
Microplane constitutive model and metal plasticity 

Michele Brocca and Zdenek P Bazant 

Department of Civil Engineering and Materials Science, Northwestern University, Evanston IL; 

z-bazant@nwu.edu 

The microplane model is a versatile constitutive model in which the stress-strain relations are dermed 

in tenns of vectors rather than tensors on planes of all possible orientations, called the microplanes, 

representative of the microstructure of the material. The microplane model with kinematic constraint 

has been successfully employed in the modeling of concrete, soils, ice, rocks, fiber composites and 

other quasibrittle materials. The microplane model provides a powerful and efficient numerical tool for 

the development and implementation of constitutive models for any kind of material. The paper pres

ents a review of the background from which the microplane model stems, highlighting differences and 

similarities with other approaches. The basic structure of the microplane model is then presented, to

gether with its extension to fmite strain defonnation. Three microplane models for metal plasticity are 

introduced and discussed. They are compared mutually and with the classical Jrflow theory for incre

mental plasticity by means of two examples. The first is the material response to a nonproportional 

loading path given by uniaxial compression into the plastic region followed by shear (typical of buck

ling and bifurcation problems). This example is considered in order to show the capability of the mi

croplane model to represent a vertex on the yield surface. The second example is the 'tube-squash' test 

of a highly ductile steel tube: a finite element computation is run using two microplane models and the 

Jrflow theory. One of the microplane models appears to predict more accurately the final shape of the 

deformed tube, showing an improvement compared to the J2-flow theory even when the material is not 

SUbjected to abrupt changes in the loading path direction. This review article includes 114 references. 

1 INTRODUCTION 

Over the past two decades, the microplane model has been 

successfully used by Baiant and coworkers to model the me

chanical behavior of quasibrittle materials such as concrete, 

soils, rocks, ice, fiber composites, stiff foams and shape 

memory alloys [see eg, Baiant (1984), Baiant and Prat 

(1988a,b), Carol and Baiant (1997), Brocca et al (1999a,b)]. 

Several practical applications (eg, large-scale finite element 

analysis of concrete structures at WES) have shown the effi

ciency and accuracy of the model. 

In a microplane model, the stress-strain relations are de

fined in terms of vectors rather than tensors independently on 

planes of many different orientations, called the micro planes , 

approximately representative of the microstructure of the 

material. The stress and strain components on a particular 

microplane are called the microplane stress and strain com

ponents. The overall macroscopic behavior, in terms of the 

usual macroscopic stress and strain tensors, is obtained by 

superimposing the effects of all the microplanes. 

One appealing aspect of this approach is that it provides 

the researcher with an efficient theoretical and numerical 

framework, within which the constitutive law is simple. 

Once the general algorithm for dealing with the relationship 

between microplane quantities and macroscopic stress and 

strain tensors has been established, fonnulating a constitutive 

law is conceptually simple and intuitive, since all the quanti

ties involved have always an immediate physical meaning. 
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In this article, we will discuss three different models for 

metal plasticity developed with the microplane approach. We 

will also present a theoretical comparison of the microplane 

model with the major existing phenomenological and crystal

lographic models of metal plasticity. Such a comparison is 

particularly meaningful in this case, because the original theo

retical background from which the microplane model stems 

was historically developed in the field of metal plasticity for 

polycrystalline metals. We will review the approaches and 

models most widely used in this field and will try to clarify the 

differences and similarities with the microplane model. We 

will show in the following that the microplane model stands 

somewhere in between the two extremes represented by phe

nomenological and crystallographic models and can thus be 

considered a semi-phenomenological model. 

Finally, we will compare quantitatively the microplane 

model and the classical Jrflow theory, by considering two 

numerical examples: material response for a non-propor

tionalloading path with a sudden change in direction and the 

tube-squash test on a ductile steel carried out at Northwest

ern University. 

2 REVIEW OF MAJOR EXISTING MODELS 
FOR METAL PLASTICITY 

Metal plasticity is usually modeled following two major ap

proaches: a crystallographic one, which is based on· inicro-
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mechanical considerations and tries to reproduce closely the 

physical phenomena whose macroscopic manifestation is 

plastic deformation, and a phenomenological one, wherein 

plastic deformation is characterized in terms of the stress and 

strain tensors and their invariants. The latter approach is 

completely unrelated to the microscopic mechanisms of 

plastic deformation. 

The crystallographic theories can be classified into two 

main groups: Taylor models and self-consistent models. 

Section 2.1 will review the Taylor models and briefly ad

dress the self-consistent models. 

Another approach that draws inspiration from cl)'lltallo

graphic experimental observation, is the slip theory of plastic

ity, proposed by Batdorf and Budiansky (1949) as an adapta

tion of the idea of Taylor(1938). This approach differs from 

the strictly crystallographic ones, because the material is mod

eled as a continuum, neglecting the crystalline structure and 

the anisotropy of the lattice. The slip theory of plasticity will 

be reviewed in Section 2.2. The microplane model is an adap

tation and generalization of the slip theory of plasticity. 

The most common phenomenological theory for elastic

plastic deformation of metals is the Prandtl-Reuss flow the

ory with isotropic hardening, or Jrflow theory. A modifica

tion of this theory, which allows more accurate predictions 

of material response in the case of sudden changes of loading 

path direction, is the J2-corner theory of Christoffersen and 

Hutchinson (1979). The phenomenological theories and 

methods will be briefly discussed in Section 2.3. 

"', 

2.1 Crystallographic models 

The models reviewed in this section assume that the micro

scopic source of plastic deformation is crystallographic slip. 

Such assumption is based on physical considerations. These 

models produce large strain constitutive laws that can be 

used to interpret experiments on large strain plastic behavior 

of metals. They also provide a basis for formulating phe

nomenological constitutive laws (eg, Christoffersen and 

Hutchinson (1979) used the results from Hutchinson's 

(1970) smaIl-strain, rate-independent polycrystal calculations 

to specify comer characteristics in their J 2-corner theory). 

The idea for the crystallographic approach to material 

modeling was inspired by experimental observations of 

crystallographic behavior of metals. Single crystal tests by 

Taylor and Elam (1923, 1925, 1926) showed that under high 

stress, slip occurs on certain crystallographic planes along 

certain directions. They observed that slip on a given plane 

depends on the resolved shear stress on that plane and is in

dependent of the normal stress on the plane. The stress at 

which slip occurs is called the critical stress. The increase of 

the critical stress with the magnitude of slip is known as 

strain hardening, while latent hardening is the increase in 

critical stress in unslipped systems. 

Taylor (1934) showed in his dislocation theory that slid

ing occurs in such a manner that perfect crystal structure is 

reformed after each atomic jump. The lattice structure of the 

bulk of the material remains essentially the same after the 

occurrence of slip, hence the elastic modulus remains the 

same. The elastic strain is caused by the elastic deformation 

of the lattice structure, and the plastic strain is caused by the 

movement of dislocations. A discussion of the dislocation 

mechanism background of this continuum slip description of 

plastic flow is given by Asaro (1983a). 

The Taylor-type models and self-consistent schemes ex

plicitly represent the deformation by crystallographic slip in 

polycrystals. Polycrystals are continuous three-dimensional 

collections of grains (ie, crystallites), each of which can de

form by the mechanism of crystallographic slip. Taylor (1938) 

proposed a model that strictly enforces compatJ.bility by im

posing the same set of strains (aggregate strains) on each 

grain. This idea comes from the experimental observation that 

most grains of a polycrystal undergo about the same strain. 

Taylor (1938) used his model to analyze simple tension or 

compression of single phase FCC (face-centered cubic) poly

crystals. In Taylor's numerical calculations, the polycrystal 

is made initially isotropic by choosing the grains to have a 

uniform coverage of all crystallographic orientations. The 

only source of inelastic deformation is assumed to be the 

crystallographic slip. The calculation is then based on deter

mining the combination of slip systems and corresponding 

shear strains and stress state in each grain required to pro

duce the specified strain. The selection of slip systems re

quired to produce an arbitrary strain is not necessarily 

unique. Taylor made the physically intuitive assumption that 

among all the possible choices for combinations of active 

slip systems, the appropriate choice was that for which the 

cumulative shears are minimized. (actually that for which the 

net internal work is minimized, which reduces to minimiza

tion of cumulative shears if all the shear systems have same 

shear strength and hardening). Taylor could predict textures 

in FCC crystals in agreement with experiments ofaxisym

metric tension and compression. 

Bishop and Hill (1951) proposed a polycrystal theory 

based on the principle of maximum work. They used ine

qualities between external work, computed as the product of 

macroscopic stress and strain increments, and internal work, 

computed as the integral over the volumes of grains of the 

products of the crystallographic shear strength and assumed 

slip increments, to set bounds on the critical stress state re

quired to induce yield. Their primary interest was to deter

mine yield surfaces. 

The Taylor type models have been extensively used in the 

past 50 years to predict texture development and stress strain 

response. The development in this field is in the direction of 

increasing complexity, but most of the models retain the ba

sic assumptions and structure of the Taylor model. We will 
now outline the common assumptions and the basic formu

lation of the Taylor model, as developed and used, among 

others, by Rice (1971), Hill and Rice (1972), Asaro and Rice 

(1977), Asaro (1983b), Asaro and Needleman(1985), Harren 

et al (1989), and Bronkhorst et al (1992). 

The stress response at each macroscopic continuum mate

rial point is given by the volume-averaged response of the 

multitude of microscopic single crystalline grains comprising 

the material point. It is assumed that all the grains have equal 

volume, and that the local deformation gradient in each grain 

is homogeneous and identical to the macroscopic deforma-
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tion gradient F at the continuum material point. The me

chanics of crystal deformation by slip is represented in two 

parts: the plastic deformation is given by a set of plastic sim

ple shears from the reference configuration on the slip sys

tem of the crystallite, and the lattice with its embedded mate

rial elastically deforms and rigidly rotates from this plasti

cally sheared state to reach· the current configuration [Rice 

(1971), Asaro and Rice (1971)]. The deformation gradient 

tensor F is therefore decomposed as 

F=FP (2.1) 

where tensor P describes the material shear flow along the 

various slip systems of the crystallite, and tensor F describes 

the elastic distortion of the lattice along with the rigid rota

tion of the crystallite. 

The plastic shear flow from the reference configuration is 

written as 

LP = F P F p'1 = I yea) sea) m (a) (2.2) 

a 

where yea) is the shear rate on slip system a. The slip sys

tem a is def'med by the unit crystallographic vectors i a
) and 

mea), where i a) is the direction of slip in the actual configu

ration and mea) is normal to the slip plane in the actual con

figuration. The plastic response of a crystallite is defined in 

terms of the resolved shear stress on each slip system. Each 

of the slip systems is active as long as the resolved shear 

stress on that system does not vanish. The plastic shear rate 

on the slip system a is taken to be governed by a constitutive 

function of the form 

(2.3) 

where 'tea) is the resolved shear stress for the slip system a, 
and g(a) is the shear resistance of the slip system a. This 

equation can be given in the form of a power law (Hutchin

son (1965), Pan and Rice (1983), Pierce et al (1983)]. 
An evolution law can be given for g(a) in the form 

g(a) = Iha~IY(~)I, (2.4) 

~ 

where haf> is the rate of strain hardening on slip system a due 

to shearing on the slip system ~ (latent hardening is thus 

taken into account). 

The elastic response of the crystallite is governed by the 

elastic moduli set up to take into account the anisotropy due 

to crystallite orientation. In some cases, researchers consider 

the elastic response of polycrystalline aggregate, but neglect 

the elastic anisotropy of the FCC single crystal, and the elas

ticity tensor is the usual elasticity tensor. 

Once the behavior of a crystallite is defined, the constitu

tive response of a polycrystalline aggregate is obtained using 

an averaging scheme [described in Hill (1972), and Asaro 

and Needleman (1985)]. 

The foregoing constitutive model can be used in two 

types of finite element calculations: 

1) Those where the integration point represents a material 

point in a polycrystalline sample and the constitutive re-

sponse is given through a Taylor-type polycrystal model; 

and 

2) those where the integration point represents a material 

point in a single grain and the constitutive response is 

given through a single crystal model without invoking the 

Taylor assumptions. 

In this second kind of computation both equilibrium and 

compatibility are satisfied in a weak finite element sense. In 

Taylor-type computations, the compatibility is satisfied, but 

not eqUilibrium between grains. 

Bronkhorst et al (1992) presented an evaluation of the 

Taylor model, done by comparing finite-element results to 

experimental results. They concluded that the Taylor-type 

model is in a reasonable first order agreement with the ob

servation of the texture formation and also with the overall 

stress-strain response of single-phase copper. Some deficien

cies in the prediction from the Taylor model (finite element 

computations of the first kind) may be a consequence of the 

strong kinematic constraint on the deformation of the indi

vidual grains of the polycrystal in this model. In the finite 

element computations of the second kind, the constraint on 

the deformation of the individual grains is relaxed and the 

computation is run using initially random grain orientations. 

In this second case each element represents a single grain. 

When such an approach is adopted, a typical orange peel ef

fect can be observed on the unconstrained surfaces of the FE 

mesh. This is caused by differences in the orientations of the 

grains that intersect the free surfaces, and is observed also in 

physical experiments. 

To improve the performance of the· model, the strong 

kinematic constraint characteristic of the Taylor model can 

be relaxed, by introducing intergranular constraint relations 

of various sorts. Butler and McDowell (1998) presented a re

formulation of the kinematics of the plastic velocity gradient, 

introducing a new concept for taking into account the grain 

subdivision using additional plastic rotation associated with 

generation of the geometrically necessary dislocations. The 

modeling of grain subdivision is motivated by the recent ex

perimental studies of microtexture formation [Hughes and 

Hansen (1993), Hughes (1995)]. The subdivision process fa

cilitates adherence to the Taylor ·assumption of uniform de

formation at the scale of individual grains. Butler and 

McDowell (1998) introduce a generalization of the decom

position of F 

F=FPP (2.5) 

which includes a part, P, that is associated with the subdi

vision, distinct from the contribution of dislocation glide, P. 
Here, F = Rlf includes the elastic stretch and, for small 

elastic strains, essentially rigid rotation relative to the lattice. 

Another way to tackle the problem of excessive kinematic 

constraint in Taylor assumption is by enforcing the so-called 

relaxed constraints (RC) to reflect the inhomogeneity of 

strain from grain to grain that is expected to develop ~th in

creasing deformation. When grains become too distorted, en

forcement of stress equilibrium rather than full compatibility 

may perhaps be more reasonable; this is taken as the basis of 
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theRC model [Honneff and Mecking (1978), Canova, 

Kocks, Jonas (1984), Rollet et al (1989)]. 

Another approach to polycrystal modelling is the self

consistent scheme suggested for this purpose by KrOner 

(1961), Budiansky and Wu (1962) and Hill (1965). This ap

proach produces rate-independent models which attempt to 

account for grain interaction by considering each grain to be 

an inclusion embedded in an infinite homogeneous matrix 

whose moduli are the overall moduli of the crystal to be de

termined as an average over all grains. Hutchinson (1970) 

used this approach to determine the yield surfaces and stress

strain response for uniaxial tension and for uniaxial tension 

followed by shear (1970). 

Brown (1970) and Berveiller and Zaoui (1979) extended 

the self-consistent models to account for rate dependence. In 

self-consistent models, the assumption of identical grain de

formation is relaxed and these models also account, ap

proximately, for intergranular equilibrium. They do so by en

forcing equilibrium between the individual grains and the 

aggregate average. However, in self-consistent models as 

well as in Taylor type models, the deformation within each 

grain is presumed homogeneous. 

2.2 Slip theory of plasticity 

The slip theory, introduced by Batdorf and Budiansky 

(1949), assumes the plastic slip to be the only source of 

plastic deformation. The slip in any direction along parallel 

planes of any particular orientation in the material gives rise 

to a plastic shear,strain, which depends only on the history of 

the corresponding component of shear stress. The plastic 

strain due to any system of applied stress is found by: 

1) considering the history of the component in each direction 

of the shear stress on each plane of the material, 

2) finding the corresponding plastic shear strain, 

3) transforming this plastic shear strain into plastic strains in 

some fixed system of coordinates, and 

4) summing over all the slip directions and slip plane orien

tations. In their original paper, Batdorf and Budiansky 

proposed a semigraphical method for the computations. 

The shear stress required to produce slip is assumed to be 

independent of the normal stress and the amount of slip. The 

plastic shear deformation resulting from slip on a plane of a 

given orientation depends only upon the history of the compo

nent of the shear stress in the direction of slip on that plane. 

Batdorf and Budiansky's approach differs substantially 

from the Taylor-type models and self-consistent models in 

that it neglects the actual crystallographic structure of the 

material and the anisotropy that it implies. The metal is mod

eled by considering it to be a macroscopically isotropic con

tinuum, and slip is possible on a plane of any direction at any 

given point, and not only on the planes whose orientation is 

determined by crystallographic considerations. The theory 

contemplates an infinitesimal plastic shear strain associated 

with each infinitesimal fraction of the continuum comprising 

all possible planes. Given a plastic shear strain on a given 

plane, the contribution of this infinitesimal shear strain to the 

strains in the macroscopic reference system can be expressed . 

by projecting the shear strain along the x, y, z directions. 

The initial critical shear stress for slip on a plane is given 

by Yz of the elastic limit in pure tension or compression, 

since in tension test the maximum shear stress is Yz of the 

applied uniaxial stress. Beyond this initial value, the critical 

stress increases according to a characteristic shear function 

to be determined experimentally, from tests on the polycrys

talline continuum, not on the single crystal. The slip theory 

of plasticity can therefore be considered to be semi

phenomenological, since the assumed mechanism of plastic 

deformation is suggested by crystallographic observation. 

But the mathematical description of slip is derived in a phe

nomenological way. 

Batdorf and Budiansky showed that their slip theory 

yields more accurate predictions than the deformation theory 

of plasticity or the Jrflow theory in the cases characterized 

by an abrupt change in the loading path. They considered 

tests on thin aluminum alloy cylinders, compressed into the 

plastic range and then twisted while the compressive strain is 

held constant. 

2.3 Phenomenological models 

The simplest and most commonly used phenomenological 

theory for infinitesimal elastic-plastic deformation· of poly

crystalline metals is the classical, rate-independent, Prandtl

Reuss flow theory with isotropic hardening based on the von 

Mises yield criterion reg, Hill (1950)]. This classical rate

independent model has been generalized to finite deforma

tion and a frame indifferent form by Hill (1958, 1959). The 

rate-independent 'plasticity has been studied, among others, 

by Hibbitt et al (1970), Needleman(1972), and Osias and 

Swedlow (1974). 

The numerical implementation of the infinitesimal strain 

version of the rate-independent model into displacement

based finite element procedures dates back to the 1960s 

(Wilkins, 1964), and the study of the numerical implementa

tion of the finite-strain, frame indifferent version of the rate

independent and rate-dependent models started in the fol

lowing decade [McMeeking and Rice (1975), Hughes 

(1984), Needleman (1984), Anand (1982, 1985), Brown et al 

(1989), etc]. These models usually employ the additive de

composition of the stretch tensor into elastic and plastic 

parts. For a numerical implementation of a model based on 

multiplicative decomposition of the deformation gradient 

into elastic and plastic parts, see Weber and Anand (1990). 

These finite deformation constitutive models are in es

sence extensions of the small-strain isotropiC hardening 

plasticity models, and therefore they are t;xpected to provide 

accurate descriptions of the deformation behavior of initially 

isotropic materials only up to deformation levels where sig

nificant anisotropy in the metal has not yet developed. 

The criterion for physical soundness of a plasticity theory 

(leaving aside damage mechanics) is assumed to be the satis

fa«tion of Drucker's postulate. Drucker (1951) proposed a 

definition of work-hardening on the basis of some quasi

thermodynamic arguments. This led to the following two 

inequalities: 

(2.6) 
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(2.7) 

where (Jij is the current stress state on the yield surface S and 

cr~. is any other stress state in E (elastic region). The second 
lJ 

inequality is called the principle of maximum plastic work 

by Bishop and Hil1(1951) who prove it for single crystals 

that deform plastically by slip. Inequality (2.7) has the fol

lowing two consequences: 

I) the yield surface is convex; 

2) If the current stress state (Jij is on S and S is smooth at (Jij, 

then, for any given loading crij, the direction of the strain

rate vector ef. IIlust be that of the exterior normal to the y 

yield surface at (Jij' 

If S is not smooth at (Jij (there is no unique normal at (Jij to 

surface elements of S), then ef} must merely point toward 

the cone of normals to Sat (Jij' 

It is well known that the classical theory of the Prandtl

Reuss flow rule (with an isotropically hardening smoOth von 

Mises yield surface), ie, the J 2-flow theory, yields resuhs in 

disagreement with the prediction of crystallographic slip 

models. The crystallographic slip Inodels predict the exis

tence of comers ( 01' vertices) on the yield surface and thus a 

dependence of the plastic strain rate on the direction of the 

rate of stress. This is called the vertex effect. In the J2-flow 

theory, on the other hand, the plastic strain rate is always 

normal to the von Mises yield surface. 

The simplest vettex model for plasticity is the hypoelastic 

deformation theory ofStOren and Rice (1975). In this theory, 

the plastic strain rate is not necessarily normal to what would 

be the von Mises yield surface. Being a deformation theory, 

it is not directly applicable to plastic loading paths that ex

hibit significant deviation from proportionality. 

The Jrcorner theory of Christoffersen and Hutchinson 

(1979) eliminates this restriction. In this theory, the yield sur

face vertex is modeled as a stress space hypercone. For plastic 

\o~g along paths that coincide or nearly coincide with pro

portional loading, the response is talcen as that of hypoelastic 

deformation theory. This regime of behavior is called the total 

loading. Elastic unloading occurs when the direction of the 

stress rate lies in or within the cone surface. For loading paths 

that lie between total loading and elastic unloading, the 

Christoffersen-Hutchinson theory provides a region of transi

tional response where the instantaneous moduli smoothly in

crease from the deformation theory Inoduli of the total loading 

regime to the linear elastic moduli of the unloading regime. 

The Jrcomer theory has been extended by Hutchinson and 

Tvergaard (1980) to include hyperelastic total loading re

sponse. A discussion about methods for endowing the ~en~ 

incremental theory of plasticity with a vertex was also gIVen m 

BaZant (1980, 1987). 

The high CUlVature of the yield surface in the neighbor

hood of its current loading point can be described to some 

e")(.tent by the classical theory of kinematic hardening. Con

tributions in this sense have been given, among others, by 

Lee et al (1983), Dienes (1979), Key (1984), Fressengeas 

and Molinari (1985). Harren et at (1989) compare the poly-

crystal predictions to predictions based on phenomenological 

vertex-type descriptions. They do so by performing large 

shear calculations with J2-corner theory and two versions of 

kinematic hardening theory. For plane strain incompressible 

deformation, the J 2-corner theory and the Fressengeas

Molinari kinematic hardening theory agree well with poly

crystal predictions. 

A different phenomenological representation, which more 

closely reflects the physical origin of the vertex effect, was 

given by Sewell (1974), who used the theory of multiple 

yield systems, introduced by Koiter (1953), Mandel (1965) 

and Hill (1966). The formulation for multisurface plasticity 

develops from the assumption that, at each state, the plastic 

strain consists of several components, 

(l.&) 

each of them governed by a different yield surface. This 
formulation yields in principle a rather realistic description 

of material behavior, but it . is not easy to apply because 

identification of the material parameters from test data is dif

ficult [see also eg, BaZant and Cedolin (1991)]. 

In the 1970s, another approach has received consid~le 

attention: the endochronic theory reg, valanis (1971), BaZant 

(1978, 1980)]. The basic concept in the endochronic fonnu

lation is the characteritation of inelastic strains in terms of 

one (or several) non-decreasing scalar variables whose in

crements depend on the strain increments. This variable is 

generally called the intrinsic time although it doesn't neces

sarily (and normally) correspond to physical time. Similar to 

vertex hardening models and the deformation theory of plas

ticity, the endochronic theory gives inelastic strain for strain 

inc.rero.ents that are tangential to the current loading surface. 

However, in contrast to vertex hardening, the endochronic 

inelastic strain for tangential .strain increments is normal to 

the loading surface. Consequently, the endochronic theory is 

stiffer than vertex hardening for this loading direction. Al

though the endochronic approach is very convenient for de

scribing hysteresis, it is purely phenomenological, with nr 

clear physical basis, and seems to have lost popularity. 

The J2-flow theory will serve in Section 6 as a reference 

for the numerical evaluation of the microplane models for 

plasticity. The most common ways of ilnplementing nUIIleri

cally the Jrflow theory are finite strain extensions of the al

gorithm developed by Wilkins in 1964. Two algorithms bave 

been used for comparisons with the microplane model: one 

presented by Hughes (1984) and the other one by Ponthot 

(1995). They are based on two different ways of approxi

mating the incremental strain at each time step. Both ap

proaches employ the radial return algorithm [presented by 

Wilkins (1964) and generalized by Krieg and Key (1976)]. 

In the examples considered here, the two algorithms yield 

nearly identical results. 

3 REVIEW OF MICROPLANE MOJ)EL 

The aricroplane model developed by BaZant and coworkers is 

an evolution and generalization of Batdorf and Budiansky's 

approach. It was first used to model concrete, rocks, and soils. 
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Carol and Baiant (1997) pioneered the microplane models for 

plasticity. In this paper, three new models for plasticity within 

the microplane model framework are formulated. . 

3.1 History of microplane model 

The background history of the microplane model can be 

traced back to the pioneering idea of GI Taylor (1938), pre

sented in Section 2.1. As seen in Section 2.2, Batdorf and 

Budiansky (1949) extended Taylor's idea and developed a 

realistic model for plasticity of metals, still considered 

among the best. Many other researchers subsequently refined 

or modified this approach to metals [Kroner (1961), Budian

sky and Wu (1962), Lin and Ito (1965, 1966), Hill (1965, 

1966)]. Extensions for the hardening inelastic response of 

soils and rocks where also made [Zienkiewicz and Pande 

(1977), Pande and Sharma (1981, 1982)]. 

The slip theory of plasticity used the so called static con-_ 

straint, that is the assumption that the stress vector acting on 

a given plane in the material, called the microplane, is the 

projection of the macroscopic stress tensor. Later Baiant 

(1984) showed that the static constraint induces unstable lo

calizations of softening into a plane of one orientation, which 

makes it very difficult to generalize the model for post-peak 

strain-softening damage of quasibrittle materials. The exten

sion to strain-softening damage calls for replacing the static 

constraint by a kinematic constraint, in which the strain 

vector on any inclined plane in the material is the projection 

of the macroscopic strain tensor. 

The expressi,on slip theory of plasticity is unsuitable for 

general material models, for example models of the cracking 

damage in quasibrittle materials, where the inelastic behavior 

on the microscale does not physically represent slip. For this 
reason the neutral term micropiane model was coined, appli

cable to any type of inelastic behavior [Baiant (1984)]. Mi

crop/ane is the name given to a plane of any orientation in 

the material, used to approximately characterize the physical 

phenomena occurring in the microstructure of the material 

on planes of that orientation. 

After generalizing the microplane model for both tensile 

and compressive damage [Baiant and Prat (1988a,b), Baiant 

et al (1996)], the microplane model and the corresponding 

numerical algorithm reached its present, very effective for

mulation for concrete in Baiant et al (2000a,b,c) and Caner 

et Baiant (2000). Microplane formulations have also been 

developed for anisotropic clays [BaZant and Prat (1987)] and 

for soils [prat and BaZant (1989, 1991a,b)]. A detailed re

view of the microplane model formulation with kinematic or 

static constraint can be found, eg, in Carol and Baiant 

(1997). For both the formulations with kinematic constraint 

and with static constraint, the material properties are charac

terized by relations between the components of the stress and 

strain vectors on the microplanes. The tensorial invariance 

restrictions need not be directly enforced in the constitutive 

relations, which is a simplifying feature of the microplane 

formulation. They are automatically satisfied by superim

posing in a suitable manner the responses from the micro

planes of all orientations. This is done by means of a varia-

tional principle (principle of virtual work), as introduced in 

Baiant (1984). 

The next paragraphs will present the basic formulation for 

the microplane model for the case of small strains. Generali

zation to the finite strain range will be discussed in Section 4. 

3.2 Formulation with kinematic constraint 

The orientation of a microplane is characterized by the unit 

normal n of components n; (indices i and j refer to the com

ponents in Cartesian coordinates x;). In the formulation with 

kinematic constraint, which makes it possible to describe 

softening in a stable manner, the strain vector eN on the mi

croplane (Fig 3.1) is the projection of the macroscopic strain 

tensor Eij • So the components of this vector are EN; = Eijn;. 

The normal strain on the microplane is EN = n,£N;, that is 

EN = MjEij; Ny = n;nj (3.1) 

where repeated indices imply summation over i = 1,2,3. The 

mean normal strain, called the volumetric strain Ev, and the 

deviatoric strain ED on the microplane can also be introduced, 

being defmed (for small strains) as follows: 

(3.2) 

where Es = spreading strain = mean normal strain in the mi

croplane. Es characterizes the lateral confmement of the mi

crop lane and governs the creation of splitting cracks normal 

to the microplane. Considering Ev and ED (or Es) is useful 

when dealing with the effect of lateral confinement on com

pression failure'and when the volumetric-deviatoric interac

tion, typical of cohesive frictional materials such as concrete, 

needs to be captured. 

To characterize the shear strains on the microplane (Fig 

3.1), we need to defme two coordinate directions M and L, 

given by two orthogonal unit coordinate vectors m and I of 

components m; and I; lying on the microplane. To minimize 

the directional bias of m and I among the microplanes, one 

may alternate among choosing vectors m to be normal to 

axis Xl. X2, or X3. 

The magnitudes of the shear strain components on the mi

croplane in the directions ofm and I are EM = m,{Eij n;) and EL 

= 1,{Eijn;). Because of the symmetry of tensor Eij, the shear 

strain components may be written as follows [eg, Baiant et 

al (1996, 2000c)]: 

(3.3) 

in which the following symmetric tensors are introduced: 

My = (m;nj +mjn;)/2; Lij = (l;nj +ljn;)/2 (3.4) 

Once the strain components on each microplane are ob

tained, the stress components are updated through micro

plane ·constitutive laws, which can be expressed in an alge

braic or differential form. 

If the kinematic constraint is imposed, the stress compo

nents on the microplaI).es are equal to the projections of the 

macroscopic stress tensor 0 ij only in some particular cases, 

when the microplane constitutive laws are specifically pre

scribed so that this condition be satisfied. This happens for 

example in the case of elastic laws at the microplane level, 
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defmed with elastic constants chosen so that the overall mac

roscopic behavior is the usual elastic behavior [see Carol and 

BaZant (1997)]. In general, the stress components determined 

independently on the various planes will not be related to 

one another in such a manner that they can be considered as 

the projections of a macroscopic stress tensor. 

Thus static equivalence or equilibrium between the mi

crolevel stress components and macrolevel stress tensor must 

be enforced by other means, in a weak sense. This can be ac

complished by applying the principle of virtual work, which 

yields 

a .. =2- r a Nn.njd.Q+2- r aTr (nj0rj +njorj)d.Q (3.5) 
IJ 21t Jo I 21t Jo 2 

where Q is the surface of a unit hemisphere. Equation (3.5) 

is based on the equality of the virtual work inside a unit 

sphere and on its surface, rigorously justified by BaZant et al 

(1996). 

The integration in Equation (3.5), is performed numeri

cally by an optimal Gaussian integration formula for a 

spherical surface using a finite number of integration points 

on the surface of the hemisphere. Such an integration tech

nique corresponds to considering a finite number of micro

planes, one for each integration point. A classical formula of 

adequate accuracy for microplane applications, consisting of 

28 integration points, is given by Stroud(1971). BaZant and 

Oh (1986) developed a more efficient and about equally ac

curate formula with 21 integration points, and studied the ac

curacy of various formulas in different situations. 

3.3 Formulation with static constraint 

A formulation with static constraint equates the stress com

ponents on each microplane to the projections of the macro

scopic stress tensor aij. Once the strain components on each 

microplane are updated by the use of the microplane consti

tutive laws, the macroscopic strain tensor is obtained again 

by applying the principle of virtual work. 

The microplane components of stress are obtained as fol

lows: 

aM =Mijaij; a L = Lijaij 

where 

(3.6) 

(3.7) 

Mij = (mjnj +mjnj)/2; Lij = (ljn j +ljnj)/2 (3.8) 

The complementary virtual work equation provides, in anal

ogy to equation (3.5), 

e .. =2- r eNn.nj d.Q+2- r ETr (nj0rj +nj0ri)d.Q (3.9) 
IJ 21t Jo I 21t Jo 2 

Again, volumetric and deviatoric quantities can be introduced: 

av = alck /3; aD = aN -ay (3.10) 

ay and aD are used when the effect of hydrostatic pressure 

and spreading stress or confming stress need to be accounted 

for explicitly. 

3.4 Formulation with double constraint 

It is possible and advantageous to formulate the microplane 

model with particular material laws such that a kinematic 

constraint for the strains coexists with a static constraint for 

the true stresses in the sense of damage mechanics (but of 

course not with the actual stresses). When this happens the 

model is said to have a double constraint since it satisfies 

simultaneously the integral equations (3.5) for strains and 

(3.9) for true stresses. Such a double constraint is useful in 

microplane damage formulations [Carol and BaZant (1997), 

BaZant et al (1996, 2000c)]. 

Figure 3.2 shows schematically the pattern followed in 

order to update stress or strain in the load steps for an ex

plicit algorithm for the microplane model. As seen from Fig 

3.2, the microplane model takes a simple constitutive law on 

each microplane and transforms it into a consistent three

dimensional model. 

When the kinematic constraint is used, the macroscale 

strain tensor is projected onto the microplanes using Eqs 

(3.1)-(3.4). Microplane constitutive laws (described in Sec

tion 5) are applied on each microplane, producing the 

stresses on each of the microplanes. The macroscopic stress 

is then determined numerically via integration ofEq (3.5). 

When the static constraint is used, the macroscale stress 

tensor is projected onto the microplanes using Eqs (3.6)

(3.8). Stresses on each of the microplanes are obtained ap

plying microplane constitutive laws. 

Finally the macroscopic stress is computed numerically via 

integration of Eq (3.9). The numerical procedure is incre

mental, and small increments of stress are taken at each step. 

4 GENERALIZATION OF 
MICROPLANE MODEL TO FINITE STRAINS 

A systematic and detailed discussion about how to extend the 

microplane model to very large strains (of the order of 

100%) is given by BaZant et al (1998). Here we present only 

Xl 

Fig 3.1. Strain components on a microplane 
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a brief review of the main concepts on which such an exten

sion in based. 

Let us consider a broad class of strain measures called the 

Doyle-Ericksen tensors [Doyle and Ericksen (1956), Ogden 

(1984), Baiant and Cedolin (1991)]: 

form:t:O: 

form=O: 

E(m) = ..!..(Um _/), 

m 

E(m) = lnU (4.1) 

where U = rc , C = FT F, and m is a parameter which could 

be any real number. C is the Cauchy-Green deformation ten

sor; U is called the right-stretch tensor and is defmed by the 

polar decomposition F = RU of the deformation gradient F = 

OxIi!JX, where x and X are, as usual, the final and initial Car

tesian coordinates of the material point [Ogden(1984), 

BaZant and Cedolin (1991), Malvern (1969)]. (The tensor 

products such as R U are singly contracted products, ie, the 

dot symbol for product is omitted.) 

For m = 2, (4.1) yields the Green's Lagrangian strain 

[Malvern (1969)]: 

e= ~(FT F -I) (4.2) 

For m = 1, (4.1) yields the Biot strain tensor, and for m ~ 0 

the Hencky (logarithmic) strain tensor [Hencky (1928), Ogden 

(1984), BaZant and Cedolin (1991), Rice (1993)]. Formula

tions corrsponding to m = -I and m = -2 are also found in the 

literature. The stress tensor S for which S:d£ is the correct 

work expression (called the conjugated stress tensor) is the 

second Piola-Kirchhoff stress tensor, which is related to the 

Cauchy (true) stress tensor <1 by the following relations: 

(4.3) 

where F-T = (F-!l = (FTr! [Ogden(1984), Baiant and Ce

dolin (1991), Malvern (1969)]. 

The decomposition of large deformations into their volu

metric and deviatoric parts is, in general, multiplicative. It 

has the form U= FDUV [Flory (1961), Sidoroff(1974), Simo 

and Ortiz (1985), Bell (1985), Lubliner (1986), Simo (1988)] 

where U = right stretch tensor, Uv = volumetric right stretch 

tensor, and FD = deviatoric transformation tensor. For con-

crete and many other materials, the volumetric-deviatoric 

decomposition is simplified by the fact that the volume 

changes are always small. In that case, the decomposition 

can approximately be written as additive [Baiant (1996)]. In 

component form it reads Eij = EDij + E~ij' where Ev is the ex

act expression for the volumetric strain for the given strain 

measure. For Green's Lagrangian strain measure, Ev = Eo + 
Y2 E~ , with £0 = (J - 1)/3 (J = detF = Jacobian of the trans

formation) and the additive approximation is acceptable up 

to a volume change of 3%. For Biot strain measure Ev = .1/3 
- 1, and the approximation is acceptable up to a volume 

change of 8%. The additive decomposition is exact if and 

only if the strain measure is the Hencky (logarithmic) strain 

tensor H , in which case Ev = (lnJ)/3. For concrete, the vol

ume change is -3% at the highest pressures tested so far 

(2069 MPa; Baiant, Bishop and Chang, 1986). Thus the 

classical multiplicative decomposition, which is less practi

cal for calculation than the additive decomposition, seems to 

be inevitable only for materials exhibiting very large volume 

changes, such as solid foams. 

Baiant and coauthors (2000a) show that for an efficient 

formulation of a microplane constitutive model with physical. 

meaning, the best choice of strain tensor is the Green's La
grangian strain tensor, while the best choice of stress tensor 

is the back-rotated Cauchy (true) stress tensor. Although 

these strain and stress tensors are nonconjugate, they can still 

be admissible because the following four conditions are sat

isfied: 1) there is a unique correspondence between the non

conjugate constitutive law and the conjugate constitutive law 

in terms of Green's Lagrangian strain tensor; 2) if a micro

macro kinematic constraint of microplane model is imposed 

in terms of one type of strain tensor, a kinematic constraint is 

satisfied for any other finite strain tensor; 3) the elastic parts 

of strains are always small, which ensures the energy dissi

pation caused by elastic deformation formulated in terms of 

nonconjugate stress and strain tensors to be always negligi

ble; and 4) in the time steps of the numerical algorithm, the 

inelastic stress drops to the yield or boundary surface occur 

at constant strain and always dissipate energy. For a detailed 

discussion of these four conditions see Baiant et al (2000a). 

In the following we will consider 

the motivations that lead to the 

Vectors 

choice of the back-rotated Cauchy 

stress and of the Green's Lagran

gian strain tensor . 

Tensorial 
constitutive 

law 

Gij • .-+-------
..... · · · · . 

;-
-------~ 
~ 

II 
Vectors 

Vectorial 
microplane 
constitutive 

law 

Choice of stress tensor 

for micro plane model: 

In order to exploit fully the advan

tage of formulating a material con

stitutive model in the microplane 

approach, it is necessary that the 
Standard approach to 

material modeling 
Microplane Model 

with static constraint 
Microplane Model stress components on the micro-

with kinematic constraint planes characterize the true stress 

on planes of various orientations 

Fig 3.2. Patterns for stress or strain update in the microplane models with static or kinematic con- within the material. If this condi
straint tion is satisfied it is possible to use 
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directly the normal and shear components on the micro

planes to express inelastic phenomena such as friction and 

strength or yield limit. 

It can be shown that for large stretches such as 2 or Yl, the 

compoments of the second Piola-Kirchhoff stress tensor can 

enormously differ from the corresponding components of the 

Cauchy stress tensor, easily by a factor of 2 or more or even in 

sign. Consequently, the limit condition of frictional slip on a 

certain plane cannot be formulated in terms of S components 

on that plane, and neither can the limit conditions of yield or 

strength limit, or the law of strain hardening on that plane. 

Frictional slip on a certain plane, for example, depends on the 

true normal and shear stresses on a section by that plane 

through the deformed material, and not directly on stresses 

transformed to a section of the material in its virgin initial 

state. Similar conclusions can be reached for other easily cal

culated stress tensors conjugated to other finite strain tensors, 

such as Biot stress tensor. Another relevant observation is that 

a constitutive law in terms of the second Piola-Kirchhoff stress 

does not allow simple control of hydrostatic pressure, and thus 

also of pressure sensitivity, internal friction and dilatancy of 

material. Further examples of difficulties with the use of S to 

express the yield limit in shear and the internal friction angle 

have been given by BaZant (1997). Again, similar difficulties 

can be demonstrated for stresses conjugate to other finite strain 

tensors, eg, Biot's. 

The CaUchy stress tensor would give a clear physical 

meaning for the microplane stress components, but it cannot 

be used in a constitutive equation for a solid with memory of 

the initial state because it is not referred to the initial con

figuration and is not conjugated by work with any Lagran

gian finite strain tensor. It is conjugate to the deformation 

rate (or velocity strain) used in Eulerian formulations. 

The proper stress tensor to use is the Cauchy stress tensor 

rotated back to the initial coordinates X attached to the mate

rial, called the back-rotated Cauchy stress tensor and ex

pressed as 

s = RT (JR (4.4) 

where (J is the· Cauchy stress tensor, and R is the material 

rotation tensor. In the case of no rotation, s coincides with 

the Cauchy stress tensor. If there is rotation R, the physical 

meaning of stresses does not get changed by it, only the 

component values get transformed. The hydrostatic pressure, 

which is important for pressure sensitive materials such as 

concrete, is given by tr (s). 

Another possible choice may be the back-rotated Kirch

hoff stress tensor (not considered here), used by Hoger 

(1987), Eterovic and Bathe (1990) and Gabriel and Bathe 

(1995). It is also used in ABAQUS [Hibbitt et al (1995)] and 

EPIC [Johnson et al (1995)]. 

A constitutive relation written in terms of the back-rotated 

Cauchy stress or back-rotated Kirchhoff stress can, of 

course, be always transformed to a constitutive relation in 

terms of the second Piola-Kirchhoff stress. But after this 

transformation, the constitutive law becomes much more 

complicated and the microplane laws for different micro

planes cease to be independent. 

Choice of strOin tensor for micro plane model: 

The first natural choice for the strain measure. would be the 

strain tensor that is work conjugate to the chosen stress ten

sor. In the case of microplane model, this is not possible for 

two reasons [BaZant et al (2000a)]. 

The first reason is that the strain tensors conjugate to the

back rotated Cauchy stress and back-rotated Kirchhoff stress 

are both nonholonomic. In other words, they depend not only 

on the current deformation gradient, but also on the defor

mation path in which the current state has been reached. A 

path-dependent strain tensor appears questionable for mate

rials for which the initial virgin state is an important refer

ence for defining the constitutive behavior, such as fracturing 

damage in concrete. 

The second reason is that, in a finite strain generalization 

of the microplane model, a definite physical meaning needs 

to be attached to the normal and shear strain components on 

the microplanes. The following two conditions must be met: 

Condition I The normal strain component eN on a micro

plane should uniquely characterize the stretch AN of a mate

rial line segment whose direction n is initially normal to the 

microplane, and it should be independent of the stretches of 

material line segments in other initial directions. 

Condition II The shear strain component eNM (or eNL) 

should uniquely characterize the change of angle 8NM or 8NL 
between two initially orthogonal material line segments with 

initial unit vectors n and m. It should be independent of the 

stretch in any direction and of the angle change in any plane 

not parallel to n. 
Only the Green's Lagrangian strain meets these two con

ditions [BaZant et a/ (2000a)]. 

5 MICROPLANE MODELS 
FOR METAL PLASTICITY 

The micropIane model presented in Sections 3 and 4 offers 

an efficient theoretical and· numerical framework for imple

menting material models. We will now present three micro

plane models for metal plasticity, substantially different from 

each other: 

I) a microplane model version of the Jrflow theory; 

2) a microplane model version of the slip theory of plasticity 

(which uses a static constraint); 

3) a microplane model for plasticity based on independent 

yield conditions for shear and deviatoric components of 

strain(with kinematic constraint). 

5.1 Microplane model version of Jrflow theory (MPI) 

In this model (from now on referred to as MPI), the yield con

dition is given by aJrtype function on the microp1ane level: 

(5.1) 

When this condition is met, yielding occurs and radial 

return is performed on the stress components (J Do (J L ~d (J M. 

It can be shown that condition (5.1) is equivalent to the von 

Mises condition in the case of saturation, ie, states in which 

all the microplanes undergo yielding at the same) time [Carol 

and BaZant (1997)]. To prove this, we recall that the second 
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invariant of the deviatoric stress (J2) can be computed in 

terms of the microplane components, of stress as 

3 i 2 2 2 2J 2 = - (cr D + cr L + cr M )dQ 
21t 0 

(5.2) 

where Q is the surface of a unit hemisphere, as in (3.5) or 

(3.9) [see Carol and Baiant (1997)]. For a saturated state of 

yielding, all the microplanes satisfy the condition 

(5.3) 

This can be introduced in (5.2), which can then be integrated, 

yielding 

31 2 3 2 2 2J2 =- (k )dQ=-' k ·21t=3k 
21t 0 21t 

(504) 

Thus, a saturated state of yielding ' is characterized by the 

usual von Mises condition 

3 2 2 
12 =-k ='t 

2 
(5.5) 

After yielding saturation, the performance of this model is 

very similar to that of the usual models of Jz-flow theory, 

such as those presented in Section 2.4. The major difference 

is that different planes, with different physical orientations 

come into play at different times, giving a smooth transition 

from elastic response to plastic response. 

' Figure 5.1 shows the uniaxial stress-strain curves for the 

same material obtained with a Jz-flow plastic law and with 

model MPl. With a Jz-flow plastic law, the material re

sponse changes from plastic to elastic suddenly. With the 

microplane model this transition occurs gradually, as the 

yield condition is met successively in different planes. 

Model MP 1 cannot reproduce a vertex in the yield surface 

and deviation from normality. Because of the way in which 

the yield surface is defmed on each microplane (indeed 

equivalent to a macroscopic Jrflow model), when the in

crement in the macroscopic deviatoric stress is normal to the 

actual deviatoric stress, at the microplane level the increment 

in the stress components will be tangential to the yield sur

face. Therefore the initial shear stiffuess predicted by this 

model in the case of shear following uniaxial pre-loading is 

the elastic shear stiffness, as it is ,when a Jrflow theory 

model is used. 

1.2 

0.8 

'" 
~ 0.6 

0.4 

0,2 

0 

0 0.005 0.01 0.Q15 

Strain 

Fig 5.1. Uniaxial stress-strain curves for ' an elastic-perfectly plastic 

material as reproduced by model MPI and a standard J2-flow model. 

A version ofMPl was originally introduced by Carol and 

Baiant (1997) who proposed an algorithm employing a yield 

condition rewritten in terms of microplane strains instead of 

stresses. However it turns out that employing condition (5.1), 

in terms ' of microplane stresses, yields more accurate results 

in the fInite strain range. 

5.2 Microplane model version 

of slip theory of plasticity (MP2) 

In this model, the shear slip at the microplane level is as

sumed to be the only source of plastic deformation. As usual, 

the strain tensor is given by the summation of an elastic part 

and a plastic part: 

(5.6) 

The elastic part of the strain tensor is related to the stress 

tensor by the usual elasticity relationships. Yielding occurs 

when the shear component of stress at the microplane level 

exceeds a given value. The yield condition, therefore, is 

(5.7) 

where cry is a parameter determined experimentally, as a func

tion of the effective plastic strain (e P , simply defmed so that 

dEP = ~(deD 2 +(de~)2 ), 

and cr} = crl + cr~. When yielding occurs, slip produces a 

plastic shear strain at the microplane level,efr (r = 1,2) , and 

the plastic strain 'tensor eij is then obtained by superposition 

of the effect of slip on all the planes. Such a superposition is 

computed (in a weak sense) by using a formula analogous to 

(3.10): 

. 3 P 

eC = -1 err (n/)rj + n »r;}dQ (5.8) 
21t 0 2 

derived from the principle of complementary virtual work. 

This approach requires adopting the static constraint. When 

slip is the only source of plastic deformation, the distribution . 

of plastic strain among the various planes is very non

uniform. The kinematic constraint would give a more uni-

' form distribution of plastic slip strains among the micro

planes, and thus the corresponding material response would' 

inevitably be too stiff. 

This model with static constraint is very similar to the model 

proposed by Batdorf and Budiansky (1949), called the slip the

my of plasticity. The difference is in the integration scheme and 

the way the overall plastic strain tensor is computed. 

Model MP2 can represent a vertex on the yield surface. 

The consequence of such a vertex is, for example, a reduc

tion of shear stiffness in the case of a loading path in which 

shear follows uniaxial pre-loading into the yielding region. 

In this regard, see the numerical examples in Section 6.1. 

A fmite element computation with an explicit dynamic 

fonnulation requires a subroutine that updates the stress for a 

given strain. Model MP2, which computes the strain tensor for 

a given stress tensor, can still be used, provided that the mi

crop lane stress values in each step are obtaiiled by iteration. 
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Obviously this increases the computational time and makes 

MP2 less convenient than MP3, which is introduced next 

A statically constrained model is inherently less stable than 

a kinematically constrained model, because in a statically con

strained model the strain distribution over the microplanes can 

localize into one or several microplanes a spurious way. This 

problem arises in the case of microplane constitutive laws 

which imply strain softening or elastic-perfectly plastic be

havior. But spurious localization can sometimes occur also 

with mild hardening, when geometric nonlinearities are taken 

into account (in a manner similar to that demostrated by Rud

nicky and Rice, 1974). For this reason it is not easy to extend 

MP2 to the finite strain range efficiently. 

5.3 Microplane model for plasticity 

with kinematic constraint (MP3) 

A formulation with kinematic constraint is necessary if we 

want to develop a microplane model for plasticity able to 

represent a vertex in the yield surface and at the same time 

efficient for finite strain explicit finite element analysis. As 

mentioned, a kinematic constraint is not suitable to deal with 

a model in which plastic slip is the only source of plastic de

formation. To achieve satisfactory performance, it is possible 

to assume that the contribution to the overall plastic defor

mation is given not 'only by the shear components of strain 

on each microplane, but also by the deviatoric part of the 

normal component of strain on each microplane. This as

sumption is at this time driven by convenience and its physi

cal justification is still unclear. But it is acceptable in a 

model that does not aim at a crystallographic description of 

material response. 

Independent yielding conditions can be assumed for the 

shear stresses and the deviatoric part of the normal stresses at 

the microplane level. Yielding occurs when either one of the 

following conditions is met, independently: 

fa (cr) = cri +cr~ -k; = 0 

fb(cr) = cr~ -k; = 0 
(5.9) 

where the two hardening parameters ka and kb are determined 

experimentally and have to be specified independently. 

Fig 6.1. Crucifonn column subjected to axial load 

6 NUMERICAL COMPARISONS 

6.1 Non-proportional loading paths 

An important test for a plasticity model is to verify its capa

bility of reproducing the apparent violation of normality in 

the case of loading paths characterized by abrupt deviations 

from proportionality. Deviation from normality is crucial for 

bifurcation phenomena and buckling problems [see for ex

ample Hutchinson (1974), or Baiant and Cedolin (1991)]. 

Experimentally this can be for instance revealed by uniaxial 

loading of a thin tube into the plastic region followed by tor

sion. Famous experiments evidencing deviations from nor

mality were performed by Gerard and Becker (1957), who 

studied stability of stocky cruciform columns under axial 

load (Fig 6.1). The material used in Gerard and Becker's 

tests was aluminum 2024-T4. 

Buckling of a cruciform column under compression was 

studied originally by Stowell (1 948a,b ). If the column is not 

too slender, it undergoes torsional buckling, which involves 

2024-T4 cruciform sections 
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Fig 6.2. Variation of tangential shear modulus with axial stress 
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twisting about its axis. In the elastic range, the compressive 

bifurcation load is 

Per =GJAI21 (6.1) 

where J = 4bh3/3 = stiffness of the cross section in simple tor

sion, 1= 2bh3/3, h is the wall thickness, b is the width of the 

flange plates, A is the cross sectional area, and G is the elastic 

shear modulus. The corresponding compressive stress is 

(6.2) 

[see also BaZant and Cedolin (1991)]. In the plastic range, 

the fIrst bifurcation load and stress are obtained by replacing 

G with the tangent shear modulus G1 in (6.1-2). J2-flow plas

ticity yields for this case Gt = G because the incremental de

viatoric stress is tangent to the yield surface and thus the re

sponse is predicted as elastic. This means that the bifurcation 
load should be unaffected by plasticity. The results by 

Gerard and Becker clearly show that the bifurcation load is 

indeed affected by the applied compressive stress (and so is 

the tangential shear modulus) if the column is loaded into the 

plastic region. 
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The three microplane models presented in Section 5 have 

been used to fIt the results of Gerard and Becker. The fol
lowing material properties have been assumed for 2024-T4: 

Young's modulus E = 10.6 x 106·psi 

Poisson's ratio v = 113 (6.3) 

Yield Stress (at 0.2% strain) cry = 40 ksi 

Figure 6.2a shows a comparison of the variation of GIG pre

dicted by the models MP 1 and MP2 with the experimental 

results. As expected, model MPI (equivalent to Jrflow plas

ticity) predicts no reduction in the tangential shear modulus 

with increasing uniaxial stress. On the other hand, model 

MP2 can fIt the experimental results up to the maximum ap

plied compressive stress very accurately. Once the material 

parameters (6.3) are assumed, the hardening function for 

cry(£P) in (5.7) is determined so as to fIt the experimental 

data in Fig 6.2a. 

The corresponding uniaxial stress-strain curve is shown in 

Fig 6.3: 

Figure 6.2b shows the results obtained with model MP3. 

This time, the hardening functions ka, kb in (5.9) are not ad

justed by fItting Gerard and Becker's results. Rather they are 

2.50E-02 

chosen so that the corresponding uniaxial stress

strain curve reproduces closely that obtained with 

MP2 (Fig 6.3). With such hardening functions, 

model MP3 fIts accurately the behavior observed 
experimentally up to (j] = 327.5MPa . After that, 
for increasing values of pre-applied uniaxial 

stress, the tangential shear modulus tends as
ymptotically toward a limit minimum value. Note 

that, since modelsMP2 and MP3 are different, 

obtaining very similar results in Fig 6.2a and Fig 

6.2b, just by fItting the uniaxial stress-strain re

sponse, is a good evidence of their mutual con

sistency. 

Fig 6.3. Assumed stress-strain curve for 2024-T4, in models MP2 and MP3 

The fact that GIG tends asymptotically to a 

limit value for MP3 is not surprising. The rea

son is that MP3 is a kinematically constrained 

model. In a statically constrained model (such as 

MP2), when the yield condition is met on some 

microplanes, the plastic deformation on such 

microplanes can reach large values (having no 

kinematic constraint). The strain can localize 

into a limited number of planes and the overall 

response of the material can be very compliant. 

On the other hand, when the kinematic con

straint is imposed, the plastic deformation on the 

microplanes at which the yield condition is met 

is constrained by a limit posed by the deforma

tion on the microplanes that respond elastically. 
When the applied load changes non-propor

tionally, as in the foregoiflg example, some of 

the microplane components of stress will keep 

loading into the plastic region, and other com

ponents will unload into the elastic region. It 

can be proven that the limit minimum value of 
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Fig 6.4. Predicted shear response after uniaxial pre-loading (model MP3) 

GIG following uniaxial loading is 0.5 for MP3. 

Such a value is obtained in the case in which, 
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MPI, model Iv1P3, and the fmite element code using the two 

lz-flow algorithms mentioned in Section 2.4 (only the results 

relative to the fIrst one of these two algorithms will be shown 

here, since the two algorithms yield in this case nearly identi

cal reSUlts). The material parameters and the hardening func

tions in . all the three models can be calibrated so that the 

measured load-displacement curve can be fItted very accu

rately: Figure 6.7 shows the load-displacement curve obtained 

with model Iv1P3, compared to the experimental one. Similar 

fItting is easily obtained also for MP I and for the computation 

with lz-flow plasticity. However, the microplane models (and 

in particular model MP3) appear to be capable of a more accu

rate prediction of the fmal deformed shape of the tube. 

Figure 6.8 shows the initial mesh: and deformed mesh at the 

end of the loading process, as predicted by the standard Ir 

flow plasticity (Fig 6.8b), using model MPl (Fig 6.8c) and 

model Iv1P3 (Fig 6.8d). The most accu

rate prediction among these three models 

is obtained with model MP3. A minor 
2500 ,-------------------------------------------------, 

improvement with respect to the lrflow 

model can be observed also in the result 

obtained with model MP 1. Such a model Z 2000 
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Fig 6.7. Experimental and computed load-displacementdiagrams for the empty tube. 

a) b) 

is based on a lrflow formulation at the 

microplane level, but it is implemented 

by assuming a different defmition of 

stress and strain tensors as discussed in 

Section 4. 

Note that the deviation from normal

ity, which is crucial in the case of bifur

cation studies, still appears to affect 

somehow the material · behavior even in 

the case of the squash test, where the 

material in the bulge is subjected to a 

highly non-proportional loading path due 

to the signifIcant rotations. This is 

doubtless the reason why model MP3 

yields the best result. 

d) 

Fig 6.8. Mesh used for the computations (a), and deformed profiles as predicted at the end of the loading process with J2 (b), MPI (c) and 

MP3 (d). Three-dimensional visualization of the deformed mesh obtained with MP2 ( e). 
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7 SUMMARY AND CONCLUSIONS 

The theoretical and numerical framework of the microplane 

model is very versatile. It provides a researcher with a power

ful and efficient tool for the development and implementation 

of constitutive models for any kind of material. Three micro

plane models for metal plasticity have been introduced and 

discussed. The three models differ in the way the yielding 

condition is specified, and in the kind of constraint (kinematic 

or static) relating the microplane quantities to the macroscopic 

stress or strain tensors. The three models are different con

ceptually, but can all be easily implemented by simply speci

fying the constitutive law at the microplane level. 

The microplane models have been compared quanti

tatively with the classical Jrflow theory for incremental 

plasticity. Two cases have been considered. The first case is 

the material response to a nonproportional loading path 

given by uniaxial compression into the plastic region fol

lowed by shear (typical of buckling and bifurcation prob

lems). This example is considered in order to show the capa

bility of the microplane model to represent a vertex on the 

yield surface. The second case is the 'squash-test' of a highly 

ductile steel tube. Finite element computations have been run 

using two of the newly introduced microplane models and 

the J2-flow theory. Both the microplane version of J2-flow 

plasticity (model MPI) and the microplane model MP3 ap

pear to predict more accurately the final shape of the de

formed tube. The best result among the models considered in 

this particular example is obtained with model MP3. Model 

MP3 is also capable of reproducing a vertex on the yield sur

face at the loading point. This example shows that an im

provement with respect to Jrflow theory is attained even in a 

case in which the material is not subject to abrupt changes in 

the loading path direction. 
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