is chosen too low, too few windows will be considered suitable for further 

analysis. This leads the amplitude histogram to be based on fewer samples and thus 

will increase the influence of randomness on the histogram. In extreme cases, a low 

threshold may even lead to all sample windows being rejected and thus to an invalid 

feature vector. On the other hand, a high t will allow windows containing a large 

portion of the content (and not only the noise) to be considered. Thus, the influence of 

the characteristic noise will reduced, significantly narrowing the attribute differences 

between different microphones. For the experiments, various thresholds ranging from 

0.01 to 1 are tested, with special focus on those thresholds for which the feature 

extraction failed for few to no recordings, but which are still small enough to contain 

mostly noise. 

For the FFT coefficients, a similar trade-off exists: If the FFT window size is set 

rather low, then the number n of extracted features may be too low to distinguish 

different microphones due to the reduced frequency resolution. If the window size is 

set too high, the chances of the window to contain at least a single amplitude that 

exceeds the allowed threshold and thus being rejected increases, having the same 

negative effects as a high threshold. Additionally, since the feature vector size n 

increases linearly with the window size, the computation time and memory required 

to perform the classification task increases accordingly. To analyze the effect of the 

window size on the classification accuracy, we run all tests with n = 256 and n = 2048 

samples. For n = 2048, some classifications already take multiple hours, while others 

terminate the used data mining environment WEKA by exceeding the maximum Java 

VM memory size for 32 bit Windows systems (about 2GB). 

 



Classification Tests. For the actual classification tasks, we use the WEKA machine 

learning tool. The aggregated vectors fa
�

 for the different sample files in F are 

aggregated in a single CSV file to be fed into WEKA. From WEKA's broad range of 

classification algorithms, we selected the following ones: 

- Naïve Bayes 

- SMO (a multi-class SVM construct) 

- Simple Logistic (regression models) 

- J48 (decision tree) 

- IB1 (1-nearest neighbor) 

- IBk (2-nearest neighbor) 

All classifiers are used with their default parameters. The only exception is IBk where 

the parameter k needs to be set to two to facilitate a 2-nearest neighbor classification. 

The classifiers work on the following basic principles: 

Naïve Bayes is the simplest application of Bayesian probability theory. The SMO 

algorithm is a way of efficiently solving support vector machines. WEKA's SMO 

implementation also allows the construction of multi-class classifiers from the two 

class classifiers intrinsic to support vector machines. Simple Logistic builds linear 

logistic regression models using LogitBoost. J48 is WEKA's version of a C4.5 

decision tree. The IB1 and IBk classifiers, finally, are simple nearest neighbor and k-

nearest neighbor algorithms, respectively. All classifiers are applied to the extracted 

feature vectors created with n = 256 and n = 2048 samples and various threshold 

values. 

Since only a single set of audio samples is available, all classification tests are 

performed by splitting this test set. As the splitting strategy we chose 10-fold 

stratified cross-validation. With this strategy, the sample set is divided into ten subsets 

of equal size that all contain about the same number of samples from each 

microphone class (thus the term “stratified”). Each subset is used as the test set in 

turn, while the remaining nine subsets are combined and used as the training set. This 

test setup usually gives the most generalizable classification results even for small 

sample sets. Thus, each of the 10-fold stratified cross-validation tests consists of ten 

individual classification tasks. 

6   Experiments and Results 

The classification results for n = 2048 are given in Table 3 and are visualized in 

Figure 2, while the results for the evaluations using 256 frequency coefficients are 

given in Table 4 and Figure 3. The second column gives percentage of recordings for 

which the amplitude of at least one window does not exceed the threshold and hence 

features can be extracted. 

 



Table 3. Classification accuracy for n = 2048 (best result for each classifier is highlighted). 

Threshold 

t 

Percentage of 

( )iw f   

Naive 

Bayes 

SMO Simple 

Logistic 

J48  IB1 2-Nearest 

Neighbor 

(IBk) 

0.01 47.5% 36.3% 54.8% 54.9% 45.5% 53.3% 51.8% 

0.025 67.6% 42.9% 66.5% 69.0% 50.6% 67.3% 64.9% 

0.05 78.6% 45.7% 76.3% 77.4% 60.4% 74.6% 71.1% 

0.1 86.8% 44.6% 79.6% 81.0% 61.5% 79.9% 74.7% 

0.25 97.3% 46.9% 88.2% 88.2% 68.6% 82.7% 80.2% 

0.35 99.7% 35.7% 90.6% 93.5% 71.6% 88.4% 85.4% 

0.40 100.0% 36.5% 88.1% 92.1% 74.0% 88.7% 85.7% 

0.5 100.0% 32.3% 83.2% 87.2% 76.8% 88.2% 85.4% 

1 100.0% 32.3% 83.2% 87.2% 76.8% 88.2% 85.4% 
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Fig. 2. Graph of the classification accuracy for varying threshold values for n = 2048. Results 

for the threshold of one are omitted since these are identical to those of the threshold of 0.5. 

 

 

 

 

 

 



Table 4. Classification accuracy for n = 256 (best result for each classifier is highlighted). 

Threshold 

t 

Percentage 

of ( )iw f  

Naive 

Bayes 

SMO Simple 

Logistic 

J48  IB1 2-Nearest 

Neighbor 

(IBk) 

0.01 64.6% 39.1% 52.6% 65.4% 49.3% 60.6% 56.8% 

0.025 80.8% 43.3% 63.6% 76.0% 59.1% 74.9% 71.8% 

0.05 87.5% 40.2% 63.7% 77.4% 61.0% 74.9% 71.3% 

0.1 95.2% 39.4% 72.3% 83.2% 61.9% 75.3% 72.2% 

0.2 99.6% 40.5% 74.1% 87.5% 71.7% 83.5% 78.1% 

0.225 99.7% 39.3% 74.4% 88.7% 68.2% 83.0% 77.8% 

0.25 100.0% 37.6% 74.7% 90.6% 73.4% 87.1% 82.4% 

0.5 100.0% 33.0% 70.2% 84.2% 74.4% 86.8% 83.8% 

1 100.0% 33.0% 70.2% 84.2% 74.4% 86.8% 83.8% 

 

 

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Threshold

C
o

rr
e
c
t
 C

la
s
s
if

ic
a
ti

o
n

s

Naive Bayes SMO Simple Logistic J48 Decision Tree 1-Nearest Neighbor (IB1) 2-Nearest Neighbor (Ibk)

 

Fig. 3. Graph of the classification accuracy for varying threshold values for n = 256. Results for 

the threshold of one are omitted since these are identical to those of the threshold of 0.5. 

The first fact to be observed is that the number of samples for which not a single 

window falls within the amplitude threshold and which thus can only be classified by 

guessing is quite high even if the threshold used is set as high as 0.1 of the maximum 

amplitude – a value at which the audio signal definitely still contains a high portion of 

audible audio signal in addition to the noise. For all classifiers, the classification 

accuracy dropped sharply when further reducing the threshold. This result was to be 

expected since with decreasing threshold, the number of audio samples without any 

acceptable windows at all increases sharply and thus the classification for more and 

more samples is based on guessing alone. 

For most classifiers, the optimal classification results are obtained with a threshold 

that is very close to the lowest threshold at which features for all recordings in the test 

can be extracted (i.e. each recording has at last a single window that lies completely 



below the threshold). This, too, is reasonable. For a lower threshold, an increasing 

number of samples can only be classified by guessing. And for higher thresholds, the 

amount of signal in the FFT results increases and the amount of noise decreases. 

Since our classification is based on analyzing the noise spectrum, this leads to lower 

classification accuracy as well. However, the decline in accuracy even with a 

threshold of one (i.e. every single sample window in considered) is by far smaller 

than that of low thresholds.  

The classification results for the two window sizes do not differ much. The Naïve 

Bayes classifier yields better results when using smaller windows and thus fewer 

attributes. For all other classifiers, the results are usually better for the bigger window 

size, owing to the fact that a bigger number of attributes allows for the samples to 

differ in more ways. 

The overall best classification results are obtained with the Simple Logistic 

classifier, with about 93.5% (n = 2048) and 90.6% (n = 256). However, for very high 

thresholds that allow a louder audio signal (as opposed to noise) to be part of the 

extracted features, the IB1 classifier performs better than the Simple Logistic one. 

It should be noted that the computation time of the Simple Logistic classifier by far 

exceeds that of every other classifier. On the test machine (Core2Duo 3 GHz, 4GB 

RAM), Simple Logistic usually took about 90 minute for a complete 10-fold cross-

validation, while the other classifiers only take between a few seconds (Naïve Bayes) 

and ten minutes. 

One notable odd behavior is the fact that for very small thresholds, the percentage 

of correctly classified samples exceeds the percentage of samples with valid 

windows, i.e. samples that can be classified. This is due to the behavior of the 

classifiers to in essence guess the class for samples without valid attributes. Since this 

guess is likely to be correct with a probability of one seventh for seven microphones, 

the mentioned behavior can indeed occur. 

 

Comparison with Earlier Approaches. In [1], a set of 63 segmental features was 

used. These were based on statistical measures (e.g. entropy, variance, LSB ratio, 

LSB flip ratio) as well as mel-cepstral features. Their classification results are 

significantly less accurate than ours, even though they use a test setup based on only 

four microphones. Their classification accuracy is 69.5% for Naïve Bayes and 36.5% 

using a k-means clustering approach. 

The results in [5] were obtained using the same Fourier coefficient based feature 

extractor as we did (generating a global feature vector per file instead of segmental 

features and thereby reducing the complexity of the computational classification task), 

but its classification was based on a minimum distance classifier. The best reported 

classification accuracy was 60.26% for n = 2048 samples and an amplitude threshold 

of 0.25. Even for that parameter combination, our best result is an accuracy of 88.2%, 

while our optimal result is obtained with a threshold of 0.35 (indicating that the new 

approach is less context sensitive) and has an accuracy of 93.5%. 



Principle Component Analysis. In addition to the actual classification tests, a 

principle component analysis was conducted on the feature vectors for the optimal 

thresholds (as determined by the classification tests) to determine if the feature space 

could be reduced and thus the classification be sped up. The analysis uncovered that 

for n = 256, a set of only twelve transformed components is responsible for 95% of 

the sample variance, while for n = 2048, 23 components are necessary to cover the 

same variance. Thus, the classification could be sped up dramatically without loosing 

much of the classification accuracy. 

 

Inter-Microphone Differences. To analyze the differences in microphone 

classification accuracy between the individual microphones the detailed classification 

results for the test case with the most accurate results (Simple Logistic, n=2048, 

threshold t=0.35) are shown in a confusion matrix in Table 5. 

The results are rather unspectacular. The number of correct classifications varies only 

slightly, between 89.6% and 96.9% and may not be the result of microphone 

characteristics, but rather be attributed to differences in recording conditions or to 

randomness inherent to experiments with a small test set size. The quite similar 

microphones from the same manufacturer (AKG CK93 and CK98) even get mixed up 

less often as is the case with other microphone combinations. The only anomaly is the 

frequent misclassification of the T.Bone SC 600 as the Terratec Headset Master. This 

may be attributed to these two microphones sharing the same transducer technology, 

because otherwise, their purpose and price differ considerably. 

Table 5. The confusion matrix for the test case Simple Logistic, n=2048, t=0.35. 

Terratec  

Headset  

Master 

PUX 70 

TX-M1 

Shure  

SM 58 

T.Bone  

MB 45 

AKG  

CK 93 

AKG  

CK 98 

T.Bone  

SC 600 classified as 

90.60% 1.00% 0.00% 0.00% 0.00% 0.00% 8.40% Terratec Headset M. 

1.00% 95.00% 1.00% 1.00% 1.00% 1.00% 0.00% PUX 70TX-M1 

3.10% 0.00% 89.60% 5.30% 1.00% 0.00% 1.00% Shure SM 58 

0.00% 0.00% 1.00% 97.00% 1.00% 0.00% 1.00% T.Bone MB 45 

1.00% 0.00% 1.00% 2.20% 93.80% 1.00% 1.00% AKG CK 93 

0.00% 0.00% 0.00% 0.00% 1.00% 94.80% 4.20% AKG CK 98 

2.10% 0.00% 2.10% 0.00% 1.00% 1.00% 93.80% T.Bone SC 600 

7   Summary and Future Work 

This work showed that it is indeed feasible to determine the microphone model based 

on an audio recording conducted with that microphone. The classification accuracy 

can be as high as 93% when the Simple Logistic classifier is used and the features are 

extracted with 2048 frequency components (4096 samples) per window and the 

lowest possible threshold that still allows the extraction of features for all samples of 

the sample set. 



Thus, when accuracy is paramount, the Simple Logistic classifier should be used. 

When computation time is relevant and many attributes and training samples are 

present, the simple nearest neighbor classifier represents a good tradeoff between 

speed and accuracy. 

As detailed in the introduction, these results do by no means represent a definite 

answer in finding the optimal technique for microphone classification. They do, 

however, demonstrate the feasibility of such an endeavor. The research conducted for 

this project also led to ideas for future improvements: 

In some cases, the audio signal recorded by the microphone is a common one and 

an original version of it could be obtained. In these cases, it could be feasible to 

subtract the original signal from the recorded one. This may lead to a result that 

contains only the distortions and noise introduced by the microphone and may lead to 

a much more relevant feature extraction. 

For our feature extractor, we decided to use non-overlapping FFT windows to 

prevent redundancy in the data. However, it might be useful to have the FFT windows 

overlap to some degree, as with more sample windows, the effect of randomness on 

the frequency histogram can be reduced. This is especially true if a high number of 

windows is being rejected by the thresholding decision. 

Another set of experiments should be conducted to answer the question on whether 

our classification approach can also be used for microphone identification, i.e. to 

differentiate even between different microphones of the same model. 

Furthermore, additional features could be used to increase the discriminatory 

power of the feature vector. Some of these were already mentioned in [1] and [5], but 

were not yet used in combination. These features include – among others – the 

microphone's characteristic response to a true impulse signal and the dynamic range 

of the microphone as analyzed be recording a sinus sweep. 

Finally, classifier fusion and boosting may be valuable tools to increase the 

classification accuracy without having to introduce additional features. 
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