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Abstract
Quantitative microscopy relies on imaging of large cell numbers but is often hampered by time-
consuming manual selection of specific cells. The ‘Micropilot’ software automatically detects
cells of interest and launches complex imaging experiments including three-dimensional
multicolor time-lapse or fluorescence recovery after photobleaching in live cells. In three
independent experimental setups this allowed us to statistically analyze biological processes in
detail and is thus a powerful tool for systems biology.

The fluorescence microscope has developed into a versatile quantitative measuring device in
cell biology. Advanced imaging techniques including four-dimensional imaging and
fluorescence recovery after photobleaching (FRAP) can be used to visualize and analyze
complex biological processes in cells, organelles and subcellular compartments1,2. However,
quantification with statistical significance requires sampling high numbers of events. This
poses a challenging problem for the quantification of rare cellular events.

In principle, computational image analysis can be used to detect specific cells in microscopy
images automatically. Several open-source packages for postacquisition image processing of
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cell-based assays already include classification by machine learning for cell recognition.
Examples are CellProfiler Analyst/CellClassifier3,4 and EBImage5, which provide
workflows for fixed cell images as well as CellCognition6, a package dedicated to the
classification of large time-lapse datasets with a fast image-processing engine. Several
commercial tools, for example, Acapella from Perkin-Elmer or ScanR from Olympus,
enable analysis of a few generally applicable cell-based assays but lack the extensibility to
new algorithms that open-source packages have. In contrast, not only dedicated screening
platforms but also state-of-the-art research microscopes have become fully motorized and
computer controlled either by microscope vendor or open-source software packages such as
µManager. But there has been no software solution to leverage the power of machine
learning based cell recognition to automatically control the whole repertoire of fluorescence-
based imaging assays.

To fill this gap, we developed the Micropilot software that effectively replaces a human
expert at the microscope to identify cells of interest and automate even complex
fluorescence microscopy–based imaging assays (Supplementary Software). Micropilot
provides a machine learning-based module that can be rapidly trained by the user to
automatically identify desired cell states during an unattended, fast, low-resolution
prescanning mode. Upon identification of a cell of interest Micropilot switches to a complex
imaging mode that automatically runs desired complex high-resolution and high-
information-content imaging assays such as high-resolution three-dimensional (3D) time-
lapse imaging or FRAP. After completion of the desired complex imaging procedure,
Micropilot returns to the low-resolution prescanning mode to identify additional cells of
interest (Fig. 1a). We used Lab View for the main Micropilot program and C for the image
analysis routines. We tested Micropilot on the Microsoft Windows platform.

Micropilot relies on a robust communication channel to read the low-resolution prescan
microscope images, interrupt the scan to analyze them and reconfigure the microscope for
the desired complex imaging procedure (Fig. 1b,c). Pseudocode examples are listed in
Supplementary Table 1. The hardware prerequisites for such automatic imaging systems are
(i) motorization of the microscope stage, (ii) automatic changing of objectives and/or laser
scanner zoom, and (iii) switching of fluorescence filter and/or laser lines. The microscope
system should also provide multipositioning or grid scanning along with autofocus
capabilities. Micropilot can remotely control any microscope offering interfaces to this
specification. We implemented Micropilot for Leica SP5, µManager, Olympus ScanR,
PerkinElmer Ultra View ERS and Zeiss 510. Certainly, µManager as an open-source
microscope control software allocates most freedom for users in terms of further
developments.

To test the power of Micropilot, we applied this platform to three different fluorescence
microscopy–based assays, focusing on the biological process of cell division for which low-
resolution imaging data from functional genomic studies have recently become available7,8.
We aimed to identify automatically the two most transient mitotic stages, prophase and
anaphase, in low-resolution prescan images and wanted to assay three different biological
processes: (i) the biogenesis of endoplasmic reticulum exit sites (ERESs) after mitosis using
high-resolution immunofluorescence, (ii) the assembly of the microtubule spindle using 3D
time-lapse imaging and (iii) the binding of chromobox homolog 1 to condensing
chromosomes using FRAP. To test the hardware flexibility of the software, we used two
different microscopy systems for these assays.

ERESs disappear during metaphase in mitosis and reassemble at the telophase or cytokinesis
transition9. To understand ERES biogenesis quantitatively, we trained the Micropilot
classifier to recognize mitotic cells by their chromosome configuration in the DNA
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(Hoechst) channel and select those that showed quantifiable expression of YFP-tagged
SEC31, a COPII component and ERES marker (Fig. 2a). The trained classifier provided
92% sensitivity (Supplementary Fig. 1a) with a positive predictive value (PPV) of 88% (Fig.
2b). For three microscope slides containing HeLa-Kyoto cells, we acquired 2,700 image
fields at low resolution and detected 173 high-resolution confocal 3D stacks (each
comprising 50 slices) of anaphase and later mitotic stages (Fig. 2c) during three unattended
overnight scans with only 1.5 h combined hands-on time. After manual quality inspection of
the image data, we quantified the number of ERESs in 91 of the high-resolution 3D stacks.
This revealed that the average number of ERESs exponentially increased with the volume
increase of the nuclei (Fig. 2d) but showed no clear correlation with the increase in inter-
nuclei distance (Supplementary Fig. 1b). As nuclear volume marks the progression of cells
from anaphase to cytokinesis, these data are consistent with earlier work9 suggesting ERES
biogenesis after mitosis to be most efficient at the telophase or cytokinesis transition. In the
future, extending the experiments we performed with additional markers of ERES
composition and systematic microscopy-based quantification enabled by Micropilot will
shed more light on the mechanism of postmitotic ERES biogenesis.

The assembly of the mitotic microtubule spindle is a highly dynamic process, which starts
upon mitotic entry in prophase and is a key prerequisite for genome segregation. We aimed
to automatically image prophase cells and the first appearance of microtubule asters in four
dimensions, which enables dynamic measurement of structural parameters of the forming
spindle such as its length. We trained the Micropilot classifier to identify prophase HeLa
cells based on the condensing chromatin (histone H2B tagged with mCherry, abbreviated
H2B-mCherry), and subsequently recorded fluorescently labeled microtubules (EGFP-
tagged α-tubulin, abbreviated EGFP-tubulin) and chromosomes in two-color, 3D time-lapse
sequences of live cells at high spatial and temporal resolution. We fed 3,644 fluorescently
labeled H2B-mCherry cells into the Micropilot multiclass support vector machine (SVM)
classifier to recognize six major mitotic phases (Supplementary Fig. 2a). The resulting
classifier achieved 97% mean sensitivity and 87% mean PPV (Supplementary Fig. 2b) in
good accordance with other mitotic classifications10,11 and could be used without retraining
to control a second confocal microscope from the same manufacturer with very similar
prophase PPV of 85% (Supplementary Fig. 2c). These findings indicate good generalization
properties of the classifier that is not dramatically affected by hardware variations of the two
similar confocal microscopes or biological sample variation over 6 months. In 15 unattended
overnight runs, more than 120 high-resolution, 3D time-lapse mitosis movies were
generated, instead of an expected 2 months of full-time manual work by an experienced
microscopist (Fig. 2e and Supplementary Video 1). Quantitative analysis of the movies
revealed that the mean pole-to-pole distance of the metaphase spindle of HeLa cells was
15.6 ± 1.6 µm (±s.d.) and increased to 25.3 ± 1.7 µm in telophase (Fig. 2e,f), which is
consistent with previous measurements12. Exploiting this automatic quantitative assay for
spindle assembly, we analyzed the cells in which expression of the essential centromere
protein CENP-E had been knocked down by siRNA. Automatic sampling of 71 CENPE-
depleted cells arrested in prophase or prometaphase13, revealed three different
subpopulations of spindle lengths, with mean pole-to-pole distances of 15.5 ± 3.2 µm, which
correlated with the number of unaligned chromosomes at the poles (Fig. 2g,h). The good
statistical sampling of prophase or prometaphase stages enabled by Micropilot thus revealed
that depletion of CENP-E activity by RNAi led to different metastable spindle defects rather
than a continuous spectrum of abnormal spindle lengths.

Condensation of mitotic chromosomes is a dynamic structural reorganization of the genome
in mitotic prophase and is poorly understood molecularly. To define candidate proteins for
this process their binding to condensing chromosomes needs to be assayed. As an example
candidate we focused on chromobox homolog 1 (CBX1 or heterochromatin protein 1 beta
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(HP1β)). In interphase, CBX1 binds in heterochromatic areas of chromosomes14, but it is
largely released from chromosomes in metaphase and freely diffuses in the cell15. To
analyze CBX1 binding to condensing chromosomes, we performed automatic FRAP
analysis on prophase and interphase nuclei. We trained the Micropilot classifier to identify
prophase 3T3 cells based on the condensing chromatin (H2B-mCherry), and subsequently
performed automatic FRAP experiments on CBX1-EGFP by photobleaching half of the
nucleus and following the recovery of CBX1 fluorescence during 1 min (Fig. 3a and
Supplementary Videos 2–4). The binary prophase classifier had 92% mean sensitivity and
95% mean PPV on untrained images (Supplementary Fig. 3a). In four unattended overnight
runs we bleached 115 interphase and 117 prophase cells. The manual selection of the rare
prophase stages would have required a full month of work by an expert microscopist. The
recovery curves of 50 interphase cells exhibited a characteristic halftime of recovery (t1/2) of
6.7 ± 1.4 s (±s.d.), resulting from the exchange of the heterochromatin-bound pool (Fig. 3b).
The t1/2 values of 64 prophase cells were distributed in two distinct populations with distinct
kinetics (Supplementary Fig. 3b) suggesting that CBX1-chromatin interactions undergo
discrete changes during prophase. By analyzing the chromosome condensation state in the
two populations, we found that the two clusters of recovery halftimes corresponded to early
and late condensation stages (Supplementary Fig. 3b). In early prophase CBX1 recovered
significantly slower than in interphase with a mean t1/2 of 7.8 ± 0.9 s (P = 0.0013),
indicating that its binding is increased during condensation. By contrast, in late prophase,
when chromosome condensation was nearly complete, CBX1 was largely unbound and
recovered significantly faster than in interphase with a mean t1/2 of 4.2 ± 1.1 s (P < 0.0001)
(Fig. 3c). The good statistical sampling of prophase stages enabled by Micropilot revealed
that CBX1 binding to condensing chromosomes is transiently elevated in early prophase
before its release at the end of prophase, suggesting a possible function in the condensation
process.

To create quantitative data suitable for systems biology at the cellular level of biology,
intelligent automation will be crucial to increase throughput and provide statistical relevance
of the measurements of very different cellular processes. Micropilot automation reduces bias
in cell selection and liberates cell biologists from the tedious work of repetitive manual data
generation. Micropilot is broadly applicable in cell biology to carry out a host of quantitative
imaging assays in a systematic fashion as required to characterize a large number of genes or
perturbations such as in RNAi studies or drug screens. It can be adapted to virtually any
imaging system that allows automation and online control based on the results of image
classification by machine vision. It will be straightforward in the future to use Micropilot to
automate additional high-resolution assays beyond multicolor high-resolution confocal 3D
stacks, time-lapse movies and FRAP, such as fluorescence lifetime imaging microscopy and
fluorescence cross-correlation spectroscopy.

METHODS
Methods and any associated references are available in the online version of the paper at
http://www.nature.com/naturemethods/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic workflow of Micropilot. (a) After autofocussing different positions to find the
best focal plane (yellow frame), low-resolution prescan images (optionally maximum z-
dimension projections, gray frames) are presented to the automatic classification. If a cell is
selected, a complex imaging protocol is executed; otherwise the system continues to
prescan. After completion of the complex imaging protocol, the system loops back to
prescan mode, continuing at the sample position where it stopped for the complex imaging
mode. (b) Communication steps executed by the different microscope systems (red outlines)
and the Micropilot software (blue outlines). The microscope sends the image path either via
windows registry or socket interface to Micropilot. In the synchronous modes, each positive
classification launches the complex imaging mode. In the asynchronous mode, microscope
and Micropilot send and receive messages via transmission control protocol or internet
protocol (TCP/IP), allowing classification of several different positions before launching the
complex imaging protocol for a list of positions. (c) After reading the low-resolution image,
Micropilot segments, extracts the feature set per object and classifies the cells during
scanning to return eventually the positions of interest. After the criteria are met (time or
number of positions) Micropilot deploys the complex imaging and the microscope switches
back to prescan mode (a).
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Figure 2.
Assays of SEC31 and H2B-tubulin HeLa cells. (a) Examples for Hoechst-labeled (blue;
DNA label) and SEC31-labeled (green) cells representing null or artifact and anaphase or
telophase cells (insets, close-up images). Scale bars, 10 µm. (b) Confusion matrix of the
prediction shows true positives (TP) horizontally against the predicted class vertically for
cells. At edges the total numbers of the cells are given (overall total, 10,793 cells)
corresponding to PPV = TP / (TP + false positives) and sensitivity = TP / (TP + false
negatives). (c) Examples of null or artifact (left) and anaphase or telophase (right) cells
stained with Hoechst (blue) and ERES spot (green) (50 slices of 0.2 µm). Scale bar, 10 µm.
(d) Number of ERES spots of 91 anaphase cells to late-telophase cells plotted versus volume
of nuclei, with exponential fit plotted. Red and blue data points correspond to the nuclei in
the left and right images in c, respectively. (e) Example of negative control experiment (time
resolution, 3 min; 30 slices of 1 µm; maximum projections) started after prophase
recognition. Times indicated are after prophase recognition. Scale bar, 10 µm. (f) Spindle
lengths after treatment with scrambled siRNA. (g) Example images after treatment with
siRNA to CENPE, showing centrosome poles (arrows; left) for the first recognizable
metaphase (acquisition as in e). Scale bar, 10 µm. (h) Normal mixture modeling of pole-pole
distances in metaphase from 71 movies after treatment with siRNA to CENPE resulted in
three distributions, which are shown as colored curves.
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Figure 3.
Examples and measurements of automatic FRAP on CBX1-EGFP cells. (a) After the
automatic selection of an interphase or prophase cell with a trained prophase SVM classifier,
a prebleached image was taken, followed by bleaching of the predefined upper half of the
nucleus and subsequent time-lapse imaging with 2-s time resolution for 60 s (values in the
lower images indicate time relative to bleaching). Scale bar, 5 µm. (b) Normalized
intensities for CBX1-EGFP measured during fluorescence relaxation after photobleaching in
interphase and prophase cells. We measured, normalized, averaged and plotted over time
fluorescence intensities in bleached region of the nucleus. Error bars, s. (c) Recovery rates as
box plots for interphase and prophase cell populations.

Conrad et al. Page 8

Nat Methods. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


