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Abstract: In order to improve the understanding of the microphysical characteristics of raindrop size
distribution (DSD) under different rainfall rates (R) classes, and broaden the knowledge of the impact
of radar wavelengths and R classes on the QPE of dual-polarization radars in the Tianshan Mountains,
a typical arid area in China, we investigated the microphysical characteristics of DSD across R classes
and dual-polarimetric radar QPE relationships across radar wavelengths and R classes, based on the
DSD data from a PARSIVEL2 disdrometer at Zhaosu in the Tianshan Mountains during the summers
of 2020 and 2021. As the R class increased, the DSD became wider and flatter. The mean value of
the mass-weighted mean diameters (Dm) increased, while the mean value of logarithm normalized
intercept parameters (log10 Nw) decreased after increasing from C1 to C3, as the R class increased. The
largest contributions to R and the radar reflectivity factor from large raindrops (diameter > 3 mm)
accounted for approximately 50% and 97%, respectively, while 84% of the total raindrops were small
raindrops (diameter < 1 mm). Dual-polarization radars—horizontal polarization reflectivity (Zh),
differential reflectivity (Zdr), and specific differential phase (Kdp)—were retrieved based on the DSD
data using the T-matrix scattering method. The DSD-based polarimetric radar QPE relations of a
single-parameter (R(Zh), R(Kdp)), and double-parameters (R(Zh,Zdr), R(Kdp,Zdr)) on the S-, C-, and
X-bands were derived and evaluated. Overall, the performance of the R(Kdp) (R(Kdp,Zdr)) scheme
was better than that of R(Zh) (R(Zh,Zdr)) for the QPE in the three bands. Furthermore, we have
for the first time confirmed and quantified the performance differences in the QPE relationship of
dual-polarization radars under different schemes, radar wavelengths, and R classes in typical arid
areas of China. Therefore, selecting an appropriate dual-polarization radar band and QPE scheme for
different R classes is necessary to improve the QPE ability compared with an independent scheme
under all R classes.

Keywords: raindrop size distribution; dual-polarization radar; quantitative precipitation estimation;
rain rate class; Tianshan Mountains

1. Introduction

The microphysical characteristics of raindrop size distribution (DSD) are important
for understanding the dynamic processes of precipitation [1–3]. Furthermore, DSD has an
important application value in improving the parameterization scheme of microphysical
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processes in numerical weather prediction models [4–6] and in enhancing the ability to
estimate rainfall kinetic energy [7–9]. More importantly, DSD information is very helpful
for improving the ability of quantitative precipitation estimation (QPE), whether using
ground-based or spaceborne radars [10–12].

The microphysical characteristics of DSD vary with the climate region, terrain, rainfall
type, season, and weather system [13–20]. China is a vast country with significant differ-
ences in climatic characteristics among its different regions. Researchers have conducted
detailed surveys of DSD in the southern [21,22], eastern [23–26], northern [27–29], and
Tibetan Plateau [30,31] regions of China directly affected by the monsoon system and
obtained the characteristics of DSD in these regions. However, the research on Xinjiang,
which accounts for one-sixth of China’s total land area and is characterized by an arid
climate, is insufficient. Xinjiang is not directly affected by the monsoon system and has
an uneven distribution of precipitation [32]. Affected by the terrain, the Tianshan Moun-
tains in central Xinjiang, China, and their adjacent areas are rich in precipitation, while
the famous Taklimakan Desert and Gurbantunggut Desert form farther away from the
Tianshan Mountains [33,34]. In recent years, several studies have partially revealed the
characteristics of DSD on the Tianshan Mountains [35,36]. Several recent studies have
also shown significant differences in DSD in different seasons (spring, summer, and fall),
locations (western and central regions), and altitudes (foot and top stations) in the Tianshan
Mountains [37–39]. However, further in-depth research is needed on the microphysical
characteristics of DSD across the rainfall rate (R) classes in the Tianshan Mountains.

DSD information is of great significance for improving the accuracy of local ground-
based radar QPEs by providing accurate microphysical characteristics of raindrops [14,20,40].
The QPE of single-polarization radars has been revealed in many studies by establishing a
relationship between radar reflectivity factors and rain rates based on DSD data [41–48].
Single-polarization radar QPE relationships in the southern [22], eastern [25], northern [28],
and Tibetan Plateau [31] of China have been established based on local DSD information.
Similarly, based on the DSD data observed in the Tianshan Mountains, researchers have
established single-polarization radar QPE relationships for different seasons, rainfall types,
and altitudes [35–39]. However, the accuracy of the QPE for single-polarization radars
is lower than that for dual-polarization radars [49–52]. Therefore, in recent years, the
QPE relationships for dual-polarization radars have been established in different regions
of China and have shown significantly better QPE capabilities than single-polarization
radars [23,24,26–29,53,54]. More importantly, both the microphysical characteristics of
the DSD and the QPE of the dual-polarization radar are closely related to the rain rate
classes [17,18,28,55], and the QPE of the dual-polarization radar is very sensitive to the radar
wavelength [24,53]. However, the previous studies mentioned above have mostly focused
on the impact of one or two of the three factors, namely the R class, radar wavelength,
and QPE scheme, on the QPE of dual-polarization radars. There has been relatively little
comprehensive analysis of the impact of these three factors on the QPE of dual-polarization
radars, and similarly, there is still a gap in these knowledge in the Tianshan Mountains, a
typical arid area in China.

To reveal the microphysical characteristics of DSD under different rain rate classes
and to explore the effects of radar wavelengths and rain rate classes on the QPE of dual-
polarization radars in the Tianshan Mountains, we conducted this study using DSD data
from the Tianshan Mountains and dual-polarization radar variables based on the T-matrix
scattering method. The remainder of this paper is organized as follows: The data and
methodology are presented in Section 2. Section 3 presents the microphysical characteristics
of the DSD under different rain rate classes and the QPE of the dual-polarization radar
with different wavelengths in the Tianshan Mountains. Section 4 provides the summary
and conclusions of the study.
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2. Data and Methodology
2.1. Study Area and Research Data

Tianshan Mountain is located in northwest China, as well as in Central Asia, and
is not directly affected by the monsoon system. Summer is the most important rainfall
period. In this study, the DSD measurements were collected at Zhaosu (1850.8 m ASL,
43.14◦N, 81.13◦E) over the Tianshan Mountains, China (Figure 1), during the 2020 and 2021
summer season, based on the second-generation OTT Particle Size Velocity (PARSIVEL2)
disdrometer [54]. The PARSIVEL2 disdrometer obtains DSD information by simultaneously
recording particle sizes (32 unequal intervals from 0.062 to 24.5 mm) and fall speeds
(32 unequal intervals from 0.05 to 20.8 m s−1) within a resolution of 1 min [56,57].
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Tianshan Mountains.

2.2. Data Quality Control

The DSD data collected by the PARSIVEL2 disdrometer were affected by many factors,
such as the measurement accuracy and environmental conditions. Therefore, it is necessary
to perform quality control before using DSD data for further analysis. In this study,
the first two particle size bins were not considered because of their low signal-to-noise
ratios [17,45]. Detected raindrops with very large diameters are likely to be generated
by overlapping raindrops rather than by actual independent raindrops [58]; therefore,
raindrops with a diameter of more than 8 mm were deleted. Furthermore, to reduce
marginal effects [57], strong wind, and splashing effects [59] when measuring raindrops
using a PARSIVEL2 disdrometer, the theoretical raindrop fall speed–diameter relation,
proposed by Atlas et al. [60] was used to constrain (within ±60%) the correlation between
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the raindrop fall speed and diameter during measurement, thereby eliminating unrealistic
raindrops [59,61]. In this process, the theoretical raindrop fall speed–diameter relation [60]
was adjusted by considering a correction factor (1.07) for air density adjustments related
to the terrain height of Zhaosu [54]. In addition, samples with raindrop numbers of
<10 or with rain rates of <0.1 mm h−1 were removed [14,62]. After data quality control,
14,609 DSD samples were used.

2.3. DSD and DSD-Based Polarimetric Radar QPE Relations

The DSD (N(Di), m−3 mm−1) for raindrop per unit volume per unit diameter interval
can be calculated according to Equation (1):

N(Di) =
32

∑
j=1

nij

Ae f f (Di) · ∆t ·V(Di) · ∆Di
(1)

where Di (mm) represents the equivalent spherical raindrop diameter of the ith size class;
nij is the number of drops within the ith size class and the ith velocity bin; ∆t (s) represents
the sampling time resolution (60 s in this study); ∆Di (mm) is the diameter interval of
the ith size class; and Aeff (Di) (m2) is the effective sampling area calculated according to
Equation (2):

Ae f f (Di) = 180× 10−6 · (30− 0.5 · Di) (2)

V(Di) (m s−1) is the raindrop velocity at the ith size class [18,45,54,60], which can be
expressed as

V(Di) = (9.65− 10.3 · exp(− 0.6 · Di)) · δ(h) (3)

where δ(h) represents the correction factor for air density adjustments (1.07), and h (m) is
the terrain height of Zhaosu.

The rain rate R (mm h−1), liquid water content LWC (g m−3), total number concentra-
tion of raindrops Nt (m−3), median volume diameter D0 (mm), radar reflectivity factor Z
(mm6 m−3), the normalized intercept parameter Nw (mm−1 m−3), and the mass-weighted
mean diameter Dm (mm) are expressed by Equations (4)–(10), respectively:

R =
6π

104 ·
32

∑
i=1

N(Di) · Di
3 ·V(Di) · ∆Di (4)

LWC =
π

6000
·

32

∑
i=1

N(Di) · D3
i · ∆Di (5)

Nt =
32

∑
i=1

N(Di) · ∆Di (6)

D0

∑
i=1

N(D0) · D3
i · ∆Di =

32

∑
i=D0

N(D0) · D3
i · ∆Di (7)

Z =
32

∑
i=1

N(Di) · D6
i · ∆Di (8)

Nw =
44

π·ρw
·103·W

D4
m

(9)

Dm =
∑32

i=1 N(Di)·D4
i ·∆Di

∑32
i=1 N(Di)·D3

i ·∆Di
(10)

The gamma model describing DSD [13] is given by Equation (11).

N(D)= N0 · Dµ · exp(−Λ · D) (11)
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where N0 (mm−1-µ m−3), µ (−), and Λ (mm−1) represent the intercept parameter, the
shape factor, and the slope parameter of the gamma model, respectively [19]. These three
parameters were calculated using the truncated moment method [63,64] with the third–
fourth–sixth moments [13–15,18,45,54], where the nth order moment Mn (mmn m−3), N0,
µ, and Λ can be calculated according to the following Equation:

Mn =
∫ ∞

0
Dn · N(D) · dD (12)

G =
M3

4
M2

3 M6
(13)

N0 =
M3·∧µ+4

Γ(µ + 4)
(14)

µ =
11·G− 8 +

√
G·(G + 8)

2(1− G)
(15)

Λ = (µ + 4) · M3

M4
(16)

DSD-based QPE relations of dual-polarization radars have been proven to be very
helpful in improving the accuracy of QPE [23,24,26–29,53,54], and these DSD-based QPE
relations are established by the dual-polarization radar variables: radar reflectivity at
horizontal or vertical polarization Zh,v (mm6 m−3), differential reflectivity Zdr (dB), and the
specific differential phase Kdp (◦ km−1), which can be calculated using the observed DSD
based on the method of T-matrix scattering [52,65–67] as follows:

Zh,v =

(
4 · λ4

π4 · |Kw|2

)
·
∫ Dmax

Dmin

∣∣ fhh,vv(D)
∣∣2 · N(D) · dD (17)

Zdr = 10 · log10

(
Zh
Zv

)
(18)

Kdp = 10−3 · 180
π
· λ · Re

{∫ Dmax

Dmin
[ fh(D)− fv(D)] · N(D) · dD

}
(19)

where λ (mm) and Kw (−) represent the radar wavelength (for the S-, C-, and X-band, the
values are 111.0 mm, 53.5 mm, and 33.3 mm, respectively), and the dielectric constant factor
of water (here is 0.9639), respectively; fhh,vv(D) and fh,v(D) represent the backscattering
amplitude and the forward scattering amplitude of a raindrop with horizontal and vertical
polarizations, respectively. In addition, the raindrops followed the axis–ratio relationship
proposed by Brandes [52].

The DSD-based QPE relationships, including R(Zh), R(Kdp), R(Zh,Zdr), and R(Kdp,Zdr) of
the dual-polarization radar, were derived for the S-, C-, and X-bands. The dual-polarization
radar QPE estimators are as follows:

R(Zh) = α · Zβ
h (20)

R(Kdp) = α · Kβ
dp (21)

R(Zh, Zdr) = α · Zβ
h · 10γ·Zdr (22)

R(Kdp, Zdr) = α · Kβ
dp · 10γ·Zdr (23)

where α, β, and γ are coefficients in the corresponding QPE estimator.
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2.4. Assessing the Accuracy of QPE Estimators

The R value calculated using Equation (4), containing DSD information, was used to
evaluate the performance of the QPE algorithms (Equations (20)–(23)) in the S-, C-, and
X-band dual-polarization radars at Zhaosu. The correlation coefficient (CC), root mean
square error (RMSE), and normalized mean absolute error (NMAE) were adopted for the
evaluation of the QPE algorithms in this study, and are defined as

CC =
∑n

i=1 (Ri − R) · (Re,i − Re)√
∑n

i=1 (Ri − R)
2 ·
√

∑n
i=1 (Re,i − Re)

2
(24)

RMSE =

√
1
n
·∑n

i=1(Re,i − Ri)
2 (25)

NMAE =
1
n ·∑

n
i=1|Re,i − Ri|

R
(26)

where n represents the number of samples; Ri and R are the individual and mean R
calculated from the DSD data, respectively; and Re,i and Re represent the individual and
mean R calculated from the QPE algorithms, respectively.

3. Results
3.1. DSD Characteristics under Different Rain Rate Classes

Many previous studies have revealed that the characteristics of DSD vary with rain
rates (R) [17,18,24,30,53]. To reveal the microphysical characteristics of DSD under different
rain rate classes, referring to previous classification standards [36,38], all the samples
were classified into six classes on the basis of R: C1: 0.1–0.5 mm h−1, C2: 0.5–1 mm h−1,
C3: 1–2 mm h−1, C4: 2–5 mm h−1, C5: 5–10 mm h−1, and C6: ≥10 mm h−1. The number of
samples for each class is listed in Table 1. The accumulated rain duration (red histogram)
and amount (blue line) for the six R classes in Zhaosu are shown in Figure 2. As the R
class increased, its contribution to the total rainfall duration decreased. Specifically, the
first two classes (C1 and C2) contributed the most to the total rain duration, accounting for
40.9% and 20.7%, respectively, whereas the last two classes (C5 and C6) contributed the
least to the total rain duration, contributing less than 7%. The largest contributor to the
total amount of rain was the fourth class (C4), followed by the last class (C6), accounting
for 27.4% and 23.2%, respectively.

Table 1. Several important DSD parameters for the six R classes.

Parameters No. of
Samples

R
(mm h−1)

D0
(mm)

LWC
(g m−3)

Z
(dBZ)

Nt
(m−3)

C1 5970 0.26 0.90 0.02 14.67 188
C2 3030 0.72 1.00 0.05 20.66 222
C3 2563 1.43 1.13 0.09 25.04 237
C4 2109 3.07 1.34 0.17 30.25 249
C5 612 6.91 1.72 0.32 36.21 254
C6 325 16.85 2.30 0.66 43.03 260

The DSD variations for the different R classes in Zhaosu are shown in Figure 3. As the
R class increased, the raindrop spectrum widened, along with the increased concentrations
of large raindrops (diameter > 3 mm), medium-size raindrops (1 ≤ diameter ≤ 3 mm), and
small raindrops (diameter < 1 mm) [18,68], and reached the peak concentration at small
raindrops around 0.6 mm in diameter for all classes (color lines) and all samples (black
line). For small raindrops, the raindrop spectra of all the samples were between those
of C1 and C2, whereas the raindrop spectrum of medium-size raindrops for all samples
was similar to that of C3. For large raindrops, the raindrop spectra of all the samples
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were between C4 and C5. Box-and-whisker plots of the variations in the mass-weighted
mean diameter (Dm) and normalized intercept parameter (log10Nw) for the six R classes are
shown in Figure 4. The mean Dm value increased from 0.92 mm at C1 to 2.40 mm at C6
with an increasing R class, while the mean log10Nw value first increased and then decreased
with an increasing R class, reaching a maximum at C3 (3.63 mm−1 m−3) and a minimum at
C6 (3.27 mm−1 m−3). Furthermore, several other important DSD parameters, such as R,
median volume diameter (D0), liquid water content (LWC), radar reflectivity factor (Z), and
total number concentration of raindrops (Nt), for different R classes in Zhaosu are shown
in Table 1. Their mean values increased with an increasing R class.
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The DSD was composed of raindrops of different sizes (large, medium, and small) and
their corresponding concentrations. Therefore, discussing the contribution of raindrops of
various sizes to the parameters is conducive to further understanding the DSD [37]. Figure 5
illustrates the contributions of small, medium-size, and large drops to R, Z, LWC, and Nt
in Zhaosu. Large raindrops contributed nearly half of R; small raindrops contributed less
than 14% to R; and medium-size raindrops contributed nearly 37% to R. The vast majority
of the contributions to Z were from large raindrops (over 96%), whereas the contribution of
small raindrops to Z was minimal (less than 0.2%). Most contributions to LWC came from
medium-size raindrops (>40%), followed by large raindrops (>33%). The majority of the
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contribution to Nt was from small raindrops (over 96%), whereas the contribution of large
raindrops to Nt was minimal (approximately 0.3%).
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3.2. Dual-Polarization Radar QPE Relations

Previous studies have revealed the advantages of using DSD information to
retrieve dual-polarization radar variables for QPE based on the T-matrix scattering
method [23,24,26–29,54]. The dual-polarization radar variables Zh, Zdr, and Kdp were
calculated using Equations (17)–(19). Figure 6 shows the scatterplots of Zdr versus Zh
and Kdp versus Zh and the power–law fitting algorithms derived for Zdr–Zh and Kdp–Zh
on the S-, C-, and X-bands. For these three-band Zdr–Zh relations, the coefficient values
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ranged from 3.975 × 10−5 to 9.237 × 10−5, and the exponent values varied between 2.595
and 2.842. Specifically, the Zdr–Zh relationship in the S-band (C-band) had the smallest
coefficient (index) value and the largest index (coefficient) value. For the Kdp–Zh relations
on the S-, C-, and X-bands, the coefficient values ranged from 3.466 × 10−13 (on the X-
band) to 9.261 × 10−13 (on the C-band), and the exponent values varied between 7.153
(on the C-band) and 7.541 (on the X-band). From the above results, it can be seen that the
Zdr–Zh relation corresponding to different radar bands had obvious differences, as did the
Kdp–Zh relation, which further illustrates the necessity of studying dual-polarization radar
variables and their relationships (including the QPE) at different radar bands.
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The DSD-based dual-polarization radar QPE relationships (R(Zh), R(Kdp), R(Zh,Zdr),
and R(Kdp,Zdr)) for the S-, C-, and X-bands at Zhaosu were derived in this study and are
listed in Table 2. Differences were observed in the QPE estimators for the different bands.
Specifically, the two coefficients (α and β, as shown in Equation (20)) of the R(Zh) relation
on the S- and C-bands were very similar, with a small difference compared to them on
the X-band. For the R(Kdp) relations, the difference in the α coefficient was relatively large
(13.053 to 27.831), while the difference in the β coefficient (as shown in Equation (21))
was relatively small (0.639 to 0.668) on these three bands. For the R(Zh,Zdr) relations, the
differences in the α and γ coefficients were relatively large, while the difference in the β
coefficient (as shown in Equation (22)) was relatively small. The α coefficient (as shown
in Equation (23)) was 23.265 on the X-band, while the α coefficient on the C-band was
about twice that, and the α coefficient on the S-band was about three times that at the
R(Kdp,Zdr) relation.

Table 2. The DSD-based dual-polarization radar QPE relations for S-, C-, and X-band at Zhaosu.

Band R(Zh) R(Kdp) R(Zh,Zdr) R(Kdp,Zdr)

S R(Zh) = 0.096 Zh
0.468 R(Kdp) = 27.831 Kdp

0.639 R(Zh,Zdr) = 0.013
Zh

0.82410−0.352Zdr
R(Kdp,Zdr) = 75.719
Kdp

0.84510−0.172Zdr

C R(Zh) = 0.098 Zh
0.457 R(Kdp) = 16.914 Kdp

0.641 R(Zh,Zdr) = 0.010
Zh

0.90010−0.556Zdr
R(Kdp,Zdr) = 51.816
Kdp

0.89010−0.251Zdr

X R(Zh) = 0.070 Zh
0.497 R(Kdp) = 13.053 Kdp

0.668 R(Zh,Zdr) = 0.018
Zh

0.74410−0.294Zdr
R(Kdp,Zdr) = 23.265
Kdp

0.81610−0.147Zdr

It is important to evaluate the performance of various DSD-based dual-polarization
radar QPE relations in QPE applications. R calculated from DSD (Equation (4)) was used
to evaluate the QPE relations [27,28,53,54,69]. In this study, three evaluation indicators—
the correlation coefficient (CC), root mean square error (RMSE), and normalized mean
absolute error (NMAE)—were used to evaluate the different QPE relations for different
bands [27,53]. Figures 7–9 show the scatterplots of R computed from the QPE relations and
the DSD information on the S-, C-, and X-bands. The performances of the double-parameter
schemes (R(Zh, Zdr) and R(Kdp, Zdr)) were superior to those of the single-parameter schemes
(R(Zh) and R(Kdp)) for all bands, characterized by a larger CC and smaller RMSE and
NMAE. The performance of the R(Kdp) scheme is better than that of the R(Zh) scheme for
single-parameter schemes. Similarly, the R(Kdp, Zdr) scheme showed a relatively better
performance than the R(Zh, Zdr) scheme in the double-parameter schemes. Moreover,
both single-parameter schemes performed the best for the X-band, whereas both double-
parameter schemes performed the best for the C-band.

3.3. QPE Relations under Different Rain Rate Classes

R classes have an important impact on the performance of dual-polarization radar QPE
estimators [53,55,69] as well as radar bands [53,55,69]. To quantify the performance of QPE
estimators under different R classes and different radar bands, we used CC, RMSE, and
NMAE to evaluate the performance of these QPE estimators in detail. Before evaluating
the performance of the QPE estimators, we first provided the distribution and average
values of the dual-polarization radar variables required to establish these QPE estimators in
Table 2 for different R classes and different radar bands, as shown in Figure 10 and Table 3.
Zh increased with an increasing R class for all bands, and the mean Zh value in the X-band
was the largest for all R classes except C6, compared to that in the S- and X-bands. The
distribution of Zh was narrowest in C2 and widest in C6 for all the bands. Similar to Zh, Zdr
also increased with an increasing R class for all bands; however, in the first two R classes
(C1 and C2), Zdr was largest in the X-band, whereas in the middle two R classes (C3 and
C4), Zdr was largest in the C-band, and in the last two R classes (C5 and C6), Zdr was largest
in the S-band. The distribution of Zdr was narrower in the first three R classes and widened
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in the last three R classes, particularly in the last R class (C6), where Zdr had the widest
distribution. Interestingly, during the process of increasing Kdp as the R class increased,
the mean Kdp value of the next R class was about three times that of the previous R class
for all bands (for example, 11.3 × 10−3 ◦ km−1 in C3 and 32.8 × 10−3 ◦ km−1 in C4 for
S-band). The mean Kdp value in the C-band was about twice that in the S-band, and the
mean Kdp value in the X-band was about three times that in the S-band for each R class
(for example, 11.3 × 10−3 ◦ km−1 in the S-band, 24.2 × 10−3 ◦ km−1 in the C-band, and
39.8 × 10−3 ◦ km−1 in the X-band for C3).
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Table 3. The mean of Zh, Zdr, and Kdp on the S-, C-, and X-bands for the six R classes. Red font
indicates the maximum value at the same R class.

Band
Zh (dBZ) Zdr (10−1 dB) Kdp (10−3 km−1)

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

S 15.82 21.73 26.08 31.27 37.47 44.69 10.47 10.71 11.05 11.71 12.93 15.17 1.4 4.5 11.3 32.8 110.1 426.7
C 15.93 21.89 26.31 31.64 38.03 45.51 10.48 10.72 11.09 11.79 12.90 14.71 2.9 9.5 24.2 71.5 241.7 933.6
X 16.09 22.10 26.58 31.94 38.18 45.22 10.49 10.73 11.07 11.70 12.75 14.69 4.7 15.5 39.8 116.2 379.9 1394.0
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Figure 11 shows the CC, RMSE, and NMAE of R estimated from the dual-polarization
radar QPE estimators against R calculated from the DSD under different R classes (C1–C6)
and radar bands (the S-, C-, and X-bands). The performances of the four schemes for these
three bands differed under different R classes. For the S-band radar, the R(Zh) estimator
had the worst performance, characterized by a relatively lower CC and higher RMSE
and NMAE for all R classes, followed by the R(Kdp) estimator. The R(Kdp,Zdr) estimator
performed the best (highest CC and lowest RMSE and NMAE) for all R classes. The RMSE
of all the estimators increased with an increasing R class, whereas the CC and NMAE did
not monotonically increase or decrease during this process (Figure 11a–c). For the C-band
radar, similar to the S-band radar, the performance of the R(Zh) estimator remained the
worst, followed by that of the R(Kdp) estimator for all R classes. However, unlike in the
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S-band radar, the performance of the R(Kdp,Zdr) estimator was not always the best for all
the R classes in the C-band radar. Specifically, when the R class was between C1 and C4,
the R(Zh,Zdr) estimator was slightly superior to the R(Kdp,Zdr) estimator, with a higher
CC and lower RMSE and NMAE; however, the opposite was true when the R class was
C5 and C6 (Figure 11d–f). For the X-band radar, similar to the S-band radar, the R(Zh)
estimator exhibited the worst performance, whereas the R(Kdp,Zdr) estimator exhibited
the best performance for all the R classes. However, the gap in performance between the
R(Kdp) and R(Zh,Zdr) estimators for X-band radars narrowed compared to the S- and C-band
radars, as reflected in the narrowing of the gap between the three evaluation parameters
(CC, RMSE, and NMAE) (Figure 11d–f).
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For the same type of QPE estimator and the same R class, the performances of the
estimators in the different bands were different. Taking the R(Zh,Zdr) estimator at C3 as
an example, for the R(Zh,Zdr) estimator at C3, the CC, RMSE, and NMAE were 0.669,
0.318 mm h−1, and 0.73 mm h−1 in the C-band, respectively, while the CC, RMSE, and
NMAE were 0.554 (0.471), 0.417 (0.501) mm h−1, and 0.227 (0.258) mm h−1 in the S-band
(X-band), respectively. Therefore, among the three bands, the C-band estimator performed
the best, whereas the X-band estimator performed the worst for the R(Zh,Zdr) estimator
at C3. Similarly, taking the R(Zh) estimator at C6 as an example again, for the R(Zh)
estimator at C6, the CC, RMSE, and NMAE were 0.689, 6.032 mm h−1, and 0.295 mm
h−1 in the X-band, respectively, while the CC, RMSE, and NMAE were 0.634 (0.646),
6.749 (6.651) mm h−1, and 0.332 (0.329) mm h−1 in the S-band (X-band), respectively.
Therefore, among the three bands, the X-band estimator performed best, whereas the S-
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band estimator performed worst for the R(Zh) estimator at C6. Overall, the performances of
the double-parameter schemes were significantly better than those of the single-parameter
schemes for all bands and R classes. Furthermore, the performance of the dual-parameter
estimators in the C-band was better than that in the S- and X-bands for all R classes, and
the performance of the R(Zh,Zdr) estimator was better compared to the R(Kdp,Zdr) estimator
at lower R classes (C1 to C4, R less than 5 mm h−1), while the performance of the R(Kdp,Zdr)
estimator was better compared to the R(Zh,Zdr) estimator at higher rainfall rates (C5 to C6,
R greater than 5 mm h−1) for the C-band. It is worth noting that previous studies have
shown the importance of selecting suitable estimators for actual dual-polarization radar
QPEs, and suitable estimators need to be provided for different regions and different band
radars [55,69–71]. For a dual-polarization radar QPE estimator in the Tianshan Mountains,
we plan to conduct the relevant research based on dual-polarization radar observational
data in the future.
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4. Summary and Conclusions

To reveal the microphysical characteristics of the raindrop size distribution (DSD)
across rainfall rate (R) classes, and more importantly, to quantify the effects of radar
wavelengths, QPE estimators, and R classes on the QPE of dual polarization radars in typical
arid areas of China, DSD data from a PARSIVEL2 disdrometer at Zhaosu in the Tianshan
Mountains during summer 2020 and 2021 were used to investigate the microphysical
characteristics of DSD for six rain rate (R) classes (C1: 0.1–0.5 mm h−1, C2: 0.5–1 mm
h−1, C3: 1–2 mm h−1, C4: 2–5 mm h−1, C5: 5–10 mm h−1, and C6: ≥10 mm h−1) and
DSD-based polarimetric radar quantitative precipitation estimation (QPE) relations on the
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S-, C-, and X-bands for different R classes. The analysis revealed that the first two R classes
(C1 and C2) contributed the most to the total rain duration, which accounted for 40.9% and
20.7%, respectively, and the largest contributors to the total rain amount were the fourth
class (C4) and the last class (C6), which accounted for 27.4% and 23.2%, respectively. The
raindrop spectrum widened, characterized by an increase in the concentrations of large
raindrops (diameter > 3 mm), medium-size raindrops (1 ≤ diameter ≤ 3 mm), and small
raindrops (diameter < 1 mm) with an increasing R class. The mean Dm value increased from
0.92 mm in C1 to 2.40 mm in C6, while the mean logarithm of log10Nw value decreased
after increasing from C1 to C3 with an increasing R class. In addition, the mean values of R,
D0, LWC, Z, and Nt increased with the R class. For the entire dataset, large raindrops had
the largest contribution to R and Z, accounting for 50% and 97% of the total contribution,
respectively, compared with small and medium-size raindrops, whereas small raindrops
had the largest contribution to Nt, accounting for more than 84% of the total contribution.

Dual-polarization radar parameters including Zh, Zdr, and Kdp were retrieved based
on the DSD data using the T-matrix scattering method. The Zdr-Zh and Kdp-Zh relations
were established in a power–law fitting form on the S-, C-, and X-bands. The Zdr-Zh relation
corresponding to different radar bands had obvious differences as well as the Kdp-Zh
relation. The DSD-based dual-polarization radar QPE estimators (R(Zh), R(Kdp), R(Zh,Zdr),
and R(Kdp,Zdr)) for the S-, C-, and X-bands were derived. For the R(Zh) relations, the two
coefficients (α and β) on the S- and C-bands were very similar, with a small difference
compared to them on the X-band. For the R(Kdp) relations, the difference in the α coefficient
was relatively large (13.053 to 27.831), while the difference in the β coefficient was relatively
small (0.639 to 0.668) on these three bands. For the R(Zh,Zdr) relations, the differences in
the α and γ coefficients were relatively large, while the difference in the β coefficient was
relatively small. For the R(Kdp,Zdr) relations, the α coefficient was 23.265 on the X-band,
while the α coefficient on the C-band was about twice that, and the α coefficient on the
S-band was about three times that. The CC, RMSE, and NMAE of R estimated from the
dual-polarization radar QPE estimators against R calculated from the DSD were used to
evaluate the performance of these dual-polarization radar QPE estimators. The result
revealed that the performance of double-parameter estimators (R(Zh,Zdr) and R(Kdp,Zdr))
was superior to that of single-parameter estimators (R(Zh) and R(Kdp)), and the performance
of the R(Kdp) (R(Kdp,Zdr)) estimator was superior to that of the R(Zh) (R(Zh,Zdr)) estimator
for all the bands. Overall, the single-parameter estimator performed the best for the X-band,
whereas the double-parameter estimator performed the best for the C-band.

Furthermore, the distribution and mean values of the dual-polarization radar vari-
ables establishing these QPE estimators across R classes and radar wavelengths were
determined, and the performance of these four types of estimators (R(Zh), R(Kdp), R(Zh,Zdr),
and R(Kdp,Zdr)) for the three bands (S-, C-, and X-bands) showed differences across the
R classes. Generally, for all the R classes, the dual-parameter estimators had better per-
formances in the C-band than the other two bands, and the performance of the R(Zh,Zdr)
(R(Kdp,Zdr)) estimator was better compared to the R(Kdp,Zdr) (R(Zh,Zdr)) estimator at lower
(higher) R classes for the C-band. Our conclusion emphasizes that when conducting dual-
polarization radar QPE applications, it is necessary to consider both the appropriate radar
wavelength and the type of estimator, as well as the impact of R classes on the accuracy of
QPE. It should be noted that although this study reported promising findings, they need to
be further confirmed using dual-polarization radar observations in the future.
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